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Band-Limited Functions and the Sampling Theorem 

)¢~[0SIt~ ZAKAI* 

Applied Research Laboratory, Sylvania Electronic Systems, Waltham, Massachusetts 

The definition of band-limited functions (and random processes) 
is extended to include functions and processes which do not possess 
a Fourier integral representation. This definition allows a unified 
approach to band-limited functions and band-limited (but not neces- 
sarily stationary) processes. The sampling theorem for functions and 
processes which are band-limited under the extended definition is 
derived. 

I. INTRODUCTION 

The well known sampling theorem states that if f(t) can be represented 
as 

f f0 f(t) = ¢ ( ~ ) e  ~ t  d~ (1)  
W0 

W0 where f -w0  I ~ ( ~ )  J d~ < ~ ; or, more generally, if 

if° f ( t )  = e ~ d ~ . ( o d  ( l a )  
WO 

where  ~(w) is of bounded  va r i a t i on  a n d  cont inuous  a t  the  end po in t s  
- t-W0, then  

oo 
,~=z~,_N" f(nr) s i n [ ( T r / r ) ( t -  nr)] f(t) 

~ -  ( ~ / r ) ( t  - n ~ )  

where  r -< r0 = 7:/Wo and  the  sampl ing  series converges  un i fo rmly  on 
a n y  b o u n d e d  in t e rva l  (if  the  real  va r i ab le  t is r ep laced  b y  a complex  
va r i ab le  then  the  sampl ing  series converges  un i fo rmly  on a n y  bounded  
region in the  complex  p lane ) .  

Consider ,  for example ,  the  func t ion  Si(t) where  

fot i f ~e~' Si(t) -- sin x dx = d~ (2)  

* On leave of absence from the Scientific Department, Israel Ministry of De- 
fence, at which the major part  of this paper was written. 
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the second integral is not absolutely convergent (this integral has to 
be interpreted as a principal value integral) so that the sampling theorem 
does not apply to Si(t). Since, however, Si(t) is the response of an ideal 
low pass filter to a step function, it seems reasonable to consider Si(t) 
as a band-limited function and to expect that the sampling theorem 
is still valid in some sense for this function. 

Stochastic versions of the sampling theorem have been derived for 
stationary processes (Balakrishnan, 1957; Beutler, 1961; Blanc-Lapierre 
and Frotet, 1953; Lloyd, 1959). In both cases, that of (la) and the 
stochastic version, the starting point is that the function or process has 
a suitably restricted frequency spectrum. It should, however, be noted 
that the sample functions of a stationary band-limited process do not 
have, in general, a representation of the form (la) since g(~) may be 
of unbounded variation. I t  seems, therefore, desirable to have a unified 
approach to band-limited functions and to the sampling theorem which 
will include, as special cases, functions of the form (la) and almost all 
sample functions of band-limited stationary processes as well as the 
function Si(t) and similar functions and also nonstationary band- 
limited processes. 

The purpose of this paper is to extend the definition of band-limited 
functions and processes and to derive the sampling theorem for functions 
and processes which are band-limited under the extended definition. 

Instead of the spectral characterization of band-limited functions, it 
is also possible to characterize such functions in the following way. Let 
v(t; W) be the inverse Fourier transform of ~(o~) where ~,(co) = 1 for 
1¢°I ---< Wand-F(co) = 0for  I~°1 > W;then,  i f f ( t )  is of the form of 
Eq. (1) or (la) and if W > W0 then f(t) is, indeed, reproduced without 
distortion when passed through the filter ~ (co), namely: 

f ( t ) , , ( t ;  W) = [ f ~  f(O),7(t - O; W) dOl = f(t).  (3) 

It  is possible to use other functions, instead of v(t; W), to characterize 
band-limited functions; in particular, let H(o~; W, 6) be as described in 
Fig. 1. If (3) is satisfied and if h(t; W, ~) is the inverse Fourier trans- 
form of H(~o; W, 6), thenf( t)  = f( t) ,h(t;  W, ~). 

