Weak axioms of determinacy and subsystems of analysis II (Σ_{2}^{0} games)

Kazuyuki Tanaka
Department of Information Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152, Japan

Communicated by T. Jech
Received 11 November 1989
Revised 31 May 1990

Abstract

Tanaka, K., Weak axioms of determinacy and subsystems of analysis II (Σ_{0}^{2} games), Annals of Pure and Applied Logic 52 (1991) 181-193. In [10], we have shown that the statement that all Σ_{1}^{1} partitions are Ramsey is deducible over $\mathbf{A T R}_{0}$ from the axiom of Σ_{1}^{1} monotone inductive definition, but the reversal needs $\boldsymbol{\Pi}_{1}^{1} \mathbf{C A}_{0}$ rather than $\mathbf{A T R}_{0}$. By contrast, we show in this paper that the statement that all Σ_{2}^{0} games are determinate is also deducible over $\mathbf{A T R}_{0}$ from the axiom of Σ_{1}^{1} monotone inductive definition, but the reversal is provable even in $\mathbf{A C A}_{\mathbf{0}}$. These results illuminate the substantial differences among lightface theorems which can not be observed in boldface.

1. Introduction

In this paper, we investigate the proof-theoretic strength of Σ_{2}^{0} determinacy from the standpoint congenial to the program of Reverse Mathematics, whose goal is to answer the following question: What set existence axioms are needed to prove the theorems of ordinary mathematics? For information on the program, see $[1,2,6,7,8]$. Although this paper has many ideas coming from its predecessor [11], in which the determinancy of Δ_{0}^{2} games was mainly discussed, it can be read separately.

A function $\Gamma: \mathscr{P}(\omega) \rightarrow \mathscr{P}(\omega)$ is called a monotone operator (over ω), if $\Gamma(X) \subset \Gamma(Y)$ whenever $X \subset Y \subset \omega . \Gamma$ is a Σ_{1}^{1} operator if its graph $\{(x, X): x \in$ $\Gamma(X)\}$ is Σ_{1}^{1} without second-order parameters. The axiom of Σ_{1}^{1} monotone inductive definition, denoted as ($\Sigma_{1}^{1}-\mathrm{MI}$), asserts that for each Σ_{1}^{1} monotone operator Γ, there exists a transfinite sequence $\left\langle\Gamma_{\alpha}: \alpha<\sigma\right\rangle, \sigma \in$ Ord, such that $\Gamma_{\alpha}=\Gamma\left(\bigcup\left\{\Gamma_{\beta}: \beta<\alpha\right\}\right)$ for all $\alpha<\sigma$, and such that $\Gamma_{\infty}=\Gamma\left(\Gamma_{\infty}\right)$ with $\Gamma_{\infty}=$ $\bigcup\left\{\Gamma_{\alpha}: \alpha<\sigma\right\}$.

In the context of ordinary descriptive set theory, the importance of Σ_{1}^{1} monotone inductive definitions has been well established. It is known that many different notions (e.g., Kolmogorov's \mathscr{R}-operator, weakly representability in Enderton's system \mathscr{A}) define the same class as Σ_{1}^{1} monotone inductive definitions (see Hinman [4]). In addition, Solovay has shown that the Σ_{1}^{1} monotoneinductively definable sets can be characterized in terms of Σ_{2}^{0} games (for an account, see Moschovakis [5, pp. 414-415]). In [9, p. 24], Steel mentions that Solovay's work actually shows that (Σ_{2}^{0}-Det) and (Σ_{1}^{1}-MI) are equivalent over $\boldsymbol{\Delta}_{2}^{1} \mathbf{- C A}+$ (full induction scheme). In this paper, we obtain a lightface refinement of this result.

The weakest base theory considered in this paper is $\mathbf{A C A}_{0}$, a second-order arithmetic based on the Arithmetical Comprehension Axiom, and equipped with the induction axiom:

$$
(0 \in X \wedge \forall n(n \in X \rightarrow n+1 \in X)) \rightarrow \forall n(n \in X),
$$

instead of the usual induction scheme. The system $\mathbf{A T R}_{0}$ is obtained from $\mathbf{A C A}_{0}$ by adding the boldface axiom of Arithmetical Transfinite Recursion: there exists a Turing jump hierarchy starting at any set along any well-ordering.

