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We study the integrodifferential convolution equation
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as well as a nonlinear perturbation of the corresponding homogeneous equation.
Here A is the generator of an analytic semigroup on a Hilbert space H, and x and
v are operator-valued dominated measures with values in L(H) and L(Z(4), H)
respectively. Under the assumption that the operator given by the Laplace trans-
form of the left-hand side of the equation is boundedly invertible on some right
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decompose the solutions into components with different exponential growth rates.
We construct projectors onto the stable and unstable subspaces, which are then
used for the construction of stable and unstable manifolds for the nonlinear equa-
tion, which can have a fully nonlinear character. The results are applied to two
equations of parabolic type. Moreover, the spectrum of the generator of the transla-
tion semigroup in various weighted spaces is determined, including the stable and
unstable subspaces of our problem.  © 1997 Academic Press
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302 PETZELTOVA AND STAFFANS

1. INTRODUCTION

In the present paper, we study asymptotic properties of solutions to the
problem

d
Dx=—(x+pu*xx)—Ax—vs*x= on R*=[0, +00),
() f (0. +2).

x=¢ on R™=(—00,0],

as well as a nonlinear perturbation of the corresponding homogeneous
equation

%(x—i—y*x)—Ax—v*x:F(x). (2)
Here A is the generator of an analytic semigroup on a Hilbert space H, and
i and v are operator-valued dominated measures with values in L(H)
and L(Z(A), H) respectively. The nonlinear perturbation function F is
supposed to vanish together with its Fréchet derivative at zero and to
map a neighbourhood of zero in the space W'%“2(R, H)n L*(R, Z(A4))
into L*(R*, H) with appropriate weights, so the problem can have a fully
nonlinear character.

The linear equation (1) was treated in Staffans [11] as an example of
more general functional equations which generate semigroups. It was proved
that (1) generates a strongly continuous semigroup of translation type on the
weighted space Z=WL3 R, H)nLXR ", 2(A))®LXR™, H), namely
T(t)(¢, f)=(x,, f'), where x is a solution of (1) and x,[(s)=x(f+s),
seR™, fi(s)=f(t+s), seR*. (Here we shall see that 7(z) is, in fact,
a group.)

Existence of stable and unstable manifolds for equations of parabolic
type has been studied by many authors using methods developed in
ordinary differential equations and the theory of analytic semigroups. The
fully nonlinear parabolic equation was treated by Da Prato and Lunardi
[2] in the space of continuous functions on R~ with values in the space
of Holder continuous functions, which is an interpolation space where the
problem enjoys the maximal regularity property. The existence of invariant
manifolds for equations of the type (2) in a finite dimensional space H was
proved by Staffans [10] as an application of a general theory of convo-
lution equations in fading memory spaces. The same problem for the



SPECTRAL DECOMPOSITION FOR PDFE 303

semilinear equation (2) with x4 =0 was treated by Milota [7]. A strongly
continuous semigroup generated by (1) with =0 was constructed by
Petzeltova [8] in spaces similar to those in [2]. The existence of stable,
unstable, and center manifolds for the nonlinear perturbation (2) was
proved in [8] and [9], but the assumptions, namely the requirement on
the decay of the Laplace transform of v, did not allow, e.g., the presence of
point masses in the measure v. Here we take advantage of the Hilbert space
setting to enlarge the set of possible kernels, and to treat also neutral equa-
tions where u # 0. Two examples demonstrating this extension are given in
Section 6. Our results can also be applied to models of a continuum of dif-
fusively coupled oscilators which are described by partial neutral differen-
tial equations with finite delay, i.e. with measures supported on some finite
interval. These equations have been studied by J. K. Hale in [4, 5], where
the existence of the global attractor and behaviour of solutions near an
equilibrium point are discussed.

In this paper, we do not use the semigroup directly in the construction
of stable and unstable manifolds, but in the spirit of [ 11] we decompose
the space Z into its stable and unstable parts: we call a pair (‘f/’») consisting
of the initial function and the right hand side an element of the stable sub-
space of the problem (1) iff the corresponding solution belongs to a solu-
tion space with a suitable decay rate at infinity. The decomposition can be
performed provided that there is a line parallel to the imaginary axis which
does not intersect the spectrum of the problem, and where the operators
(A—A+24(A)—%2)"': H— 2(A) obtained from D by the Laplace
transform are uniformly bounded. It is proved that the restrictions of
the semigroup to the stable and unstable subspaces are groups that are
similar to translation groups on L(R, H) and ./"(D), respectively. Pro-
jectors onto the stable and unstable subspaces are constructed with the
help of a right inverse of D in the space of stable solutions, obtained
by the bilateral Laplace transform method and a Paley—Wiener
theorem. Using the (unilateral) Laplace transform we get a right inverse
also of the restriction of D to the space of functions vanishing on R™.
These inverse operators enjoy the maximal regularity property, so the
corresponding solution formulas enable us to solve even the fully nonlinear
equation (2).

We prove an existence of a stable and an unstable manifold of solutions
to (2). These are attractive for large negative and positive times respec-
tively. Restricting the solutions in the stable (unstable) manifold to R~ we
obtain the initial-valued version of the stable (unstable) manifold theorem.
Our approach here is similar to that used in [10].

Finally, in the last section, we examine the spectrum of the generator of
the translation semigroup in various weighted spaces, including the stable
and unstable subspaces of our problem.
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2. PRELIMINARIES

We consider the problem

Dx(t) = f(1), teR™, (3)
x(1)=¢(1), 1eR", (4)

where
DxE%(x—i—,u*x)—Ax—v*x, (5)

A is the generator of an analytic semigroup e’ on a Hilbert space H, (6)

peMRT,L(H),e™), veMR", L(Z(A4),H), e ™), y<0. (7)
Here M(R™*, L(X, Y), e ") is a set of L(X, Y) dominated measures on R,
satisfying

lull =] e dlulin) < oo,

and the convolutions in (5) are defined by

(nex)0)=[" dn(i—s)x().