Only functions satisfying 

1 + t 2 dt < ~ (4) 

will be considered in this paper. A function f(t) satisfying (4) will be 
defined in Section III  to be band-limited if it is reproduced by some 
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h(t; W, ~); f ( t )  = f(t)*h(t; W, ~), and h(t; W, ~) is the inverse Fourier 
transform of H(c~; W, ~) of Fig. 1. The reason for preferring h(t; W, 8) 
over ~(t; W) is that  ~(t; W) is o(I t1-1)  as [ t l  oo (since ~,(~o) is 
discontinuous at  ~ = ~ W )  while h(t; W, ~) is O( l t l -~) as t t l ---> oo, 
thus considerably simplifying convergence problems. Conditions under 
which a function f(t) is band-limited will be derived in Section I I I  
(Theorems 1 and 2). The sampling theorem for functions which are 
band-limited under the definition of this paper is derived in Section IV. 

A random process (stationary or not) is defined in Section V to be 
band-limited if the expectation of (4) is finite and if almost all sample 
functions of the process are band-limited (and by the same parameters 
W and ~). By the result of Section IV, the sampling theorem is, ob- 
viously, valid individually for almost all sample functions of the process. 
In the stochastic versions of the sampling theorem for stationary proc- 
esses (Balalcrishnan, 1957; Beutler, 1961; Lloyd, 1959), the conver- 
gence of the sampling series is mean convergence (with the exception of 
Theorem 4 of Lloyd (1959).1 The result of this paper deals with almost 
sure convergence for all t: for almost all sample functions the sampling 
series converges to the sample function for all t. I t  is shown that  for 
stationary processes the ordinary definition of a band-limited process and 
tha t  of this paper are equivalent. Conditions on the autoeorrelation 
function R(t, t') under which the process is band-limited are derived. 

II. PRELIMINARIES 

The class of functions f ( t ) ,  ( -- m < t < ~ ), satisfying 

fl f II = 
If(t) 

~¢ 1 4 - t  2 dt < ~ (4 )  

See also note added in proof at the end of this paper. 
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will be denoted as Ho. Ho with the scalar product 

[~ f ( t )  O(t) 
(f' g) = d-® i -~--~ dt 

forms a Hilbert space. (H0 includes L~ functions, bounded functions, 
and functions f(t)  for which (2T)-lf-~T If(t)[ 2 dt is bounded in T (Wie- 
ner, 1933). If the upper half-plane is transformed into the unit circIe 
by means of the bilinear transformation then H0 corresponds to the class 
of functions belonging to L2 on the circumference of the unit circle 
(Hoffman, 1962).) Throughout this paper, t (or x) will always denote a 
real variable and z will denote a complex variable. 

LEMMA 1. I l l ( t )  belongs to Ho then 

f(t)* 1 <= ~r II f ( t )  II, 

f ( t ) , l / ( 1  + ?) is finite forfinite t, and at most O(l t [) as [ t[ -+ ~ .  
Proof: 

1 2 
f ( t ) ,  F - ~  

~ ~ ~ (1 + t2)(1 + (t - -  a )2 ) (1  + (t - -  f~)2) 

• d a  dr3 dt,  

I f(O* 1 

From the inequality 

1 
1 + 1 2  

f_* f f  I/(~) I = =< ~ ~ 7r (1 + t2)(1 + (t _ a)2)  d a  dt. 

I 7r 1 
- -  * - < ~ - -  ( 5 )  

1-}-t 2 t 2 + 4  -- F-I- 1 

it follows that iI f ( t ) , l / ( 1  + t 2) II 6 ~ II f(t)I[. By the Schwarz in- 
equality: 

f_: v ~ l  + (t - o) ~ " v q +  (t  - o) ~ 

<Z 7r 1/2 If(0) 12 dO (6) 
= 1 q - - ~ / -  0)2 

= . - ~ < ~ < ~  : + ~ - o)2 /_  I • II f ( t )  II. 

s i n c e 2 [ a . b l  -5_ l a[ 2 +  I b r ,  wehave 
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But, since 

1 q- 0 ~ = 1 - k  ( t q -  O - -  t) 2 < 1 + 2 t  2 q - 2 ( t -  0) 2 
(7) 

< 2(1 q- tz)(1 q- (t -- 0)2), 
it follows that  

f(t)* 1 < w/~7~ ' II f( t )1I . x / 1  + t~. (s) 

LJ~MMA 2. Let 

J-~f°° f(O) sin a(z  -- O) sin ~(z -- O) u(z) dO (9) 
z - - O  z - - O  

where z = x + iy, a and fl are real and positive and f( t)  belongs to Ho ; 
then: 

(a ) The integral above converges uniformly in any bounded region of the 
z plane. 