For any formula ϕ with a variable ranging over ω^{ω}, we associate a two-person infinite game G_{ϕ} (or simply ϕ), in which players I and II alternately choose natural numbers, and in which I wins iff the resulting infinite sequence satisfies ϕ. We say that the game G_{ϕ} is determinate if either I or II has a winning strategy in G_{ϕ}. For a class of formulas C, the axiom (C-Det) asserts that any game (associated with a formula) in C is determinate.

In this paper, we prove

$$
\begin{aligned}
& \mathbf{A C A}_{0}+\left(\Sigma_{2}^{0}-\mathrm{Det}\right) \rightarrow\left(\Sigma_{1}^{1}-\mathrm{MI}\right) \\
& \mathbf{A T R}_{0} \vdash\left(\Sigma_{1}^{1}-\mathrm{MI}\right) \rightarrow\left(\Sigma_{2}^{0}-\mathrm{Det}\right) .
\end{aligned}
$$

And the following is conjectured

$$
\mathbf{A C A}_{0} \nVdash\left(\Sigma_{1}^{1}-\mathrm{MI}\right) \rightarrow\left(\Sigma_{2}^{0} \text {-Det }\right) .
$$

These relations are well contrasted with the following results in [10]:

$$
\begin{aligned}
& \mathbf{A T R}_{0} \vdash\left(\Sigma_{1}^{1}-\mathrm{MI}\right) \rightarrow\left(\Sigma_{1}^{1}-\mathrm{Ram}\right), \\
& \boldsymbol{\Pi}_{1}^{1}-\mathbf{C A} \vdash\left(\Sigma_{1}^{1}-\mathrm{Ram}\right) \rightarrow\left(\Sigma_{1}^{1}-\mathrm{MI}\right), \\
& \mathbf{A T R}_{0} \nvdash\left(\Sigma_{1}^{1}-\mathrm{Ram}\right) \rightarrow\left(\Sigma_{1}^{1}-\mathrm{MI}\right),
\end{aligned}
$$

where (Σ_{1}^{1}-Ram) means that any Σ_{1}^{1} partition $P \subseteq \mathscr{P}(\omega)$ is Ramsey, i.e., there is an infinite set $H \subseteq \omega$ such that either all infinite subsets of H are in P or all out of P. We should also remark that the boldface versions of the three statements (Σ_{2}^{0}-Det), ($\Sigma_{1}^{1}-\mathrm{Ram}$), and ($\left.\Sigma_{1}^{1}-\mathrm{MI}\right)$ can be easily shown to be pairwise equivalent over $\mathbf{A C A}_{0}$, or indeed $\mathbf{R C A}_{0}$.

2. Preliminaries

The language of second-order arithmetic consists of the following symbols: number variables x, y, z, \ldots; set variables X, Y, Z, \ldots; constants 0,1 ; binary operations + and $\cdot ;$ binary relations $=,<, \in$. The terms and formulas are defined in the usual way. The formulas are classified as follows.
(i) ϕ is bounded or Π_{0}^{0} if it is built up from atomic formulas by propositional connectives and bounded numerical quantifiers $\forall x<t$ and $\exists x<t$;
(ii) ϕ is arithmetical or Π_{0}^{1} if it contains no set quantifiers;
(iii) ϕ is Σ_{n}^{i} if $\phi=\neg \psi$ where ψ is $\Pi_{n}^{1}(i=0,1$ and $n \in \omega)$;
(iv) ϕ is Π_{n+1}^{0} if $\phi=\forall x_{1} \cdots \forall x_{k} \psi$ where ψ is $\Sigma_{n}^{0}(n \in \omega)$;
(v) ϕ is Π_{n+1}^{1} if $\phi=\forall X_{1} \cdots \forall X_{k} \psi$ where ψ is $\Sigma_{n}^{1}(n \in \omega)$.

The Π_{n}^{i} Comprehension Axiom, denoted (Π_{n}^{i}-CA), is defined to be the scheme:

$$
\exists X \forall x(x \in X \leftrightarrow \phi(x)),
$$

where ϕ is Π_{n}^{i} and it has no free set variables (parameters); the boldface axiom ($\boldsymbol{\Pi}_{n}^{i}$-CA) is the same scheme but allowing ϕ to involve free set variables except \boldsymbol{X}.