We treat the equation in the weighted L? spaces

Y,=L}R H)=L R, He ™), o>y,

Y,=<{x: R —> H is strongly measurable, and

12
|x|u=UR Ix(0) 3¢ dt} < oo},

Without loss of generality, we can assume that the order of the semi-
group e is strictly less than min{a, 0}. (Otherwise we replace 4 by A —al
and v by v+ ad, where a is a sufficiently large number and ¢ is the Dirac
measure concentrated at zero.) Then

G =9%(A) endowed with the norm | x| s = |4Ax| 4
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is again a Hilbert space. We define the solution spaces
W,=W AR H)NLAR, G), x|y, = x|+ [ X[+ [ 4x].

For xeY,, define #"x, #~x to be the restriction of x on R*, R,
respectively, and let Y, WF, denote the corresponding restrictions of the
spaces Y,, W,. We call Y the forcing function space and W the initial
function space.

We denote both the restricted functions and the functions extended by
zero to R* by n*f and we add functions belonging to Y, Y, Y, in the
obvious way. For 1eR and xe Y, we denote by 7, the shift operator and
by x, and x’ the restrictions of the shifted function to R~ and R*:

T,X(8) =Xx(s+1) for seR, x,=n"1,x, x'=n't,x (8)
We shall also use spaces with different weights on R~, R* respectively,
namely

—at

e onR™,
e P onR™,

as well as the corresponding solution spaces
Wac,p’ = Wl’ Z(Ra Ha 770(, /1’) N Lz(Rt G) ']oc,/})'

The operator E is called causal if ¢(z) =0 for € R~ implies E¢(¢) =0 for
teR™.

We call E autonomous or time-invariant if Et,x =1,Ex for every x € Z(E)
and teR.

The following lemma is an easy consequence of the foregoing definitions.

LemMma 1. The operator D, given by (5), (6), and (7) is a causal
autonomous operator from W, s into Y, z. The shift operator t, is a group
on both W, and Y, and on both these spaces |z,| =e*.

3. A SOLUTION FORMULA AND EXISTENCE THEOREMS

We will use the Laplace transform method to get a solution of a linear
equation
Dx(t)=f(t) teR™,

B 9)
x=0 teR™.
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As 5;: (A—A+ Mi(A) —P(A))X(A), it makes sense to define the distribu-
tion Laplace transform D(1) of D to be

D(A)=)—A+0(0)—%2), Rei=y,

and to examine the inverse D(/) ! to get a solution of (9) as the inverse
Laplace transform of D(4) ™" f(4). In the case of a nonhomogeneous initial
condition we can incorporate the convolutions (d/dt)(u = ¢) + v = ¢ into the
right handside.

The following lemma is based on a generalization of the Paley—Wiener
theorem to the Laplace transform of Hilbert space valued L* functions
on R*:

LEMMA 2. Let xe L*(R™, H, e ). Then x is analytic for Re z >y and
supj 15(0 + i0)||? deo = 2nf le=7x(1)||? dr < .
g>y

Conversely, to every H-valued function ¢, which is defined and analytic on
Re 4>y, and satisfies

supj (o + i0)||? dov < o0,
o>y R

there is a unmique function xe L>(R™, H, e~ "), satisfying %(A)=¢(1) for
Re 2> 7.

With the aid of this lemma, Staffans [11] proved the following:

LEMMA 3. Suppose that there is a constant >y such that

sup ‘|DA()“)71HL(H,G)<009 sup (1414]) HD A)~ 1”L(H)<OO- (10)

Re i>p Rei>p
For each feY;=L*R*, H e "), let Ryf be the function in
L*R™", G, e P satisfying

(R/,f)( A7) for Rei>p

(cf. Lemma 2). Then the operator Ry maps Y ; linearly and continuously into
Wi =LyR*, G)nWy*R", H), and it has a unique extension to a con-
tinuous, linear, causal and autonomous operator from Y, into Wy.

See Foures and Segal [3] for a closely related result.
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Remark 1. 1t follows from Lemma 3 that (R, f)(0) =0 and that R is
a right inverse operator to D:

DRg;=1 onY, and RyDf=f if feW; and = f=0. (11)
To derive a solution formula for (3) and (4) with arbitrary ¢ W_, we

need the following “extension lemma”.

LEMMA 4. There is a continuous “extension mapping” E that maps

W =W.\AR-,H)ALAR~,G) into W AR, H)nLXR,G)=W,.

Proof. Define

(1), for <0,
e —1), for >0.

i - |

Then e *¢pe L*(R~, G)n W3R, H), so y: y(t)=e"¢(—1t) belongs to
L* R, G)nW"*R™ H),and Egec W,. |

PropoSITION 1. Let (10) hold for some B> a and let x be a solution of
(3), (4). Then

x=E¢+ Ryn™*(f—DE¢), (12)
where E is an arbitrary extension mapping.

Proof. Suppose that (10) holds for some >« and let E be an exten-
sion mapping. Then ¢ € W implies DE¢ € Y, and, if x satisfies (3) and (4),
then

0 onR™,

D(X_E¢):{n+(f—DE¢) onR*.