(b) u(x)  is a continuous function of x. 
(c) 

[u(z)  I <_-- K ' l l f ( t ) I t ' ( 1  + x2)l/2"e (~+¢)lyl (10) 

(d) if f ( t )  is continuous then u(z) is an analytic function of z in the 
entire z plane;namely, an entire function. 

Proof: The proof follows fi'om the inequality 

sin az 1 e~lUl; 
< kl % / 1 ~  kl > max(a,  1). (11) 

Let a(z, O) be the integrand in (9); then 

If(o) l 1 -/- 02 e(.+~),u[ (12) 
In(z,  o) ] <= k21 + o 31 + (x - o) 3 

If we consider now a bounded region in the z plane so that  ]Yt < y0 
and Ix [ < x0, then by (7) 

l a(O, z) I N 2k(1 + x02)e ("+~)u" If(O) I/(1 + 03). (13) 

The integrand of (9) is, therefore, dominated in the region Ix I =< xo 
and I Y I <-- y0 by the right hand side of (13) which is integrab]e ( - ~o, oo ) 
since 

If(  O ) I dO < If(O) dO. 1 
1 -t- 03 = 1 + 03 ~ 1 -t-- 0 - - - ~ 2  dO. (14) 
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Therefore (see Titchmarsh, 1939, see 1.51) (9) converges uniformly 
in any bounded region. From (13) and (14) it follows, by dominated 
convergence, that  if x. --~ x then u(x~) ~ u(x) ;  therefore u(x) is a 
continuous function of x. Par t  (c) of the lemma follows from (11 ) and 
lemma 1. Par t  (d) follows from part  (a) and theorem 2.84 of Titeh- 
marsh (1939). 

L~MMA 3. I f  ¢~(~) belongs to L 2 ( - W o ,  Wo) and O < r < ~r/Wo then 

( - 1 ) ' g ( n r )  = 0 (15) 
--a¢ 

where 

f~ W° g ( t )  - -  
WO 

Proof: Since ~b(~) is L 2 ( - W o ,  Wo) it is also L I ( - W o ,  Wo). Since 

~ _ l ) , e i ~  ( - 1 ) N l e  -~NI~ q_ ( - 1 ) N : e  I~(~2+1)~ 
E (  = -N1 1 2ff ei~r 

and since r < ~r/Wo, it follows that ] 1 q- e ~ 1-1 = [2(1 q- cos ~r)] -~/: 
is bounded in the interval [ - W o ,  W0]. Let ¢ (~) (1  q- ei~) -~ = ~ ( ~ ) ;  
then 

N2 
= fwo --1)Nle -~N~ (--1)N:e ~(n2+l)~] d~ ( - -  1)~g(nT) ¢~(o~)[( + 

--N1 J-- W 0 

and it follows by  the Riemann-Lebesgue theorem that  

(--1)~g(nr) = lim ~ (--1)~g(nr) -- O. (16) 
--~ Nl~OO --N I 

N2-~av 

The condition r < ~r/Wo was necessary to make sure tha¢ ~bl(o~) = 
~b(¢o)(1 --~ ei~r) -1 belongs to L1 in [ - W o ,  Wo]. Therefore, if we add the 
requirement that  ~b(~o)-(1 -t- e~/w°) -1 [or ~(~) .  ( ~  - Wo2) -1] belongs 
to L~ in [ -  Wo, W] then the result of Lemma 3 is also valid for ~ = ~r/Wo. 