The system $\mathbf{A C A}_{0}$ consists of the ordered semiring axioms for ($\mathbb{N},+, \cdot, 0,1,<$) together with ($\boldsymbol{\Pi}_{0}^{1}-\mathrm{CA}$) and the following induction axiom;

$$
(0 \in X \wedge \forall x(x \in X \rightarrow(x+1) \in X)) \rightarrow \forall x(x \in X) .
$$

$\mathbf{A C A}_{0}$ is a conservative extension of first-order Peano arithmetic. The following lemma is a useful fact in $\mathbf{A C A}_{0}$.

Lemma 2.1. For any Σ_{1}^{1} formula ϕ, there exists a Π_{0}^{0} formula R such that

$$
\mathbf{A C A}_{0} \vdash \phi \leftrightarrow \exists f \forall x R(f[x]),
$$

where $f[x]$ is a code for the sequence $\langle f(0), f(1), \ldots, f(x-1)\rangle$.
Proof. The usual Tarski-Kuratowski algorithm works in $\mathbf{A C A}_{0}$.
We next define the Axiom of Π_{n}^{i} Transfinite Recursion (Π_{n}^{i}-TR) and its boldface version (Π_{n}^{i}-TR). In particular, ($\Pi_{1}^{0}-\mathrm{TR}$) is called the Axiom of Arithmetical Transfinite Recursion, and denoted by (ATR). The lightface axiom ($\Pi_{n}^{i}-\mathrm{TR}$) is the following scheme: for any recursive well-ordering $<$, there exists a set $H \subseteq \omega$ such that
(i) if b is the <-least element, then $(H)_{b}=\emptyset$,
(ii) if b is the immediate successor of a (w.r.t. $<$), then

$$
\forall n\left(n \in(H)_{b} \leftrightarrow \phi\left(n,(H)_{a}\right)\right),
$$

(iii) if b is a limit, then

$$
\forall a \forall n\left((n, a) \in(H)_{b} \leftrightarrow a<b \wedge n \in(H)_{a}\right),
$$

where ϕ is a Π_{n}^{i} formula without second-order parameters and

$$
(H)_{a}=\{n:(n, a) \in H\}, \quad(n, a)=(n+a)(n+a+1) / 2+n
$$

The boldface axiom ($\Pi_{n}^{i}-\mathrm{TR}$) is the following: for any $X \subseteq \omega$ and for any well-ordering $<$, there exists a set $H \subseteq \omega$ such that
(i) if b is the <-least element, then $(H)_{b}=X$,
(ii) and (iii) the same as above, where ϕ is any Π_{n}^{i} formula (which may have second-order parameters).

The system $\mathbf{A T R}_{0}$, which consists of $\mathbf{A C A}_{0}+\left(\boldsymbol{\Pi}_{0}^{1}-\mathrm{TR}\right)$, was first introduced by Friedman [2], and has been extensively studied in Friedman-McAloon-Simpson [3].

In [11], we have shown

$$
\begin{aligned}
& \mathbf{A C A}_{0}+(\mathrm{ATR}) \leftrightarrow\left(\Sigma_{1}^{0} \text {-Det }\right) \leftrightarrow\left(\Delta_{1}^{0} \text {-Det }\right), \\
& \mathbf{A C A}_{0}+\left(\Pi_{1}^{1}-\mathrm{TR}\right) \leftrightarrow\left(\Delta_{2}^{0}-\text { Det }\right)
\end{aligned}
$$

3. ($\left.\Sigma_{1}^{1}-\mathrm{MI}\right)$ implies (Σ_{2}^{0}-Det)

We might as well begin with the formalities of Σ_{1}^{1} monotone inductive definition. First of all, a function $\Gamma: \mathscr{P}(\omega) \rightarrow \mathscr{P}(\omega)$ is identified with its graph $\{(x, X): x \in \Gamma(X)\}$. So, Γ is a Σ_{1}^{1} operator if its graph is Σ_{1}^{1} without second-order parameters. A function $\Gamma: \mathscr{P}(\omega) \rightarrow \mathscr{P}(\omega)$ is called a monotone operator (over ω), if $\Gamma(X) \subset \Gamma(Y)$ whenever $X \subset Y \subset \omega$. We here notice that $\Gamma(X) \subset \Gamma(Y)$ simply means that if $x \in \Gamma(X)$ then $x \in \Gamma(Y)$, hence it does not imply the existence of $\Gamma(X)$ or $\Gamma(Y)$.