It follows from Lemma 3 that x — E¢ = Ryn " (f—DE¢) on R™, x — Ep=0
on R™, and the solution formula follows. The solution defined by (12)
automatically fulfils the initial condition (4). ||

It should be pointed out that, due to the causality of D and Ry, x does
not depend on the choice of operator E. For two extensions E,, E, we
have 7~ (E,¢ — E,¢) =0 and, according to (11),

Rﬁ”+D(E1¢ —E,$)= RﬁD(El‘/’ —Ep)=E, ¢ —E, ¢,

so the corresponding solutions in (12) coincide.
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Also 7~ DE¢ does not depend on the choice of E, so in the following we
will simply write 7~ D¢ instead of 7~ DE¢.
The following existence theorem was proved in [11].

THEOREM 1. Let D satisfy (10) with some >« , or, equivalently

inf LT+ A — (P A~ = A(2) A(AL— A) =" x| > 0. (13)

[xlg<1,Re A>p

Then for each ¢ W, fe Y, the problem (3), (4) has a unique solution
ue W, gz, which depends linearly and continuously on (¢, f). Moreover,

T(0)(¢. f) = (u,. ") (14)

((x,, x") defined in (8)) is a strongly continuous semigroup in the space
W ® Y; with

I17(2) || < Me".

Remark 2. As we shall see below, T(¢) is even a group.

Remark 3. The condition (13), which is equivalent to (10), is satisfied
(with g large enough) when D is given by (5), (6), and (7) and u, v have
no point masses at zero. Even if v has a point mass at zero which belongs
to L(H), condition (13) is still fulfilled (see [ 11, p. 189]).

Now we can use the solution formula (12) together with the global con-
traction principle in the space W, , and the local or global implicit func-
tion theorem to prove two existence theorems for the nonlinear perturbed
equation (2).

THEOREM 2. Let (13) be fulfilled, let ¢ € W and let F be a Lipschitz
continuous mapping from W, ginto Y ; with

IFx) — FO) < Lplx—ylw, 0 LelRolucr, wy<1.

Then there is a unique solution to the problem (2), (4) in W, 4.

THEOREM 3. Let (13) be fulfilled, let Q be a neighbourhood of zero in
W, 5 and let Fe C'(Q, Y ;) satisfy F(0)=0 and (the Frechet derivative)
F'(0)=0. Then there exist neighbourhoods U and V of zero in W and
W, g, respectively, such that for each ¢ € U, Eq.(2) has a unique solution in
V satisfying the initial condition (4).
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4., STABLE AND UNSTABLE SUBSPACES

In this section, we suppose that « > —y and that the line Re 2 =a is non-
critical, i.e., D! exists for Re A =« and

sup |uj(;“)71“L(H,G)<oos sup (1+|}~|)|uj(j-)71HL(H)<OO~ (15)

Re i=«a Re l=«a

With the help of the bilateral Laplace transform we obtain, in the same
way as in Lemma 3, the existence of another right inverse operator to D,
which this time may be noncausal.

LemmA 5. Suppose that the line Re A= is noncritical, i.e., condition
(15) holds. Then D has a (noncausal) continuous inverse operator R, that
maps Y,=L2(R, H) onto W,=LXR,G)n WLAR, H). The bilateral
Laplace transform of R, f exists on Re A=a and satisfies

(@)u) =D(A)"'fil))  for Reli=a.

Remark 4. The boundedness of D(1) ! on the line Re A =« given in (15)
is equivalent to (13) with the infimum taken over Re 4 =a. This together
with (6) and (7) yield the existence of a; >« such that

inf L+ A(2) = (H(A) A~ = 4(2) A(AL = A) " 1x]l > 0. (16)

Ixllp<l,a<Rel<oy

Then
feY, =R, feW, , and JeYy =R fEW, .
Suppose that ¢ W_, fe Y are such that the solution x of (3), (4)

belongs to W,. Then it makes sense to call (¢, f) the element of the stable
subspace of the problem (3), (4).

DEerFINITION 1. The stable subspace & consists of

(- efiem)

LEMMA 6. The stable subspace can be characterized as

{(”nlf}g;fe LR, H)}.

Proof. Define x=R, f. Then f=Dx and the assertion follows. |[I
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(7)<(¥:)

Given an arbitrary element

define
X, = R,(n~ D +). (17)

Then
x, eW,, and Dx,=n"D¢+f. (18)

Define

)-()

P, < - |

S f f

This is a continuous projection onto the stable subspace and, consequently,
& is a closed subspace of W_ ® Y.

It follows from (17) that x, is a solution of (3) with the initial condition
n~ x,. Hence x, is a solution of (3), (4) iff (%) e &.

The unstable subspace % is defined as the image of the complementary
projection P, =1—P,:

()

DEFINITION 2. The unstable subspace consists of {(4); n~R,n~ D¢ =0}.

LEMMA 7. % is a closed subspace of W ® Y} consisting of those
elements (8) for which the corresponding solution x of (3), (4) satisfies
Dx=0 both on R* and on R~. Thus, xe N (D), where D is considered to
be an operator mapping W, 4 into Y, , and satisfying (13). If (§) e U, then
pe W, for some a; > o for which (16) holds.

Proof. 1If Dx=0 on all of R, then

-0

so (§)e.
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Conversely, suppose that ($)e. Then (4)=P,({), which implies that
n R(t D$)=0 and, since n ¢=n"x and D is causal, also
n~ R, (n~Dx)=0. From Eq. (3) we get z*Dx=f=0, so

n R (Dx)=n"R,(n Dx+n*Dx)=0.

Hence also DR,Dx=0 on R~ and, since D is an inverse of R,, Dx =0 on
R . Together with Dx =0 on R ™, this implies Dx =0 on all of R.