III. BAND-LIMITED FUNCTIONS 

DEFINITION: A function f(  t ) satisfying (4) is now defined to be "band- 
limited (W, ~)" or "to belong to Hf fW,  ~)" if for almost all 

f(t)*h(t; W, ~) = f_~f(O)h(t - O; W, ~) dO = f( t)  (17) 
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where h(t; W, 6), (W > O, 6 > 0), is the inverse Fourier transform of 
H(¢o) of Fig. 1 and is given by 

1 e*~tH(w; W, 6) &o h(t; W, 6) = ~ 
(18) 

( : )  , _ 2 sin W-t- t.sirt-~t. 
rr6t 2 

By Fubini's theorem we have that if f(t) belongs to H0 then 
(f(t),h(t; W, 6) , (h( t ;  W'8') = f ( t ) , (h(t;  W, 6),h(t;  W', 6')). Since 
h(t; W, 8),h(t;  W', 6') = h(t; W, 8) for any W' > W - l -  8 and any 
8 > 0, it follows that if g(t) is band-limited (W, 8) then it is also band- 
limited (W', 6') if W' => W -}- 6 and 6' > 0. A linear combination of 
functions satisfying (17) also satisfies (17). Moreover, let f ,( t)  be a 
Cauchy sequence of functions in H0 converging in the H0 norm to f(t) 
and let all the f~(t) be band-limited (W, 6). By Lemma 1 and inequality 
(11) 

II f - f , h ( . ;  W, 6) 11 = iIf - f~ + f~ - / , h ( - ;  W, 6) II 

"< ]If  --  fn II ~- ][ h(t; W, 8),(f(t) - f . ( t )) l l  

=< ( l q - K ) . l l f - f ~ [ l ~ 0 ,  

therefore f( t) is also band-limited ( W, ~ ). Hi(W, 8) as defined above is, 
therefore, a closed linear subspace of Ho. Since f(t) .h(t;  W, 6) is a con- 
tinuous function of t (Lemma 2), it follows that any function belonging 
to H~(W, 6) can be modified by changing its values on a set of measure 
zero so that  it becomes continuous. Only this modified version of f(t) 
will be considered in this paper. I t  follows from (17) and Lemma 2 that 
if f(t)  is band-limited (W, 6) then f(t) can be extended to the complex 
plane z = x q- iy by 

f ( , )  = f(t)h(  - t; w,  6) dt  

where f(z) is an entire function and 

2 ( 1  -}- x2)l12e (w+~)l~'l ]f(x-}- iy)  l <= k ] l f l ] - ~  

Consider, now, the function g(z) = If(z) -- f(0)].z-1; then g(z) is 
also an entire function and l g(z)l <= ]6e(w+~)lul; moreover, g(z) belongs 
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to L~(--~¢, ~ ) on the real axis. Therefore g(z) satisfies the require- 
ments of the theorem of Paley and Wiener (1934), namely; ¢(~o), the 
Fourier transform of g(t), vanishes outside [ -  (W + ~), W + ~]. Since 
g(t) is L 2 ( -  ~ ,  oo), ~b(w) is L2 in [ -  (W + ~), W + ~] and therefore 
also L1 in the same interval. Conversely, if 6(~o) is L2 in the interval 
( - A ,  A) and g(t) = (2~r)--~fA--A6(w)e~do:, then g(t) belongs to 
L2(-- ~ ,  oo ) ; therefore c + tg(t) (where c is constant) belongs to H0 • 
Moreover, [sin d /d] . t . g ( t )  belongs to L 2 ( - ~ ,  ~ )  (and since the 
Fourier transform of this function is e-1[¢(~ - e) + $(~ + e)]), it also 
belongs to HI(W,  ~) for W > A + e and ~ > 0. Since [sin Et/et].t.g(t) 
converges in H0 to t .g(t)  and Hi(W,  ~) is a closed subspaee of H0, it 
follows that c + t.g(t) belongs to H~(W, a) for any W > A and ~ > 0. 
Now, let 

_- fa+e g~(t) (27r) -1 ~b(~0) e ~ t  dw; 
J--(A+~) 

then t .g,(t)  belongs to H~(W, a) for W => A and a > 0. Since g,(t) 
converges to g(t) in the L~ norm, it follows that c + tg~(t) converges to 
c + t .g(t)  in the H0 norm. Therefore c + tg(t) belongs to Hi(W,  ~) 
for any W > A and ~ > 0. The following theorem has, therefore, been 
proved. 

