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We study the integrodifferential convolution equation

d
dt

(x++ V x)&Ax&& V x=f on [0, +�),

x=, on (&�, 0],

as well as a nonlinear perturbation of the corresponding homogeneous equation.
Here A is the generator of an analytic semigroup on a Hilbert space H, and + and
& are operator-valued dominated measures with values in L(H) and L(D(A), H)
respectively. Under the assumption that the operator given by the Laplace trans-
form of the left-hand side of the equation is boundedly invertible on some right
half-plane and on a line in the left half-plane, parallel to the imaginary axis, we
decompose the solutions into components with different exponential growth rates.
We construct projectors onto the stable and unstable subspaces, which are then
used for the construction of stable and unstable manifolds for the nonlinear equa-
tion, which can have a fully nonlinear character. The results are applied to two
equations of parabolic type. Moreover, the spectrum of the generator of the transla-
tion semigroup in various weighted spaces is determined, including the stable and
unstable subspaces of our problem. � 1997 Academic Press
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1. INTRODUCTION

In the present paper, we study asymptotic properties of solutions to the
problem

Dx#
d
dt

(x++ V x)&Ax&& V x= f on R+=[0, +�),
(1)

x=, on R&=(&�, 0],

as well as a nonlinear perturbation of the corresponding homogeneous
equation

d
dt

(x++ V x)&Ax&& V x=F(x). (2)

Here A is the generator of an analytic semigroup on a Hilbert space H, and
+ and & are operator-valued dominated measures with values in L(H)
and L(D(A), H) respectively. The nonlinear perturbation function F is
supposed to vanish together with its Fre� chet derivative at zero and to
map a neighbourhood of zero in the space W 1, 2(R, H) & L2(R, D(A))
into L2(R+, H) with appropriate weights, so the problem can have a fully
nonlinear character.

The linear equation (1) was treated in Staffans [11] as an example of
more general functional equations which generate semigroups. It was proved
that (1) generates a strongly continuous semigroup of translation type on the
weighted space Z=W 1, 2

: (R&, H) & L2
:(R&, D(A))�L2

:(R+, H), namely
T(t)(,, f )=(xt , f t), where x is a solution of (1) and xt(s)=x(t+s),
s # R&, f t(s)= f (t+s), s # R+. (Here we shall see that T(t) is, in fact,
a group.)

Existence of stable and unstable manifolds for equations of parabolic
type has been studied by many authors using methods developed in
ordinary differential equations and the theory of analytic semigroups. The
fully nonlinear parabolic equation was treated by Da Prato and Lunardi
[2] in the space of continuous functions on R& with values in the space
of Ho� lder continuous functions, which is an interpolation space where the
problem enjoys the maximal regularity property. The existence of invariant
manifolds for equations of the type (2) in a finite dimensional space H was
proved by Staffans [10] as an application of a general theory of convo-
lution equations in fading memory spaces. The same problem for the
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semilinear equation (2) with +=0 was treated by Milota [7]. A strongly
continuous semigroup generated by (1) with +=0 was constructed by
Petzeltova� [8] in spaces similar to those in [2]. The existence of stable,
unstable, and center manifolds for the nonlinear perturbation (2) was
proved in [8] and [9], but the assumptions, namely the requirement on
the decay of the Laplace transform of &, did not allow, e.g., the presence of
point masses in the measure &. Here we take advantage of the Hilbert space
setting to enlarge the set of possible kernels, and to treat also neutral equa-
tions where +{0. Two examples demonstrating this extension are given in
Section 6. Our results can also be applied to models of a continuum of dif-
fusively coupled oscilators which are described by partial neutral differen-
tial equations with finite delay, i.e. with measures supported on some finite
interval. These equations have been studied by J. K. Hale in [4, 5], where
the existence of the global attractor and behaviour of solutions near an
equilibrium point are discussed.

In this paper, we do not use the semigroup directly in the construction
of stable and unstable manifolds, but in the spirit of [11] we decompose
the space Z into its stable and unstable parts: we call a pair ( ,

f ) consisting
of the initial function and the right hand side an element of the stable sub-
space of the problem (1) iff the corresponding solution belongs to a solu-
tion space with a suitable decay rate at infinity. The decomposition can be
performed provided that there is a line parallel to the imaginary axis which
does not intersect the spectrum of the problem, and where the operators
(*&A+*+̂(*)& &̂(*))&1: H � D(A) obtained from D by the Laplace
transform are uniformly bounded. It is proved that the restrictions of
the semigroup to the stable and unstable subspaces are groups that are
similar to translation groups on L2

:(R, H) and N(D), respectively. Pro-
jectors onto the stable and unstable subspaces are constructed with the
help of a right inverse of D in the space of stable solutions, obtained
by the bilateral Laplace transform method and a Paley�Wiener
theorem. Using the (unilateral) Laplace transform we get a right inverse
also of the restriction of D to the space of functions vanishing on R&.
These inverse operators enjoy the maximal regularity property, so the
corresponding solution formulas enable us to solve even the fully nonlinear
equation (2).

We prove an existence of a stable and an unstable manifold of solutions
to (2). These are attractive for large negative and positive times respec-
tively. Restricting the solutions in the stable (unstable) manifold to R& we
obtain the initial-valued version of the stable (unstable) manifold theorem.
Our approach here is similar to that used in [10].

Finally, in the last section, we examine the spectrum of the generator of
the translation semigroup in various weighted spaces, including the stable
and unstable subspaces of our problem.
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2. PRELIMINARIES

We consider the problem

Dx(t)= f (t), t # R+, (3)

x(t)=,(t), t # R&, (4)

where

Dx#
d
dt

(x++ V x)&Ax&& V x, (5)

A is the generator of an analytic semigroup eAt on a Hilbert space H, (6)

+ # M(R+, L(H ), e&#t), & # M(R+, L(D(A), H ), e&#t), #<0. (7)

Here M(R+, L(X, Y ), e&#t) is a set of L(X, Y ) dominated measures on R+,
satisfying

&+&=|
R+

e&#t d |+|(t)<�,

and the convolutions in (5) are defined by

(' V x)(t)=|
t

&�
d'(t&s)x(s).