To prove that ¢ =7 x¢€ W, . we multiply x by a smooth cut-off func-
tion e, e(t)=1 for teR™, e(t) =0 for t>1. Then exe W,, 1~ Dex =0, so
Dexe W, , with o' >a. The bilateral Laplace transform of ex is given by

() =D(%) "' D(7) ex() = D(2) " Dex(7).

Thus according to (16) the bilateral Laplace transform of ex is bounded
in the strip a<Re/l<a; and, consequently, exe W, Hence ¢ =
nexeW, . |

st

Now, we examine the semigroup 7 restricted to the stable and unstable
subspaces.

THEOREM 4. The restriction of the semigroup T to the stable subspace &
is a group that is similar to the shift on L2(R, H).

Proof. For
(i) ()
define

S A Ry

where x, is given by (17). Then 4(%)e L3(R, H),

c <n_j?xa> _ (n_Ra(n ;Dx“ +f)> _ <n_Ra(n;D¢ +f)> _ <7z jfxa>'

Consequently, C is the inverse to B on ., and (17) and (18) imply that

rof()aa(y) o (e

where the shift operator is defined by (8) and the semigroup 7 by (14). ||



312 PETZELTOVA AND STAFFANS

Remark 5. The restricted semigroup is also similar to the shift on the
space L2(R, G) n WL (R, H).

THEOREM 5. The restriction of the semigroup T to U is also a group,
which is similar to the translation group on the null space of D.
Proof. Given ({)) e %, let x be the solution of
Dx(t)=0, teR™,
x(t)=¢(1), teR™,

(19)

Translate x left or right, and let the new ¢ be the restriction of the trans-

lated x to R~
N\ (X,
T(z)<0>—<0>, teR. |

COROLLARY 1. T is a group.
See Section 7 for a discussion of the spectrum of the generator of 7.

Remark 6. Initial and forcing function semigroup versions of the group
T can also be constructed. The method is the same as the one used in [12]
in a finite-dimensional setting.

We also obtain a relation between the solution of (3), (4) and its stable
and unstable parts as follows. Let v, v,, v, be solutions of (3), (4) corre-
sponding to

(Pewexre (§)=r(3) (5)=r-(5)

respectively. Then
v,=R,Duv, v,=[I—R,D)uv,

R, D being a projector of the space of all solutions in W, , of (3), (4) with
(‘/”-) eW_ xY! onto the space of stable solutions, ie., W,. In fact,

v,=R, (f+7m D¢,) while v is given by (12). Now Dv=f+7n"D¢ and a
straightforward computation gives R, 7~ D¢, = R, n~ Dé.

In order to construct stable and unstable manifolds for a nonlinear per-
turbation of the homogeneous equation we will also need projections of the
space W, ; onto the stable and unstable subspaces of the homogeneous
equation. Any solution of (3), (4) with ( ?) e W, ®Y, can be decomposed
into the solution of the homogeneous equation (19) and the solution of (9).
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The solution of (19) can be further decomposed into its stable and unstable
parts. Let

S'={xe W, ;n*Dx=0}

be the space of stable solutions of the homogeneous equation. (It can be
identified with the stable initial functions subspace: x e 7 iff (*,*)e .¥.)
Then we can decompose the space W, , and its elements as follows.

W,=9"@® Wi @A (D),

x=P,x+ Pgx+y,
where P,, P, are projectors of W, , onto &7, W respectively:

P,x=R,n" Dx,

Pyx=R,n*tDx,
e (20)
Px=P,x+ Pyx,

y={I—P)x.

The operator I— P is a projector of W, ; onto .#"(D) and D is invertible
on Z(P).

5. STABLE AND UNSTABLE MANIFOLDS

Now, we turn our attention to the nonlinear equation (2). We shall treat
it as a perturbation of a homogeneous equation. That is, we shall suppose
F to be “small” in the neighbourhood of zero, namely its value and its
Fréchet derivative at zero are supposed to be zero,

F(0)=0, F'(0)=0. (21)

The following theorems generalize Theorems 7.2 and 7.3 in [10] to the
infinite-dimensional case.

THEOREM 6. Let Q be a neighbourhood of zero in W,, FeC'(Q, Y)
and let (15) and (21) hold. Then there are neighbourhoods V| and V, of zero
in &7 and Q, respectively, such that for every yeV, there is a unique
solution x(y) of (2) in V, with P,x(y)=y. This solution x is continuously
differentiable in y, and x =y when F=0.
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Proof. The idea of the proof is the following. First, we prove that there
is a neighbourhood V'~ of zero in W _ and another neighbourhood V, < Q
of zero, such that for each f'e IV, the equation

Dx=F(x)+f (22)

has a solution xeV,. We denote by R the operator which to every f
assigns the solution of (22) and then, given y, we solve the equation

P.R(f)=y (23)

to obtain f(y). Finally, we define x(y)=R(f(y)) to get the desired
solution.
We begin the proof by applying the implicit function theorem to the

mapping
I(x, f) =x— R,(F(x) +f).

We observe that I maps Q® W_ into W, with [1(0,0)=0 and
IT'(0,0)=1Id. So we get open sets V'~ and V, and an operator R: V'~ —
V,= W, such that x=R(f) is a solution of (22) with R(0)=0 and
R (0)=R,.

A solution f of the Eq. (23) can be obtained in the following way: First,
we realize that, according to (20),

P.R,f=R, [
Then, we rewrite Eq. (23) as
R, f+P,(R(f)—R, [)—y=0,
which is equivalent to
J+DP,(R(f)—R, f)—Dy=0.
Now, we apply the implicit function theorem once more and obtain a func-

tion f(y), and, consequently, x(y)=R(f(y)) and the conclusion of the
theorem follows. ||

DErINITION 3. We call the manifold
Sr={x(y), yeV,c "}

the stable manifold of solutions of (2).
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It follows from the construction of % and the assumption F(0)=0,
F'(0) =0 that % is tangent to %’ at zero.