THEORE~ 1. (a) I f  f ( t )  belongs to H i ( W ,  ~), then f ( t )  = f(O) + t .g(t)  
where g(t) belongs to L2( - ~ , ~ ) and is band-limited in the conventional 
sense, namely, 

1 f(~+~) g(t) = ~ ,-(w+~) ¢ (~ )e~ '  d~. (19) 

(b) I f  g(t) belongs to L : ( - - ~ ,  oo ) and is band-limited in the conven- 
tional sense with bandwidth A [g( t ) = (2~)-lfA-~ ~ ( ~ )e ~t d~ ] then f ( t ) = 
c + tg(t) belongs to H i ( W ,  ~) for all W >= A and ~ > O. 

Theorem I suggests the following definition: The bandwidth Wo of a 
function f ( t )  bandlimited (W,  3) is the smallest A so that the Fourier 
transform of If(t) - f(0)]t  -~ vanishes for almost all ~ outside ( - A ,  A ). 
Then, by (19), W0 = W + ~ (it seems very reasonable to expect 
that W0 <= W but we have not yet found the proof) and f ( t )  is band- 
limited (W, 6) for all W > W, and all ~ > 0. 

Tg~onn~ 2. I f  f ( z )  is an entire function and I f(z) l  < Be ~'~' and if  
f ( z )  belongs to Ho on the real axis then f ( t )  is band-limited and the band- 
width Wo o f f ( t )  satisfies Wo <= A.  

Proof: g(z) = If(z) - f (0)] 'z  -~ satisfies the conditions of the Paley- 
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Wiener (1934) theorem. Therefore g(x) satisfies the requirements of 
part (b) of Theorem 1. As an application of Theorem 2, it will now be 
shown that  Si(t) which was defined by Eq. (2) is band-limited. (Sill Z)/Z 
is an entire function and t z-~ sin z I < el~l, therefore 

foZ°Sinz dz <= Be'~°' and fo - 7 -  dz' 

is an entire function; since Si(t) is bounded (for real t) it belongs to 
H0 and by Theorem 2, Si(t) is band-limited (1, ~) for all ~ > 0. I t  also 
follows from Theorem 2 that  if f(t) is band-limited with bandwidth 
W0 and if (f(t))~ (where n is a positive integer) belongs to H0, then 
(f(t)) ~ is also band-limited and with bandwidth nWo. 

I t  follows from Theorem 1 and the sampling theorem for functions 
of the form (1) that  If(t) - f(0)]t  -1 is uniquely determined by its 
values at the sampling points t = nr;  (n = 0, 4-1, 4-2, - . . ) ,  where 
T ~ "KWh0 1. 

Therefore f(t) is uniquely determined by the samples f ( n r ) ,  
(n = 0, +1 ,  + 2 , - . . ) ;  r <= ~rWo ~ and f'(O), the value of the derivative 
off(t) at t = 0. If, instead of r < ~rWo ~, we allow only r < ~Wo ~ then 
i t  is suificient to know only f(nT) since, by Lemma 3, f ' (0 )  is deter- 
mined by f (nr) (n  = 4-1, 4-2, . . . ) .  

IV. THE SAMPLING THEOREM FOR BAND-LIMITED FUNCTIONS 

TR~:ORE~ 3. I f  f(t) is band-limited with (W, ~) bandwidth Wo and 
if ~ < ~/Wo then 

~-~of(m')z._, sin[(~/r)(z  -- nr)] /(z) 

and the convergence is uniform in any bounded region of the z plane. 
Proof: By Theorem 1 and the sampling theorem for functions of the 

form (1) 

sin[(~-/r) (z -- nr)] g(z) - f(z) --z f(O) _ ,=-oo ~ g(nr) ~ - - -  n~) 

o r  

f (z )  = f ( o )  + 5 f ' ( o )  sin ~z_ 
71- T 

+ ~ z-[f(n7) -- f(0)] sin[(~/T) (Z -- n7)] 
. . . .  n~(z - n~) 
n#0 

(20)  
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and the convergence is uniform in any bounded region of the z plane. 
Since 

z _ 1 1 
n~r(z -- nr) (Tr/r)(z -- nr) "4- nzr-- ' 

it follows that  

f ( z )  -- f (0)  ~- r- f '(0)~r sin ~rZr zc ~=--~ ~ [ ( f ( n r )  -- f ( 0 ) )  
n~0 

sin[(Tr/r) (z -- nr)] ( - - 1 ) ~ f ( n r )  -- f (0)  sin ~ ] .  
• (Tr/r)(z -- nr) + ~r n 