We treat the equation in the weighted L2 spaces

Y:=L2
:(R, H)=L2(R, H, e&:t), :�#,

Y:={x: R � H is strongly measurable, and

&x&:=_|R
&x(t)&2

H e&2:t dt&
1�2

<�= .

Without loss of generality, we can assume that the order of the semi-
group eAt is strictly less than min[:, 0]. (Otherwise we replace A by A&aI
and & by &+a$, where a is a sufficiently large number and $ is the Dirac
measure concentrated at zero.) Then

G=D(A) endowed with the norm &x&G=&Ax&H
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is again a Hilbert space. We define the solution spaces

W:=W 1, 2
: (R, H) & L2

:(R, G ), &x&W:
=&x&:+&x* &:+&Ax&: .

For x # Y: , define ?+x, ?&x to be the restriction of x on R+, R&,
respectively, and let Y \

: , W \
: , denote the corresponding restrictions of the

spaces Y: , W: . We call Y +
: the forcing function space and W &

: the initial
function space.

We denote both the restricted functions and the functions extended by
zero to R\ by ?\f and we add functions belonging to Y &

: , Y +
: , Y: in the

obvious way. For t # R and x # Y: we denote by {t the shift operator and
by xt and xt the restrictions of the shifted function to R& and R+ :

{t x(s)=x(s+t) for s # R, xt=?&{tx, xt=?+{t x. (8)

We shall also use spaces with different weights on R&, R+ respectively,
namely

Y:, ;=L2(R, H, ':, ;), where ':, ;={e&:t

e&;t

on R&,
on R+,

as well as the corresponding solution spaces

W:, ;=W1, 2(R, H, ':, ;) & L2(R, G, ':, ;).

The operator E is called causal if ,(t)=0 for t # R& implies E,(t)=0 for
t # R&.

We call E autonomous or time-invariant if E{t x={t Ex for every x # D(E)
and t # R.

The following lemma is an easy consequence of the foregoing definitions.

Lemma 1. The operator D, given by (5), (6), and (7) is a causal
autonomous operator from W:, ; into Y:, ; . The shift operator {t is a group
on both W: and Y: and on both these spaces &{t &=e:t.

3. A SOLUTION FORMULA AND EXISTENCE THEOREMS

We will use the Laplace transform method to get a solution of a linear
equation

Dx(t)=f (t) t # R+,
(9)

x=0 t # R&.
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As Dx@ =(*&A+*+̂(*)& &̂(*)) x̂(*), it makes sense to define the distribu-
tion Laplace transform D� (*) of D to be

D� (*)=*&A+*+̂(*)&&̂(*), Re *�#,

and to examine the inverse D� (*)&1 to get a solution of (9) as the inverse
Laplace transform of D� (*)&1 f� (*). In the case of a nonhomogeneous initial
condition we can incorporate the convolutions (d�dt)(+ V ,)+& V , into the
right handside.

The following lemma is based on a generalization of the Paley�Wiener
theorem to the Laplace transform of Hilbert space valued L2 functions
on R+:

Lemma 2. Let x # L2(R+, H, e&#t). Then x is analytic for Re z># and

sup
_>#

|
R

&x̂(_+i|)&2 d|=2? |
R

&e&#tx(t)&2 dt<�.

Conversely, to every H-valued function ,, which is defined and analytic on
Re *>#, and satisfies

sup
_>#

|
R

&,(_+i|)&2 d|<�,

there is a unique function x # L2(R+, H, e&#t), satisfying x̂(*)=,(*) for
Re *>#.

With the aid of this lemma, Staffans [11] proved the following:

Lemma 3. Suppose that there is a constant ;># such that

sup
Re *>;

&D� (*)&1&L(H, G)<�, sup
Re *>;

(1+|*| ) &D� (*)&1&L(H)<�. (10)

For each f # Y+
; =L2(R+, H, e&;t), let R; f be the function in

L2(R+, G, e&;t) satisfying

(R; f@ )(*)=D� (*)&1 f� (*) for Re *>;

(cf. Lemma 2). Then the operator R; maps Y +
; linearly and continuously into

W+
; =L2

;(R+, G) & W 1, 2
; (R+, H ), and it has a unique extension to a con-

tinuous, linear, causal and autonomous operator from Y; into W; .

See Foures and Segal [3] for a closely related result.
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Remark 1. It follows from Lemma 3 that (R; f )(0)=0 and that R; is
a right inverse operator to D:

DR;=I on Y; , and R;Df=f if f # W; and ?&f=0. (11)

To derive a solution formula for (3) and (4) with arbitrary , # W &
: , we

need the following ``extension lemma''.

Lemma 4. There is a continuous ``extension mapping'' E that maps

W &
: =W 1, 2

: (R&, H) & L2
:(R&, G ) into W 1, 2

: (R, H ) & L2
:(R, G )=W: .

Proof. Define

E,(t)={,(t),
e2:t,(&t),

for t�0,
for t>0.

Then e&:., # L2(R&, G ) & W1, 2(R&, H ), so �: �(t)=e:t,(&t) belongs to
L2(R+, G ) & W 1, 2(R+, H ), and E, # W: . K

Proposition 1. Let (10) hold for some ;>: and let x be a solution of
(3), (4). Then

x=E,+R;?+( f&DE,), (12)

where E is an arbitrary extension mapping.

Proof. Suppose that (10) holds for some ;>: and let E be an exten-
sion mapping. Then , # W &

: implies DE, # Y: and, if x satisfies (3) and (4),
then

D(x&E,)={0
?+( f&DE,)

on R&,
on R+.