To get an existence of an unstable manifold we have to suppose that not
only does F map the space W, into Y,, but also W, s into Y, ;. In many
applications this assumption is not satisfied. A typical unstable manifold
theorem primarily describes the behaviour of solutions for negative time,
i.e., it asserts the existence of initial functions that belong to W_ or W_,,
a<a' <o, respectively, and satisfy the nonlinear equation themselfs. For-
tunately, it is often possible to redefine the original operator F for functions
that are “large” at infinity in such a way that our assumptions are met.
This can be done with the help of some cut-off function in the same way
as in standard proofs of local center manifolds for ODE’s. The assertion of
the theorem is then valid only for those solutions of the original equation
that are “small” at infinity. (See our first example.)

At this point, because of the presence of the right hand side of (2) in the
space Y, we have to use the projection operator

Px=R,n~Dx+ Ryn*Dx, xeW, ;.

constructed at the end of Section 4. The complementary projector /— P
maps W, ; onto A(D)= W, ,, where a, is given in Lemma 7.

THEOREM 7. Let Q be a neighbourhood of zero in W, 4, let F be a C'
mapping of Q into Y, , and let (13), (15), and (21) hold. Then there are
neighbourhoods U, and U, of zero in N (D) and Q, respectively, such that
for every zeU, there is a unique solution x(z)e U, of (2) with
(I—P) x(z)==z. This solution x(z) is continuously differentiable in z, and
X(z) =z when F=0. Moreover, xe W, 5, whenever F maps W 5 into Y,
and a <o’ <a.

Proof. Let z be a solution of the equation
Dz=0 onR.
Find a function x € W, ; such that
x=R,n F(x+z)+Ryn*F(x+z) (24)

(this is just another application of the implicit function theorem). The
solution of (24) satisfies

Dx=F(x+z).
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Moreover, Px = x, as D is an inverse to both R, and R;. Now, x(z)=x+z
satisfies the equation

Dx(z)=F(x(z)) onR,
(I—P)x(z)=(I—P)z=2z,
and the first assertion of the theorem follows.

If F maps W, ,into Y, 4, then the same argument with « replaced by
o' shows that the solution x belongs to the space W, 5. |

DErFINITION 4. We call the manifold
Up={x(z),ze N (D)}

the unstable manifold of solutions of (2).

It follows from the construction of %, and the assumption F(0)=0,
F'(0)=0 that %, is tangent to /(D) at zero. Note that ./ (D) can be
identified with %.

Next, we shall prove the initial function versions of Theorems 6 and 7.

DErINITION 5. We define the local stable manifold of initial functions as
Sht={n"x,xe S}

We are going to show that there exists a neighbourhood V| of zero in
&~ and a mapping he C'(V |, % ~) such that

Fh={$+hp)deVics ).

To this end, we decompose the space W _ with the help of the projections
P, and P, restricted to W_. We have

Po,n~=n"P,n =n"Pan =n"P, P,n~=n"(I—P,)n".
Denote
P, W_ =97, P, W_ =au".
Now, for each ¢ € &~ we have y e &7, where y is the solution of

Dy=0 onR™, y=4¢ onR™.
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For ¢ sufficiently close to zero, Theorem 6 yields the existence of x e W,
a solution of (2) such that P,x = y. It follows that

Pyrcfxznfy:(]ﬁ,
SO we can write
n-x=¢+h(¢), where h(¢p)=n"x—P,n x€U .

The function / is differentiable, as it was obtained through a differentiable
process.

Having an initial condition ¢ € &%, we get a global solution of (2) in W,.
The manifold . is invariant with respect to solutions of (2) in the sense
that u, e ¥, whenever ¢ € % (u, was defined in (8)). In fact, the equation
is autonomous and the operator R, is autonomous too, as the Laplace
transform commutes with the shifts.

The same reasoning leads to the definition of unstable manifold of initial
functions.

DEFINITION 6. We define the unstable manifold of initial functions as
U'.={r~ x,x€U}.

Again, we obtain a differentiable function & mapping a neighbourhood of
zero in % ~ into a neighbourhood of zero in % ~ such that the initial func-
tion ¢ + k(¢) satisfies the nonlinear Eq. (2) on R ™.

Up={p+k(¢),pecU U }.

Our intention is to show that solutions which belong neither to the
stable nor to the unstable manifold are close to stable ones at minus
infinity and to unstable ones at plus infinity.

Any initial condition can be expressed as a sum of elements from %%
and % :

¢=Pydp+Pyup=(Psp+h(Py9))+(Pyp—h(Psp)),

so a general solution of (2) is “close” to the stable solution at minus infinity
(since elements of % ~ belong to W, .« > ).

We can prove that x is close to an unstable solution at plus infinity if we
are able to solve the equation

D(x+y)=F(x+y) (25)
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for ye W,. Then x+ye,, as z=(I—P)(x+y)eN(D), and we can
apply Theorem 6. Now x=x+y—y, ye W, and the assertion follows. To
prove the existence of y e W,, satisfying (25), we rewrite (25) in the form

Dy=F(x+y)— F(x),
which is equivalent to
y=R(F(x+y)—F(x)),

provided that F(x+y)—F(x)e Y, for ye W,. Moreover, we want to use
the implicite function theorem again, so we need to suppose that there
exists a neighbourhood V of zero in C'(U, Y,), U being a neighbourhood
of zero in W,, such that the mapping G.: G,.(y) = F(x+y) — F(x) belongs
to V:

G.eV for xe, x solution of (2). (26)

Under this assumption, there exists a neighbourhood U of zero in W, such

that each solution of (2), which belongs to U, has to be in the stable

manifold %. Otherwise it would be close to the unstable solution x + y.
We can summarize these considerations into the following theorem.