By Lemma 3 

hence 

f ' (O) --k~_, f (nT)  - - f ( O )  ( _ 1 ) .  = O, 
n#o n T  

(21) 

and the convergence is uniform in any bounded region of the z plane. 
Set in ( la )  

(1/~f(0), ¢o > 0 

~(~) = ~ [ - ½ f ( o ) ,  ~ < o. 

Thenf (z )  = f (0)  and by the sampling theorem for functions of the form 
( l a ) :  

sin[(~'/~-) (z -- nT)] 
f (0 )  -- ~__~ f (0 )  ~ - - - n T )  (23) 

and the required resul~ follows by substituting (23) in (22). Equations 
(21) and (23) are still true for r < wt~01 and the requirement r < ~rW~01 
comes only through Lemma 3. Therefore, if the Fourier transform of 
If(t) -- f (0) ] - t  -1 satisfies the condition given at the end of Section II. 
Theorem 3 remains true for r = 7tWo 1. 

TI~EOe~ 4: Given the sequence as ,  n = 0, 4-1, 4-2, . . .  , satisfying 
[ ao [ < ~ and such that the two series 

a n  z 

n ~ - ~ o  n 
n ~ O  

sin[(Tr/r) (z -- nr) l  f(z) =f(o) + ~-~ (f(n~) - f ( o ) )  ~ _ ; j )  (22) 
n¢0 
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and 

converge, then the series 

( - 1 F  a_~ 
~ = ~ o o  n 

n#O 

sh~[(~/~ ) (z - n,)] 
2., a~ (24) 

. . . .  ( ~ / r ) ( z  - n~) 

converges ~niformly in any bounded region of the z plane to a function f ( z ) ,  
and f ( t )  is band-limited (W,  ~) for W = ~r/r and any ~ > 0. 

Proof: Let 

an -- ao g~ - for n # 0 
n T  

and (25) 

1 
g o -  ~_J ( - 1 ) ~ g n .  

n#0 

Then ~-~-~ ]g~ 12 < ~ ,  and since sin [ (~/T)( t  - n r ) ] / ( ~ r / r ) ( t  - n~-) 
is an orthonormal sequence, it follows by the Riesz-Fischer theorem tha t  

s in [ (~ /~ )  ( t  - n~)] 
g(t)  = - ~  gn (Tr/.r)(t -- nr)  

converges in the L2 mean to an L2 function g(t) .  Moreover, the Fourier 
transform of g(t)  belongs to L2 (therefore also to L1) in [-Tr /r ,  ~'/r] 
and zero a.e. outside this interval; therefore g ( n r )  = gn. Therefore 
f ( t )  = ao + t .g( t )  is band-limited (Tr/T, ~) for any ~ > 0 and the sam- 
pling theorem holds for any sampling interval smaller then r. In order 
to show that  the sampling interval may  equal r, we note that  f ( t )  has 
a representation of the form (21). Substituting (24) into (21) we ob- 
tain (22), and (25) is obtained by substituting (23) into (22). 

V. BAND-LIMITED RANDOM PROCESSES 

Let  I f ( t )  } be a random process and let R(t ,  t') be the ~utocorrelation 
function of the process: R(t ,  t ') = E { f ( t ) . f ( t ' )  }. We assume, from now 
on, tha t  R(t ,  t) is a continuous function of t ( -  ~ < t < ~ ), therefore 
the process is continuous in the mean and in probabili W and a measur- 
able version of this process exists ( L o i r e  (1955), Sec. 35 E) .  All the 
processes considered in this paper are ~ssumed to be measurable. 
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Since 