It follows from Lemma 3 that x&E,=R;?+( f&DE,) on R+, x&E,=0
on R&, and the solution formula follows. The solution defined by (12)
automatically fulfils the initial condition (4). K

It should be pointed out that, due to the causality of D and R; , x does
not depend on the choice of operator E. For two extensions E1 , E2 we
have ?&(E1,&E2,)=0 and, according to (11),

R; ?+D(E1,&E2,)=R;D(E1,&E2,)=E1,&E2 ,,

so the corresponding solutions in (12) coincide.
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Also ?&DE, does not depend on the choice of E, so in the following we
will simply write ?&D, instead of ?&DE,.

The following existence theorem was proved in [11].

Theorem 1. Let D satisfy (10) with some ;>: , or, equivalently

inf
&x&H<1, Re *>;

&[I++̂(*)&(&̂(*)A&1&+̂(*))A(*I&A)&1]x&H>0. (13)

Then for each , # W &
: , f # Y +

; the problem (3), (4) has a unique solution
u # W:, ; , which depends linearly and continuously on (,, f ). Moreover,

T(t)(,, f )=(ut , f t) (14)

((xt , xt) defined in (8)) is a strongly continuous semigroup in the space
W&

: �Y +
; with

&T(t)&�Me;t.

Remark 2. As we shall see below, T(t) is even a group.

Remark 3. The condition (13), which is equivalent to (10), is satisfied
(with ; large enough) when D is given by (5), (6), and (7) and +, & have
no point masses at zero. Even if & has a point mass at zero which belongs
to L(H), condition (13) is still fulfilled (see [11, p. 189]).

Now we can use the solution formula (12) together with the global con-
traction principle in the space W:, ; and the local or global implicit func-
tion theorem to prove two existence theorems for the nonlinear perturbed
equation (2).

Theorem 2. Let (13) be fulfilled, let , # W &
: and let F be a Lipschitz

continuous mapping from W:, ; into Y +
; with

&F(x)&F( y )&;�LF &x&y&W:, ;
, LF &R;&L(Y; , W;)<1.

Then there is a unique solution to the problem (2), (4) in W:, ; .

Theorem 3. Let (13) be fulfilled, let 0 be a neighbourhood of zero in
W:, ; and let F # C 1(0, Y +

; ) satisfy F(0)=0 and (the Fre� chet derivative)
F $(0)=0. Then there exist neighbourhoods U and V of zero in W &

: and
W:, ; , respectively, such that for each , # U, Eq. (2) has a unique solution in
V satisfying the initial condition (4).

308 PETZELTOVA� AND STAFFANS



File: 505J 327709 . By:CV . Date:23:07:01 . Time:05:24 LOP8M. V8.0. Page 01:01
Codes: 2617 Signs: 1369 . Length: 45 pic 0 pts, 190 mm

4. STABLE AND UNSTABLE SUBSPACES

In this section, we suppose that :�&# and that the line Re *=: is non-
critical, i.e., D� &1 exists for Re *=: and

sup
Re *=:

&D� (*)&1&L(H, G )<�, sup
Re *=:

(1+|*| ) &D� (*)&1&L(H)<�. (15)

With the help of the bilateral Laplace transform we obtain, in the same
way as in Lemma 3, the existence of another right inverse operator to D,
which this time may be noncausal.

Lemma 5. Suppose that the line Re *=: is noncritical, i.e., condition
(15) holds. Then D has a (noncausal) continuous inverse operator R: that
maps Y:=L2

:(R, H ) onto W:=L2
:(R, G ) & W 1, 2

: (R, H ). The bilateral
Laplace transform of R: f exists on Re *=: and satisfies

(R: f@ )(*)=D� (*)&1 f� (*) for Re *=:.

Remark 4. The boundedness of D� (*)&1 on the line Re *=: given in (15)
is equivalent to (13) with the infimum taken over Re *=:. This together
with (6) and (7) yield the existence of :1>: such that

inf
&x&H<1, :�Re *�:1

&[I++̂(*)&(&̂(*)A&1&+̂(*))A(*I&A)&1]x&H>0. (16)

Then

f # Y:1 , : O R: f # W:1 , : and f # Y:, :1
O R: f # W:, :1

.

Suppose that , # W &
: , f # Y +

: are such that the solution x of (3), (4)
belongs to W: . Then it makes sense to call (,, f ) the element of the stable
subspace of the problem (3), (4).

Definition 1. The stable subspace S consists of

{\ ?&x
?+Dx+ ; x # W:= .

Lemma 6. The stable subspace can be characterized as

{\?&R: f
?+f + ; f # L2

:(R, H )= .

Proof. Define x=R: f. Then f=Dx and the assertion follows. K
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Given an arbitrary element

\ ,
f+ # \W &

:

Y +
: + ,

define

x:=R:(?&D,+f ). (17)

Then

x: # W: , and Dx:=?&D,+f. (18)

Define

PS \,
f +=\?&x:

f + .

This is a continuous projection onto the stable subspace and, consequently,
S is a closed subspace of W &

: �Y +
: .

It follows from (17) that x: is a solution of (3) with the initial condition
?&x: . Hence x: is a solution of (3), (4) iff ( ,

f ) # S.

The unstable subspace U is defined as the image of the complementary
projection PU=I&PS :

PU \ ,
f +=\,&?&R:(?&D,+f )

0 + .

Definition 2. The unstable subspace consists of [( ,
0); ?&R:?&D,=0].

Lemma 7. U is a closed subspace of W &
: �Y +

: consisting of those
elements ( ,

0) for which the corresponding solution x of (3), (4) satisfies
Dx=0 both on R+ and on R&. Thus, x # N(D), where D is considered to
be an operator mapping W:, ; into Y:, ; and satisfying (13). If ( ,

0) # U, then
, # W &

:1
for some :1>: for which (16) holds.