THEOREM 8. Let D be given by (5), (6), and (7). Let F be a C' mapping
of a neighbourhood Q of zero in W (respectively W, ;) into Y, (respectively
Y, p), and let (10), (15), and (21) hold. Then there are two differentiable
Sfunctions h and k mapping neighbourhoods V{ (respectively U[") of zero in
S~ (respectively U ~) into U ~ (respectively S ), such that setting

S={+h(), yeVics},
Up={Y+k(), yeUr cU},

we obtain the following conclusions:

(i) LL(ut) is tangent to & (U ) at the origin.

(ii) For any g€ L% (peU’,) there is a solution of the problem (2),
(4) in W, (W, p).

(i) If x is a solution of (2), (4) with ¢ € S~ then x,e &% for all
teR™, where x, is defined by (8).

(iv) Each ¢ €U, satisfies (2) with x replaced by ¢ on R™.

(V) ¢} belongs to W, whenever F maps W, , into Y, , and
a<a <a,.
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(vi) There exists a neighbourhood U of zero in W, s such that if xe U
is a solution of (2) and x ¢ S, x ¢ Uy, then
(a) n x=¢s+¢y, where pse S and dyeU ™ = W_,
(b) x=x,+x,, where x, €U, and x, € W, provided that (26) holds.

Remark 7. (vi)(b) implies that each solution of (2) which belongs to
Un W, is in Y.

Remark 8. As L*(R*,G)n W“%R*, H) is imbedded in the space
C(R*,[G, H],;,), where [G, H],, denotes the half-way interpolation
space between G and H, we obtained exponential decay of solutions in the
stable manifold in the norm of the space [ G, H],, as t — + oo whenever
o« <0, and a similar exponential dexay of solutions in the unstable manifold
as t— —oo.

6. EXAMPLES

Consider the problem

u(t, x)—u(t, x)+u(t, x)—u’(t, x)

=S i — 1y, %)+ (I g(u))(1, x) =0, (27)

i=1
teR*, xeR, p>1
u(t, x)=¢(t, x) for teR™, xekR

Here

geC*(R), |g(2)|<Clz,
Y ae’i<oo  forsome >0, a;=0,
i=1

f (1) e di < o, jw I(t) di =0.
0 0

It is known (see e.g. [ 1]) that the equation
— U+ c(v—0")=0 (28)

has a unique solution in L*(R), which is smooth, radially symmetric and
radially exponentially decreasing. This solution is called a “ground state”.
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Let w be such a solution for the Eq. (28) with ¢=1/(1 4+ a;). Then, due
to the assumption on /, w(z, x) = w(x) satisfies

w,—wo +w—wl—kxw_ +1xg(w)=0, (29)

where k=3%" a;0,; here J, denotes the Dirac function concentrated at b.
Denoting z=u—w and subtracting (27) and (29) we get the equation
for z,

Z,—zuwtz—a(x)z—kxz  +b(x)]*z=F(z),
z(1, x) = @(t, x) —w(x), teR™,
with
a=pw’~!,  b=g'(w),  Fz)(1)=f(z(t)) + 1% q(z)(1),
J(0)=/"(0)=¢(0) =¢'(0) =0.

This equation can be rewritten in the form (2) in the space H = L*(R) with

A:9(A)=W?**R), Az=z . —z+a(x)z,

u=0, v=k(A+1—a)—b(x)L

It follows from the theory of the Schrodinger operators with rapidly
decreasing potentials (see [6]) that the spectrum of A4 is of the form

o(A)=(—00, =i, 1U {0, A,}, 4,>0.

To show that (15) holds for some y <a <0, we have to examine

~

D) =(—A—k(A)A+k(A)(a—1)+1(1)b)

B . A k(2)(a—1)+{2)b
_(Hku“))(lwé(z)AJ“ 1142 >

A ~

Now, if we take k, / small enough, we can consider 4 — (k(1)(a— 1)+ {(1)b)/
(1+k(1)) to be a small perturbation of 4 by a commuting bounded
operator, so that the spectra are close (see [6]). Further, (1+k(1))
then remains close to 1, so we can find a line {1eC; —1, <Re A=a <0}
such that the curve (Z/(1 +k(4))) does not intersect the spectrum
o(A — (k(2)(a—1)+12)b)/(1 + k(1)) for any A, Re A=a and (15) holds.
Now, we can apply Theorem 6 if we realize that the space W"*(R, H) n
L*(R, W?*2) is embedded in C(R, W' ?), which is further embedded in the
space of continuous functions on R?; this implies that F is C' mapping of
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W, into Y, = L*R x R). Because of the form of the function f and the sub-
linear growth of g the mapping F maps the weighted space W, into Y.
We have obtained a local stable manifold at the nontrivial eqilibrium
of (27).

Theorem 7 cannot be applied directly, as the nonlinearity does not map
W, s into Y, ;. We can solve the equation for a nonlinearity

Fr: F)(Z)([) :.fr(e(oc/p), (/f’/p)(t)z(t))’

where r is a suitable positive number,

_ y _fe onR™,
r=r(w(2)) en={in o

and ¢ is a smooth cut-off function,

Yy: G- R, Wyl <1,
y(y)=1 it [yls<1,
Y(y)=0  for [yls=2.