E{ltfII 2} = f_~ (1 + t2)-lE{If(t)12} dt, 

it follows that if 

f ~ R(t, t) 
l + t 2 dt < ~ (26) 

then almost all sample functions of the process belong to H0. 
DEFINITIOn: A random process If(t)}, ( - - ~  < t < ~ ) ,  is defined 

to be band-limited (W, ~) if the autocorrelation function of the process, 
R(t, t'), satisfies (26), if R(t, t) is a continuous function of t ( -  ~ < t < 

), and if almost all sample functions of the process are band-limited 
(W, 6). It  follows from this definition that if If(t) / is a random process 
which is band-limited (W, ~), and f( t)  is a sample function of the pro- 
cess, and if r < ~r(W + ~)-1 then, with probability 1, 

sin [ ( r / r )  (t -- nr)] 
f ( t )  ; f(n ) - 

for a l l - - ~  < t < ~ .  
T~EOn~M 5. Let R(t, t') be the autocorrelation function of {f(t) } and 

let R(t, t) satisfy (26). Then a necessary and sufficient condition that 
{f(t)} be band-limited (W, ~) is that R(t, t') satisfy the condition 

f ~  R(t, O)h(t' - O; W, ~) dO = R(t, t') (27) 

f o r a l l t a n d t ' ( - - ~  < t,t' < ~ ) .  
Proof: If {f(t)} is band-limited (W, ~) thenf ( t ) .  (](t').h(t'; W, 6)) = 

f(t)  .](t') and (27) follows by taking the expectation of both sides. 
Conversely, since R ( t, t' ) = R( t', t ) , (27) implies that  R ( t, t' ) .h(  t; W, ~ ) 
= R(t, t ') ,h(t; W, ~),h(t ';  W, ~) --- R(t, t'). Therefore 

E{f_~  [f(t) -- f ( t ) ,h( t ;  W, ~)12 t} 
l + t 2  d = 0 .  

z 

In the proof of Theorem 6 it will be shown that R(t, t') is analytic in 
the t, t' plane, it follows that  R(t, t) is continuous and almost all the 
sample functions of {f(t)} are continuous (Lo~ve (1955), 35.3C). 
Therefore for almost all the sample functions f(t)  = f(t) .h (t; W, ~) for 
all t and {f(t) } is band-limited (W, ~). 
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If the process is stationary, then R(t, t) is a constant and (26) is 
indeed satisfied. For stationary processes 

R(t,  {) = ~ e iw(t-t') dF(w) 

where F(co) is of bounded variation and 

i o ~{ [f(t).h(t; w ,  6)1 ./(t') } = H(co; W, ~)e ~w(~-`') dE(co) 

where H(co; W, 6) is as defined by  Fig. 1. I t  follows immediately that  
for stationary processes the conventional definition of band-limited 
processes and that of this paper are equivalent: if {f(t) } is band-limited 
Wo in the sense of the conventional definition, then it is band-limited 
(W, ~) for all W > Wo and~ > O, andi.f {f(t)l is band-limited (W, ~) 
then it is also band-limited W0 (where Wo > W) in the conventional 
sense. 

THEOREM 6. (a) Let {f(t)} be a band-limited process (W, 6) and let 
R~( t, t' ) be the autocorrelation function of the {g(t) } process where g( t) = 
[f(t) - f (0 ) ] . t  -~ (and R,(t ,  t') = [R(t, t') -- R(O, t') -- R(t,  O) + 
R(O, 0)]-(t ,  t')-~). Then 

I~(t,  t') = .-(w+~) J-(w+~) ~b(co, dcodJ 

where ~(% co') is L~ in the square I cO !, I cJ I <= W + 6. 
(b) I f  {g(t)} is a random process and Rg(t, t'), the autoeorrelation 

function of {g(t)}, satisfies 

f ~  R~ft, t) dt < oo (28) 
q3 

and 

fWo fWo ¢o')e I~-~'¢) R~ ( t, t' ) = ~b ( co, dco d J  (29) 
W0 W 0 

CO t ~_ where ¢+(co, co') belongs to L2 in (--Wo < co, < Wo), then the process 
{c + t.g(t)} with-~ < co is band-limited (W, ~) for all W >- Woand 
all 6 > O. 