Proof. If Dx=0 on all of R, then

PU \,
0+=\,&?&R:(0)

0 +=\,
0+ ,

so ( ,
0) # U.
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Conversely, suppose that ( ,
0) # U. Then ( ,

0)=PU( ,
0), which implies that

?&R:(?&D,)=0 and, since ?&,=?&x and D is causal, also
?&R:(?&Dx)=0. From Eq. (3) we get ?+Dx=f=0, so

?&R:(Dx)=?&R:(?&Dx+?+Dx)=0.

Hence also DR:Dx=0 on R& and, since D is an inverse of R: , Dx=0 on
R&. Together with Dx=0 on R+, this implies Dx=0 on all of R.

To prove that ,=?&x # W &
:1

, we multiply x by a smooth cut-off func-
tion e, e(t)=1 for t # R&, e(t)=0 for t>1. Then ex # W: , ?&Dex=0, so
Dex # W:$, : with :$>:. The bilateral Laplace transform of ex is given by

ex@(*)=D(*)&1 D(*) ex@(*)=D(*)&1 Dex@ (*).

Thus according to (16) the bilateral Laplace transform of ex is bounded
in the strip :�Re *�:1 and, consequently, ex # W:1 , : . Hence ,=
?&ex # W &

:1
. K

Now, we examine the semigroup T restricted to the stable and unstable
subspaces.

Theorem 4. The restriction of the semigroup T to the stable subspace S

is a group that is similar to the shift on L2
:(R, H).

Proof. For

\,
f + # \W &

:

Y +
: + , \�

g+ # \Y &
:

Y +
: +

define

B \ ,
f+=\?&Dx:

f + , B \ ,
f+=?&Dx:+f, C \�

g+=\?&R:(�+g)
g + ,

where x: is given by (17). Then B( ,
f ) # L2

:(R, H),

C \?&Dx:

f +=\?&R:(?&Dx:+f )
f +=\?&R:(?&D,+f )

f +=\?&x:

f + .

Consequently, C is the inverse to B on S, and (17) and (18) imply that

T(t) \ ,
f+=B&1{t B \,

f + for \ ,
f+ # S,

where the shift operator is defined by (8) and the semigroup T by (14). K
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Remark 5. The restricted semigroup is also similar to the shift on the
space L2

:(R, G ) & W 1, 2
: (R, H).

Theorem 5. The restriction of the semigroup T to U is also a group,
which is similar to the translation group on the null space of D.

Proof. Given ( ,
0) # U, let x be the solution of

Dx(t)=0, t # R+,
(19)

x(t)=,(t), t # R&,

Translate x left or right, and let the new , be the restriction of the trans-
lated x to R&:

T(t) \,
0+=\xt

0 + , t # R. K

Corollary 1. T is a group.

See Section 7 for a discussion of the spectrum of the generator of T.

Remark 6. Initial and forcing function semigroup versions of the group
T can also be constructed. The method is the same as the one used in [12]
in a finite-dimensional setting.

We also obtain a relation between the solution of (3), (4) and its stable
and unstable parts as follows. Let v, vs , vu be solutions of (3), (4) corre-
sponding to

\,
f + # W &

: _Y +
: , \,s

f +=PS \ ,
f+ , \,u

0 +=PU \,
f + ,

respectively. Then

vs=R: Dv, vu=(I&R:D)v,

R:D being a projector of the space of all solutions in W:, ; of (3), (4) with
( ,

f ) # W &
: _Y +

: onto the space of stable solutions, i.e., W: . In fact,
vs=R:( f+?&D,s) while v is given by (12). Now Dv=f+?&D, and a
straightforward computation gives R: ?&D,s=R:?&D,.

In order to construct stable and unstable manifolds for a nonlinear per-
turbation of the homogeneous equation we will also need projections of the
space W:, ; onto the stable and unstable subspaces of the homogeneous
equation. Any solution of (3), (4) with ( ,

f ) # W &
: �Y +

; can be decomposed
into the solution of the homogeneous equation (19) and the solution of (9).
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The solution of (19) can be further decomposed into its stable and unstable
parts. Let

S I=[x # W: ; ?+Dx=0]

be the space of stable solutions of the homogeneous equation. (It can be
identified with the stable initial functions subspace: x # S I iff ( ?&x

0 ) # S.)
Then we can decompose the space W:, ; and its elements as follows.

W:, ;=S I�W +
; �N(D),

x=P:x+P;x+y,

where P: , P; are projectors of W:, ; onto S I, W +
; respectively:

P:x=R:?&Dx,

P; x=R;?+Dx,
(20)

Px=P:x+P; x,

y=(I&P)x.

The operator I&P is a projector of W:, ; onto N(D) and D is invertible
on R(P).

5. STABLE AND UNSTABLE MANIFOLDS

Now, we turn our attention to the nonlinear equation (2). We shall treat
it as a perturbation of a homogeneous equation. That is, we shall suppose
F to be ``small'' in the neighbourhood of zero, namely its value and its
Fre� chet derivative at zero are supposed to be zero,

F(0)=0, F $(0)=0. (21)

The following theorems generalize Theorems 7.2 and 7.3 in [10] to the
infinite-dimensional case.

Theorem 6. Let 0 be a neighbourhood of zero in W: , F # C 1(0, Y +
: )

and let (15) and (21) hold. Then there are neighbourhoods V1 and V2 of zero
in S I and 0, respectively, such that for every y # V1 there is a unique
solution x( y ) of (2) in V2 with P:x( y )=y. This solution x is continuously
differentiable in y, and x=y when F#0.
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Proof. The idea of the proof is the following. First, we prove that there
is a neighbourhood V& of zero in W &

: and another neighbourhood V2/0
of zero, such that for each f # V &, the equation

Dx=F(x)+f (22)

has a solution x # V2 . We denote by R the operator which to every f
assigns the solution of (22) and then, given y, we solve the equation

P:R( f )=y (23)

to obtain f ( y ). Finally, we define x( y )=R( f ( y )) to get the desired
solution.