In this way obtain the assertion of Theorem 7 for those solutions of (27)

that remain in an appropriate neighbourhood of zero in W, ,,, 5,
As another example we consider the equation

% <u(l, X)+ j du(t —s) (s, x)> — u(t, x) — f dv(t— s) Au(s, x)

= Jl dn(t—s) f(u(s, x), Du(s, x), D*u(s, x)), >0, xeQ,

du(t, x)
on

=0 for teR, xeoR,

u(t, x)=¢(t, x), for teR™, xeQ,
where Q = R” is a bounded open set with a smooth boundary, d/0n denotes

the normal derivative, and Du = ((0u/0x,), ..., (Ou/0x,)). We suppose that f
is a smooth function vanishing at zero together with its first derivatives,

1f(p, ¢ )| <CUpl+Igl+1rl)  for peR, geR", reR",

w,v,ne M(R*, R, e") for some y>0.
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Now A is the Laplacian in the Hilbert space H=L*Q), G= W*>* Q).
The spectrum of A4 consists of a sequence of nonpositive numbers
0=po>pu,>pu,> --- The operator D(1) now has the form

) 1440
DM%#I+WMW?1:§5—AO.

It follows that 4 =0 belongs to the spectrum of the problem. Let u, <a <0
and let

WA)#—1 for Rel=o. (30)
Suppose that there is r > 0 such that

1+ 4(4)
1+9(2)

e{zeC; |arg z| <g, |z >r} for Rei=ua

Then there is a constant p >0 such that the curve

1 +4(4)

Re 2 —
1+ 7(2)° cr=a

belongs to the set {Ae C; |arg A| <z} U B,(0)\{0} provided that « is small
enough. Hence

o | 1+ A(2) >1
D ! < —A
1D(2) '”“G>’1+wm‘M21+wm

L(H, G)

1+mm< +
<Cl—1+7 P
)\ T

L(H, H)

for Re A=o, and (15) holds.

Condition (30) is fulfilled, e.g., with u=e~“", v=¢"%', a;>y. In this
case, any 4 with positive real part belongs to the resolvent set and Theorem
8 applies with any f positive and « negative, sufficiently small.

We can also take u =¢,9,, v=c,9d, with small constants ¢,, ¢, to get the
same result. On the other hand, a simple choice u=0, v=49, gives
1 +9%)=14e *=0 whenever 1 =i(2k + 1)z, a straightforward computa-
tion gives (10) for any > 0, but if A= 4, + i1, with 1, <0, then, choosing
/, such that e %1 cos A, =0 we get for A=A, =4, +i(A, + 2kn)

A A
Kk — 00, Im k<
1 +e % 1+e %

Re
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so that the L(H, G) —norm of D~!(1) cannot be estimated by a constant
on the line Re A=1,. In this case, the operator D: G — H is not invertible
and Theorem 8 cannot be applied.

7. THE SPECTRUM OF THE GENERATOR OF A
TRANSLATION SEMIGROUP

According to Theorems 4 and 5, the restriction of the semigroup given
by the problem (3), (4) to the stable and unstable subspaces is similar to
the shift operator on Y, = L2(R, H) and ./"(D), respectively. In this section
we examine the spectrum of the generator of the shift on Y, A47(D) and,
for the sake of completeness, also on the spaces Y, Y, ;. In the following,

o,

we will use the symbol X for anyone of these spaces. The shift operator and
its restrictions are defined in (8), the resolvent set of an operator A is
denoted by p(A), the spectrum and its point, continuous and residual parts
are denoted by a(A4), d,(4), 0(A4), and o,(A4) respectively.

THEOREM 9. Let 7, be a left-shift operator on a space X and let A be the
generator of the semigroup t. Then

d
Ax:Ex’ xeZ(A),

where the domain 9(A) and the spectrum of A depend on the space X in the
following way:

(i) X=L2R, H) P(4) = WLA(R, H),
o(A)=0(4)={ieC;Re i=a}.

(i) X=LAR " H): F(A) = {$e WEAR", H); §(0) =0},
o(4)={ieC;Re )<},
o(A)={)eC;Re i=a},
o(A)={ieC;Rei<a} =a,(A%).

(iii) X=L2R*, H): D(A)=WLAR*, H),
o(A)={leC;Re i<al,
o,(A)={ieC;Rei<al,

o(d4)={AeC;Re A=a}.
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(iv) X=L2 R, H), a<p: I(A)=WLAR, H),
o(A)={ieC;a<Re 1< p},
o,(A)={leCia<Rel<f},
o(d4)={ieC;Reli=a v Rel=p}.

(V) X=Lj (R, H), a<f: I(A)= W, j(R, H),
o(A)={1eC;a<Re A<},
o(A)={leC;Rei=av Rei=p},
g (A)={4eC;a<Re i< f}.

(vi) X={¢eLXR",G) D(A)={peX;§ X},

AWLAR™, H); D=0} o(4)={ieC;Re 1 >a,
D(4) is not invertible},

Gpen(A)={iea(A);0€a,.,,D(A)}.

Proof. It is well known that the operator B: Z(B)= W"?R, H),
Bx =i(dx/dt) is selfadjoint in L*(R, H) with

o(B)=0.(B)=R. (31)

c

The assertion (i) now follows for X = L2 with a = 0 and, for a # 0, by multi-
plying functions in the equation

(A=) f=g=[f"—if=g (32)

by e*. The inverse of (4 — AI) is given by
+oo
(A—2D) 'g= —j 1 Ig(s)ds=e; xg  for Rei>a, (33)
t
where

(34)

—e for <0,
0 for >0,

e; e LYR) for Rei>a which implies e; *ge WL (R, H) whenever
ge L2(R, H). Similarly, ¢, defined as

*(t)={0 for <0, (35)

e’ for >0
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belongs to L)(R) if Re A <o and
(A—Al)'g=efxg for Reli<o (36)

If Re A=a, then e * g need not belong to W2, so Aea(4) and, due to
(31),

R(A— ) is dense in  L%(R, 4). (37)

In the same way, using (33)—(37) we prove the assertions on the resolvent
sets of 4 as well as the boundary lines of the spectra in (1)—(v).
As to the inner part of the spectrum, we shall treat each case separately.