Proof: Applying (13) to the r.h.s, of the equation R(t, t') = 
R(t, t')*h(t; W, ~),h(t'; W, ~) it follows that  R(t, t') is uniformly 
bounded in any bounded region of the t, { plane. From Theorem 5 and 
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Lemma 2 it follows that R(t,  t') is analytic in each of the variables t 
and t I. Now consider t = tl: 

F R(t, t) = R(O, t)h(t  - O; W, 8) dO (30) 

and for each t both R(O, t) and h(t - 0; W, 8) are analytic in 0. Since 
R(t,  t I) is an autocorrelation function I R(t,  tl)l ~ <= R(t, t ) .R( t ' ,  t'), 
therefore 

f R(t,  t) ~ Rm( t ,  t) R1/2(0, 0). [ h(t  - O; W, 8) l I/~ 
oo (31) 

• I h(t - 6; W, :)l "' ~e. 

Applying (13) and the Schwartz inequality to the right hand side of 
(31), it follows that the r.h.s, of (30) is uniformly integrable in any 
finite t interval and therefore R(t, t) is an analytic function of t. Since 
R(t,  t 1) is an autocorrelation function, the analiticity of R(t,  t) implies 
that  of R(t,  t I) is the t, t' plane (section 34.2, corollary3 of Lo~ve (1955)). 
Consequently JR(t, t l) - R(O, t I) - R(t,  0) + R(0, 0)]. (ttl) -1 is 
bounded for I t t, [ t l l  < 1 and 

f_~ Ro(t, t) dt < ~o. 
~o 

Since l R~(t, tl)l 2 <= Ra(t, t ) .Ro(t  f, t/), it follows that  

~f_~ f_ t Ro(t, t')l ~ et dr' < ~. 
Therefore ~(co, co'), the Fourier transform of Rg(t, ( ) ,  exists in the 
mean, ~(co, co') is L~ in - ~ < co, co I < m and 

FI = Qo cot ) e ~ ( ~ t - - ~  t ~ ) / Rg( t, t') ¢(co, dco dco. 
0o 0o 

By Theorem 1 almost all sample functions of [g(t)] are band-limited 
(W + ~, g )  for all g > 0, and therefore the [g(t)] process is band- 
limited (W + 8, 8 I) for all g > 0. By (27) and since Rg(t, t I) = [~g(t I, t), 

f/f/ Ro(t, t') = Rg(O, 0 ' ) .h( t  - O; W + ~, g )  
o~ oo (32) 

• h( t  I -- 01; W + 8, g)  dO do'. 

For each pair t, t' the function [h( t -- ~; W + ~, g)  .h( t' - Ol; W -4- 8, 81)] 
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belongs to L~ in the 0, 0' plane and so does R(O, 0'). By the Pareeval 
theorem for functions of two variables it follows that the right hand 
side of (32) is equal to 

(2~) . ~ ~ ¢(co, cJ)l¢(co, cJ) dco d J  

where 

/,~o f oo 
F(co, co') = j_~ h( t  -- O; W -~ 6, ~')h(t '  -- O; W + 6, 6') 

• e -i(~°°-~'°') dO dO' = H(co; W + 6, 6')-H(co'; W + 6, ~')e m°t-'°t'). 

We have thus shown that  for all ~' > 0 

¢(~0, co') -- ~(co, co').H(co; W -t- 6, ~ ' ) . H ( J ;  W -t- 6, ~'), 

which means that  ¢(co, J )  vanishes outside I co I, I co'[ < (W -~ ~); 
therefore ¢(co, co') is also L1 and 

f(~z+~, f (w+,) cd)e ¢(~°t-°Jt') , Ro(t, t ') = z-(w+~) o-(w+~) ¢(co' dco &o. 

The {g(t)} process is, therefore, a harmonizable process (Logve, 1955) 
(the {f(t) } process may in general not be harmonizable as the function 
S i ( t )  of Eq. (2), which may be considered as a degenerate nonstationary 
process, shows). Turning now to the proof of part  (b) ;  it follows from 
(28) that  almost all sample functions of {g(t) } are L2(-- ~o, ~ ). From 
(29) it follows that R~(t, t) is continuous and that  almost all sample 
functions of {g(t)} areband-limited (W, 6) (where W >___ W0 and ~ > 0). 
The rest follows from Theorem 1. 
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