We begin the proof by applying the implicit function theorem to the
mapping

6(x, f )=x&R:(F(x)+f ).

We observe that 6 maps 0�W &
: into W: with 6(0, 0)=0 and

6$x(0, 0)=Id. So we get open sets V& and V2 and an operator R: V& �
V2/W: such that x=R( f ) is a solution of (22) with R(0)=0 and
R$(0)=R: .

A solution f of the Eq. (23) can be obtained in the following way: First,
we realize that, according to (20),

P:R: f=R: f.

Then, we rewrite Eq. (23) as

R: f+P:(R( f )&R: f )&y=0,

which is equivalent to

f+DP:(R( f )&R: f )&Dy=0.

Now, we apply the implicit function theorem once more and obtain a func-
tion f ( y), and, consequently, x( y)=R( f ( y)) and the conclusion of the
theorem follows. K

Definition 3. We call the manifold

SF=[x( y), y # V1/SI ]

the stable manifold of solutions of (2).
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It follows from the construction of SF and the assumption F(0)=0,
F $(0)=0 that SF is tangent to SI at zero.

To get an existence of an unstable manifold we have to suppose that not
only does F map the space W: into Y: , but also W:, ; into Y:, ; . In many
applications this assumption is not satisfied. A typical unstable manifold
theorem primarily describes the behaviour of solutions for negative time,
i.e., it asserts the existence of initial functions that belong to W &

: or W &
:$ ,

:<:$<:1 respectively, and satisfy the nonlinear equation themselfs. For-
tunately, it is often possible to redefine the original operator F for functions
that are ``large'' at infinity in such a way that our assumptions are met.
This can be done with the help of some cut-off function in the same way
as in standard proofs of local center manifolds for ODE's. The assertion of
the theorem is then valid only for those solutions of the original equation
that are ``small'' at infinity. (See our first example.)

At this point, because of the presence of the right hand side of (2) in the
space Y +

; , we have to use the projection operator

Px=R:?&Dx+R;?+Dx, x # W:, ; .

constructed at the end of Section 4. The complementary projector I&P
maps W:, ; onto N(D)/W:1 , ; , where :1 is given in Lemma 7.

Theorem 7. Let 0 be a neighbourhood of zero in W:, ; , let F be a C 1

mapping of 0 into Y:, ; and let (13), (15), and (21) hold. Then there are
neighbourhoods U1 and U2 of zero in N(D) and 0, respectively, such that
for every z # U1 there is a unique solution x(z) # U2 of (2) with
(I&P) x(z)=z. This solution x(z) is continuously differentiable in z, and
x(z)=z when F#0. Moreover, x # W:$, ; , whenever F maps W:$, ; into Y:$, ;

and :�:$�:1 .

Proof. Let z be a solution of the equation

Dz=0 on R.

Find a function x # W:, ; such that

x=R:?&F(x+z)+R;?+F(x+z) (24)

(this is just another application of the implicit function theorem). The
solution of (24) satisfies

Dx=F(x+z).
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Moreover, Px=x, as D is an inverse to both R: and R; . Now, x(z)=x+z
satisfies the equation

Dx(z)=F(x(z)) on R,

(I&P) x(z)=(I&P)z=z,

and the first assertion of the theorem follows.
If F maps W:$, ; into Y:$, ; , then the same argument with : replaced by

:$ shows that the solution x belongs to the space W:$, ; . K

Definition 4. We call the manifold

UF=[x(z), z # N(D)]

the unstable manifold of solutions of (2).

It follows from the construction of UF and the assumption F(0)=0,
F $(0)=0 that UF is tangent to N(D) at zero. Note that N(D) can be
identified with U.

Next, we shall prove the initial function versions of Theorems 6 and 7.

Definition 5. We define the local stable manifold of initial functions as

SI
F=[?&x, x # SF].

We are going to show that there exists a neighbourhood V &
1 of zero in

S& and a mapping h # C1(V &
1 , U &) such that

SI
F=[,+h(,), , # V &

1 /S&].

To this end, we decompose the space W &
: with the help of the projections

PS and PU restricted to W &
: . We have

PS?&=?&PS ?&=?&P:?&=?&P: , PU ?&=?&(I&PS)?&.

Denote

PSW &
: =S &, PU W &

: =U&.

Now, for each , # S& we have y # S I, where y is the solution of

Dy=0 on R+, y=, on R&.
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For , sufficiently close to zero, Theorem 6 yields the existence of x # W: ,
a solution of (2) such that P:x= y. It follows that

PS?&x=?&y=,,

so we can write

?&x=,+h(,), where h(,)=?&x&PS ?&x # U&.

The function h is differentiable, as it was obtained through a differentiable
process.

Having an initial condition , # SI
F , we get a global solution of (2) in W: .

The manifold SI
F is invariant with respect to solutions of (2) in the sense

that ut # SI
F whenever , # SI

F (ut was defined in (8)). In fact, the equation
is autonomous and the operator R: is autonomous too, as the Laplace
transform commutes with the shifts.

The same reasoning leads to the definition of unstable manifold of initial
functions.

Definition 6. We define the unstable manifold of initial functions as

UI
F=[?&x, x # UF].

Again, we obtain a differentiable function k mapping a neighbourhood of
zero in U& into a neighbourhood of zero in S& such that the initial func-
tion ,+k(,) satisfies the nonlinear Eq. (2) on R&.

UI
F=[,+k(,), , # U &

1 /U &].

Our intention is to show that solutions which belong neither to the
stable nor to the unstable manifold are close to stable ones at minus
infinity and to unstable ones at plus infinity.