(i) If Re A <a, then we have an additional condition for solution of
(33), namely

f0)=0. e (ef x2)N0)=] e ~g(n)di=0,

— 00

so the range of (4 — AI) is closed, but not the whole space. It follows that
lea,(A). In this case, e *x, xe H is the eigenfunction of the adjoint
operator A* = —d/dt, Z(A*)= W' 2. Thus A is an eigenvalue of A* with
infinite multiplicity, equal to the dimension of H.

(iii) If Re A <a, then e*x is an eigenfunction of 4 for each x e H. It
follows that A is an eigenvalue with infinite multiplicity.

(iv) Let x <ReA<p. Then e*xe W7 is an eigenfunction of 4, and
A is an eigenvalue of infinite multiplicity.

(v) Let x<ReA<p. This time e”¢ L7 ,. As fe X implies fe L)(R)
for every ne(a, f) we can multiply (33) by e * and integrate to get a
condition on the the right hand side:

e R w© d Jy
[ erewar=] (e di=o.

— o0

Thus A4 — Al is not onto, #(A — Al) is closed and Aea,(A4).
To prove (vi) we solve (33) on R~ with Dg=0 and we require that
Df=Df" =0. Since D commutes with d/dt, it suffices to show that Df=0.
For 4 with Re 4 <« the solution is given by

f=n"e] xg,

n Df=n"D(e; xg)=n"e; * Dg=0,
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so this A belongs to the resolvent set of 4. The same argument applies if
Re A =ua, because, according to Lemma 7, ge X=ge W with some
o' >, so fis given by (38) belongs to X.

For A with Re 4> a we obtain the solution of (33) as

f(1) = e*f(0) —LO M Vg(s) ds = e f(0) +e; g, 1<0.
In this case,
DA = D) f0)+ €Ny g)— | 4 (Dg)(s) ds
where
e’h(1, g)=e; xn*Dn g=e(n"Drn"g)" (1), 1<0.

The operator #*Dr~ is expressed with the help of the Dirac measure J,
by

ntDn” =(g(0)+u+g(0)dg+ntusxn g +nvsng.
So

h(Z, 8)=g(0) + (1 + g)(0) = A(m " p % g) " (A) + (m"v * g) " ().

It follows that f'e X iff

A

D(2) f(0)= —h(4, g).

Hence each / such that D(1) is invertible belongs to the resolvent set.

It is clear that x is in the null space of D(1) iff e*x is the eigenvector
of A.

To complete the proof we show that D(A) has a full range whenever
Aep(A). To this end, take g=e”’x with y such that « <Re y<Re 4 and
D(y) is invertible. Equation (33) can be solved for g = P, (%), so we have
some f'€ X such that

A 1 . .
D) 110) = (2.2 (8] ) = =2 )=~ (DU~ D)

Now, we realize that (1, P.,(8))e Z(D(A)). In fact, the Laplace transform
of a solution of the equation Du=0, = u=¢, with (3)e ¥ is defined for
Re 2> a and

0= Du(2) = D(2) 4(7) — h(4, §).
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Then

DO)((2=7)(f(0) =p) —x)=D(y)x, (39)

with y satisfying D(1)y = h(J, P, (£)). If D(y) is invertible, then (39) gives
A(D(2)) = H.

The correspondence of the particular parts of the spectrum follows from
the continuity of 4. ||

REFERENCES

1. H. Berestycki and P. L. Lions, Nonlinear scalar field equations I. Existence of a ground
state, Arch. Rational Mech. Anal. 82 (1983), 347-376.

2. G. Da Prato and A. Lunardi, Stability, instability and center manifold theorem for fully
nonlinear autonomous parabolic equations in Banach space, Arch. Rational Mech. Anal.
101 (1988), 115-141.

3. Y. Fourés and I. E. Segal, Causality and analyticity, Trans. Amer. Math. Soc. 78 (1955),
385-405.

4. J. K. Hale, Partial neutral functional differential equations, Rev. Roumaine Math. Pures
Appl. 39 (1994), 339-344.

5. J. K. Hale, Coupled oscillators on a circle, Resenhas IME-USP 1, No. 4 (1994), 441-457.

6. T. Kato, “Perturbation Theory for Linear Operators,” Springer-Verlag, Berlin/Heidelberg/
New York, 1966.

7. J. Milota, Asymptotic behaviour of parabolic equations with infinite delay, in “Volterra
Integrodifferential Equations and Applications,” Research Notes in Mathematics 190,
295-305, Pitman, Boston, 1989.

8. H. Petzeltova, Solution semigroup and invariant manifolds for functional equations with
infinite delay, Math. Bohemica 118 (1993), 175-193.

9. H. Petzeltova, Local center manifold for parabolic equations with infinite delay, Math.
Bohemica 119 (1994), 285-304.

10. O. J. Staffans, The null space and the range of a convolution operator in a fading memory
space, Trans. Amer. Math. Soc. 281 (1984), 361-388.

11. O. J. Staffans, Some well-posed functional equations which generate semigroups, J. Dif-
ferential Equations 58 (1985), 157-191.

12. O. J. Staffans, A neutral FDE is similar to the product of an ODE and a shift, J. Math.
Anal. Appl. 192 (1995), 627-654.