Any initial condition can be expressed as a sum of elements from SI
F

and U :

,=PS,+PU,=(PS ,+h(PS,))+(PU,&h(PS, )),

so a general solution of (2) is ``close'' to the stable solution at minus infinity
(since elements of U& belong to W &

:1
, :1>:).

We can prove that x is close to an unstable solution at plus infinity if we
are able to solve the equation

D(x+y)=F(x+y) (25)
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for y # W: . Then x+y # UF , as z=(I&P)(x+y ) # N(D), and we can
apply Theorem 6. Now x=x+y&y, y # W: and the assertion follows. To
prove the existence of y # W: , satisfying (25), we rewrite (25) in the form

Dy=F(x+y )&F(x),

which is equivalent to

y=R:(F(x+y )&F(x)),

provided that F(x+y )&F(x) # Y: for y # W: . Moreover, we want to use
the implicite function theorem again, so we need to suppose that there
exists a neighbourhood V of zero in C1(U, Y:), U being a neighbourhood
of zero in W: , such that the mapping Gx : Gx( y)=F(x+y)&F(x) belongs
to V :

Gx # V for x # 0, x solution of (2). (26)

Under this assumption, there exists a neighbourhood U of zero in W: such
that each solution of (2), which belongs to U, has to be in the stable
manifold SF . Otherwise it would be close to the unstable solution x+y.

We can summarize these considerations into the following theorem.

Theorem 8. Let D be given by (5), (6), and (7). Let F be a C1 mapping
of a neighbourhood 0 of zero in W: (respectively W:, ;) into Y: (respectively
Y:, ;), and let (10), (15), and (21) hold. Then there are two differentiable
functions h and k mapping neighbourhoods V &

1 (respectively U &
1 ) of zero in

S& (respectively U &) into U& (respectively S&), such that setting

SI
F=[�+h(�), � # V &

1 /S &],

UI
F=[�+k(�), � # U &

1 /U&],

we obtain the following conclusions:

(i) SI
F (UI

F ) is tangent to S&(U&) at the origin.

(ii) For any , # SI
F (, # UI

F ) there is a solution of the problem (2),
(4) in W: (W:, ;).

(iii) If x is a solution of (2), (4) with , # SI
F , then xt # SI

F for all
t # R+, where xt is defined by (8).

(iv) Each , # UI
F , satisfies (2) with x replaced by , on R&.

(v) , # UI
F belongs to W:$ whenever F maps W:$, ; into Y:$, ; and

:�:$�:1 .
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(vi) There exists a neighbourhood U of zero in W:, ; such that if x # U
is a solution of (2) and x � SF , x � UF , then

(a) ?&x=,S+,U , where ,S # SI
F and ,U # U&/W &

:1
,

(b) x=x1+x2 , where x1 # UF and x2 # W: provided that (26) holds.

Remark 7. (vi)(b) implies that each solution of (2) which belongs to
U & W: is in SF .

Remark 8. As L2(R+, G) & W1, 2(R+, H ) is imbedded in the space
C(R+, [G, H]1�2), where [G, H]1�2 denotes the half-way interpolation
space between G and H, we obtained exponential decay of solutions in the
stable manifold in the norm of the space [G, H]1�2 as t � +� whenever
:<0, and a similar exponential dexay of solutions in the unstable manifold
as t � &�.

6. EXAMPLES

Consider the problem

ut(t, x)&uxx(t, x)+u(t, x)&u p(t, x)

& :
�

i=1

ai uxx(t&ti , x)+(l V g(u))(t, x)=0, (27)

t # R+, x # R, p>1

u(t, x)=,(t, x) for t # R&, x # R.

Here

g # C2(R), | g(z)|�C |z|,

:
�

i=1

aie#ti<� for some #>0, ai�0,

|
�

0
|l (t)| e#t dt<�, |

�

0
l (t) dt=0.

It is known (see e.g. [1]) that the equation

&vxx+c(v&v p)=0 (28)

has a unique solution in L2(R), which is smooth, radially symmetric and
radially exponentially decreasing. This solution is called a ``ground state''.
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Let w be such a solution for the Eq. (28) with c=1�(1+� ai ). Then, due
to the assumption on l, w(t, x)=w(x) satisfies

wt&wxx+w&w p&k V wxx+l V g(w)=0, (29)

where k=��
i=1 ai $ti

; here $b denotes the Dirac function concentrated at b.
Denoting z=u&w and subtracting (27) and (29) we get the equation

for z,

zt&zxx+z&a(x)z&k V zxx+b(x) l V z=F(z),

z(t, x)=,(t, x)&w(x), t # R&,

with

a=pwp&1, b=g$(w), F(z)(t)=f (z(t))+l V q(z)(t),

f (0)=f $(0)=q(0)=q$(0)=0.

This equation can be rewritten in the form (2) in the space H=L2(R) with

A : D(A)=W 2, 2(R), Az=zxx&z+a(x)z,

+=0, &=k(A+1&a)&b(x) l.

It follows from the theory of the Schro� dinger operators with rapidly
decreasing potentials (see [6]) that the spectrum of A is of the form

_(A)=(&�, &*1] _ [0, *2], *i>0.

To show that (15) holds for some #<:<0, we have to examine

D� (*)=(*&A&k� (*)A+k� (*)(a&1)+l� (*)b)

=(1+k� (*)) \ *
1+k� (*)

&A+
k� (*)(a&1)+l� (*)b

1+k� (*) + .

Now, if we take k, l small enough, we can consider A&(k� (*)(a&1)+l� (*)b)�
(1+k� (*)) to be a small perturbation of A by a commuting bounded
operator, so that the spectra are close (see [6]). Further, (1+k� (*))
then remains close to 1, so we can find a line [* # C; &*1<Re *=:<0]
such that the curve (*�(1+k� (*))) does not intersect the spectrum
_(A&(k� (*)(a&1)+l� (*)b)�(1+k� (*))) for any *, Re *=: and (15) holds.

Now, we can apply Theorem 6 if we realize that the space W 1, 2(R, H) &
L2(R, W2, 2) is embedded in C(R, W 1, 2), which is further embedded in the
space of continuous functions on R2 ; this implies that F is C1 mapping of
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W0 into Y0=L2(R_R). Because of the form of the function f and the sub-
linear growth of g the mapping F maps the weighted space W: into Y +

: .
We have obtained a local stable manifold at the nontrivial eqilibrium
of (27).

Theorem 7 cannot be applied directly, as the nonlinearity does not map
W:, ; into Y:, ; . We can solve the equation for a nonlinearity

Fr : Fr(z)(t)=fr(e(:�p), (;�p)(t)z(t)),

where r is a suitable positive number,

fr( y)= f \� \ y
r+ y+ , e:, ;={e&:t

e&;t

on R&,
on R+ ,

and � is a smooth cut-off function,

�: G � R, |�( y)|<1,

�( y)=1 iff &y&G�1,

�( y)=0 for & y&G�2.

In this way obtain the assertion of Theorem 7 for those solutions of (27)
that remain in an appropriate neighbourhood of zero in W(:�p), ( ;�p) .

As another example we consider the equation

d
dt \u(t, x)+|

t

&�
d+(t&s) u(s, x)+&2u(t, x)&|

t

&�
d&(t&s)2u(s, x)

=|
t

&�
d'(t&s) f (u(s, x), Du(s, x), D2u(s, x)), t>0, x # 0,

�u(t, x)
�n

=0 for t # R, x # �0,

u(t, x)=,(t, x), for t # R&, x # 0,

where 0/Rn is a bounded open set with a smooth boundary, ���n denotes
the normal derivative, and Du=((�u��x1), ..., (�u��xn)). We suppose that f
is a smooth function vanishing at zero together with its first derivatives,

| f ( p, q, r)|�C( | p|+|q|+|r| ) for p # R, q # Rn, r # Rn 2
,

+, &, ' # M(R+, R, e#t) for some #>0.
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Now A is the Laplacian in the Hilbert space H=L2(0), G=W 2, 2(0).
The spectrum of A consists of a sequence of nonpositive numbers
0=+0>+1>+2> } } } The operator D� (*) now has the form

D� (*)=(1+&̂(*)) \*
1++� (*)
1+ &̂(*)

&A)+ .

It follows that *=0 belongs to the spectrum of the problem. Let +1<:<0
and let

&̂(*){&1 for Re *=:. (30)

Suppose that there is r>0 such that

1++̂(*)
1+&̂(*)

# {z # C; |arg z|<
?
2

, |z|>r= for Re *=:.

Then there is a constant \>0 such that the curve

*
1++̂(*)
1+&̂(*)

, Re *=:

belongs to the set [* # C; |arg *|<?] _ B\(0)"[0] provided that : is small
enough. Hence

&D� (*)&1&L(H, G )� } 1
1+&̂(*) } "\*

1++̂(*)
1+ &̂(*)

&A+
&1

"L(H, G )

�C "&I+*
1++̂(*)
1+&̂(*) \*

1++̂(*)
1+&̂(*)

&A+
&1

"L(H, H )

�M

for Re *=:, and (15) holds.
Condition (30) is fulfilled, e.g., with +=e&a1 t, &=e&a2 t, ai>#. In this

case, any * with positive real part belongs to the resolvent set and Theorem
8 applies with any ; positive and : negative, sufficiently small.

We can also take +=c1$a , &=c2$b with small constants c1 , c2 to get the
same result. On the other hand, a simple choice +=0, &=$1 gives
1+&̂(*)=1+e&*=0 whenever *=i (2k+1)?, a straightforward computa-
tion gives (10) for any ;>0, but if *=*1+i*2 with *1<0, then, choosing
*2 such that e&*1 cos *2=0 we get for *=*k=*1+i (*2+2k?)

Re
*k

1+e&*k
� �, Im

*k

1+e&*k
�C,
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so that the L(H, G)&norm of D� &1(*) cannot be estimated by a constant
on the line Re *=*1 . In this case, the operator D: G � H is not invertible
and Theorem 8 cannot be applied.

7. THE SPECTRUM OF THE GENERATOR OF A
TRANSLATION SEMIGROUP

According to Theorems 4 and 5, the restriction of the semigroup given
by the problem (3), (4) to the stable and unstable subspaces is similar to
the shift operator on Y:=L2

a(R, H ) and N(D), respectively. In this section
we examine the spectrum of the generator of the shift on Y: , N(D) and,
for the sake of completeness, also on the spaces Y \

: , Y:, ; . In the following,
we will use the symbol X for anyone of these spaces. The shift operator and
its restrictions are defined in (8), the resolvent set of an operator A is
denoted by \(A), the spectrum and its point, continuous and residual parts
are denoted by _(A), _p(A), _c(A), and _r(A) respectively.

Theorem 9. Let {t be a left-shift operator on a space X and let A be the
generator of the semigroup {. Then

Ax=
d
dt

x, x # D(A),

where the domain D(A) and the spectrum of A depend on the space X in the
following way:

(i) X=L2
:(R, H): D(A)=W 1, 2

: (R, H),

_(A)=_c(A)=[* # C; Re *=:].

(ii) X=L2
:(R&, H ): D(A)=[, # W 1, 2

: (R&, H ); ,(0)=0],

_(A)=[* # C; Re *�:],

_c(A)=[* # C; Re *=:],

_r(A)=[* # C; Re *<:]=_p(A*).

(iii) X=L2
:(R+, H ): D(A)=W 1, 2

: (R+, H ),

_(A)=[* # C; Re *�:],

_p(A)=[* # C; Re *<:],

_c(A)=[* # C; Re *=:].
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(iv) X=L2
:, ;(R, H), :<;: D(A)=W 1, 2

:, ;(R, H ),

_(A)=[* # C; :�Re *�;],

_p(A)=[* # C; :<Re *<;],

_c(A)=[* # C; Re *=: 6 Re *=;].

(v) X=L2
;, :(R, H), :<;: D(A)=W 1, 2

:, ;(R, H ),

_(A)=[* # C; :�Re *�;],

_c(A)=[* # C; Re *=: 6 Re *=;],

_r(A)=[* # C; :<Re *<;].

(vi) X=[, # L2
:(R&, G ) D(A)=[, # X ; ,$ # X],

& W 1, 2
: (R&, H ); D,#0]: _(A)=[* # C; Re *>:,

D� (*) is not invertible],

_p(c, r)(A)=[* # _(A); 0 # _p(c, r) D� (*)].

Proof. It is well known that the operator B: D(B)=W1, 2(R, H ),
Bx=i (dx�dt) is selfadjoint in L2(R, H) with

_(B)=_c(B)=R. (31)

The assertion (i) now follows for X=L2
: with :=0 and, for :{0, by multi-

plying functions in the equation

(A&*I ) f=g � f $&*f=g (32)

by e:t. The inverse of (A&*I ) is given by

(A&*I )&1g=&|
+�

t
e*(t&s)g(s) ds=e&

* V g for Re *>:, (33)

where

e&
* (t)={&e*t

0
for t<0,
for t>0,

(34)

e&
* # L1

:(R) for Re *>: which implies e&
* V g # W 1, 2

: (R, H) whenever
g # L2

:(R, H). Similarly, e+
* defined as

e+
* (t)={0

e*t

for t<0,
for t>0

(35)
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belongs to L1
:(R) if Re *<: and

(A&*I )&1 g=e+
* V g for Re *<:. (36)

If Re *=:, then e\
* V g need not belong to W 1, 2

: , so * # _(A) and, due to
(31),

R(A&*I ) is dense in L2
:(R, A). (37)

In the same way, using (33)�(37) we prove the assertions on the resolvent
sets of A as well as the boundary lines of the spectra in (i)�(v).

As to the inner part of the spectrum, we shall treat each case separately.

(ii) If Re *<:, then we have an additional condition for solution of
(33), namely

f (0)=0, i.e. (e+
* V g)(0)=|

0

&�
e&*tg(t) dt=0,

so the range of (A&*I ) is closed, but not the whole space. It follows that
* # _r(A). In this case, e&*tx, x # H is the eigenfunction of the adjoint
operator AC=&d�dt, D(AC)=W 1, 2

: . Thus * is an eigenvalue of A* with
infinite multiplicity, equal to the dimension of H.

(iii) If Re *<:, then e*tx is an eigenfunction of A for each x # H. It
follows that * is an eigenvalue with infinite multiplicity.

(iv) Let :<Re *<;. Then e*tx # W 1, 2
:, ; is an eigenfunction of A, and

* is an eigenvalue of infinite multiplicity.

(v) Let :<Re *<;. This time e*t � L2
;, : . As f # X implies f # L1

'(R)
for every ' # (:, ;) we can multiply (33) by e&*t and integrate to get a
condition on the the right hand side:

|
�

&�
e&*tg(t) dt=|

�

&�

d
dt

( f (t)e&*t) dt=0.

Thus A&*I is not onto, R(A&*I ) is closed and * # _r(A).
To prove (vi) we solve (33) on R& with Dg=0 and we require that

Df=Df $=0. Since D commutes with d�dt, it suffices to show that Df=0.
For * with Re *<: the solution is given by

f=?&e+
* V g,

(38)
?&Df=?&D(e+

* V g)=?&e+
* V Dg=0,
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so this * belongs to the resolvent set of A. The same argument applies if
Re *=:, because, according to Lemma 7, g # X O g # W &

:$ with some
:$>:, so f is given by (38) belongs to X.

For * with Re *>: we obtain the solution of (33) as

f (t)=e*tf (0)&|
0

t
e*(t&s)g(s) ds=e*tf (0)+e&

* V g, t�0.

In this case,

Df (t)=e*tD� (*) f (0)+e*th(*, g)&|
0

t
e*(t&s)(Dg)(s) ds,

where

e*th(*, g)=e&
* V ?+D?&g=e*t(?+D?&g)7 (*), t�0.

The operator ?+D?& is expressed with the help of the Dirac measure $0

by

?+D?&=(g(0)++ V g(0))$0+?++ V ?&g$+?+& V ?&g.

So

h(*, g)=g(0)+(+ V g)(0)&*(?++ V g)7 (*)+(?+& V g)7 (*).

It follows that f # X iff

D� (*) f (0)=&h(*, g).

Hence each * such that D� (*) is invertible belongs to the resolvent set.
It is clear that x is in the null space of D� (*) iff e*tx is the eigenvector

of A.
To complete the proof we show that D� (*) has a full range whenever

* # \(A). To this end, take q=e#tx with # such that :<Re #<Re * and
D� (#) is invertible. Equation (33) can be solved for g=PU( q

0), so we have
some f # X such that

D� (*) f (0)&h \*, PS \q
0++=&h(*, q)=

1
#&*

(D� (*)&D� (#))x.

Now, we realize that h(*, PS( q
0)) # R(D� (*)). In fact, the Laplace transform

of a solution of the equation Du=0, ?&u=,, with ( ,
0) # S is defined for

Re *>: and

0=Du@(*)=D� (*) û(*)&h(*, ,).
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Then

D� (*)((*&#)( f (0)&y)&x)=D� (#)x, (39)

with y satisfying D� (*) y=h(*, PS( g
0 )). If D� (#) is invertible, then (39) gives

R(D� (*))=H.
The correspondence of the particular parts of the spectrum follows from

the continuity of h. K
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