Definition 3.1. The Axiom of Σ_{1}^{1} Monotone Inductive Definition, denoted (Σ_{1}^{1}-MI), is the following scheme: for any Σ_{1}^{1} monotone operator Γ with no second-order parameters, there is a $W \subseteq \omega \times \omega$ such that
(1) W is a pre-well-ordering on its field $F \subset \omega$,
(2) for all $x \in F, W_{x}=\Gamma\left(W_{<x}\right)$, where $W_{x} \stackrel{\text { def }}{=}\{y \in F:(y, x) \in W\}$ and $W_{<x}$ def $\{y \in F:(y, x) \in W$ and $(x, y) \notin W\}$,
(3) $F=\Gamma(F)$.

Theorem 3.1. $\mathbf{A T R}_{0} \vdash\left(\Sigma_{1}^{1}-\mathrm{MI}\right) \rightarrow\left(\Sigma_{2}^{0}\right.$-Det $)$.
Proof. The proof is almost straightforward from Wolfe's original proof of Σ_{2}^{0} determinacy. So we just indicate how it can be carried out in $\mathbf{A T R}_{0}+\left(\Sigma_{1}^{1}-\mathrm{MI}\right)$. For other details of Wolfe's proof, see Moschovakis [5, pp. 290-292].

Let $A \subseteq \omega^{\omega}$ be a Σ_{2}^{0} predicate. So there is a recursive predicate $R \subseteq \omega$ such that for all $f \in \omega^{\omega}$

$$
A(f) \leftrightarrow \exists x \forall y R(x, f[y]),
$$

where $f[y]$ encodes the sequence $\langle f(0), f(1), \ldots, f(y-1)\rangle$. We define, by (Σ_{1}^{1}-MI), a set W of sure winning positions for player I as follows: for any ordinal α,

$$
\begin{aligned}
& u \in W_{\alpha} \leftrightarrow \exists x\left[\text { I has a winning strategy in the closed game } A_{u, \alpha, x}=\right. \\
& \left.\quad\left\{f \in \omega^{\omega}: \forall y\left(R(x,(u * f)[y]) \vee(u * f)[y] \in \bigcup\left\{W_{\beta}: \beta<\alpha\right\}\right)\right\}\right] .
\end{aligned}
$$

Clearly, the right-hand side of the above formula is Σ_{1}^{1}, hence the transfinite sequence $\left\{W_{\alpha}\right\}$ exists by ($\Sigma_{1}^{1}-\mathrm{MI}$), and so does its limit $W=W_{\infty}$.

Now what we want to show is the following: if the empty sequence \emptyset is in W_{∞}, player I has a winning strategy in the game A, and if not, player II has a winning strategy. First suppose that $u \in W_{\alpha}$. By the definition of W_{α}, there exists x such that I has a winning strategy $\sigma_{u, \alpha, x}$ for the game $A_{u, \alpha, x}$. If I plays the original game A from the position u with strategy $\sigma_{u, \alpha, x}$, then he wins A without any change of strategy or he reaches a position $u^{\prime} \in W_{\beta}$ for some $\beta<\alpha$. In the latter case, he can switch to a winning strategy $\sigma_{u^{\prime}, \beta, x^{\prime}}$ for some x^{\prime}. Changing strategies this way, player I can eventually win A from the position u. In particular, I wins A if $\emptyset \in W_{\infty}$. Here we should notice that I's winning strategy σ for A is built from infinitely many strategies $\sigma_{u, \alpha, x}$. Since " $\sigma_{u, \alpha, x}$ is a winning strategy for I in the closed game $A_{u, \alpha, x}$ " is a Π_{1}^{0} relation, the construction of σ needs ($\Pi_{1}^{0}-\mathrm{AC}$), which is known to be deducible in $\mathbf{A T R}_{0}$ (see [11]).

Next suppose $u \notin W_{\infty}$. Fix an $x \in \omega$ arbitrarily. By the definition of W_{∞} and Σ_{1}^{0} determinacy, II has a winning strategy $\tau_{u, x}$ in the game

$$
A_{u, x}=A_{u, \infty, x}=\left\{f \in \omega^{\omega}: \forall y\left(R(x, f[y]) \vee f[y] \in W_{\infty}\right)\right\} .
$$

Note that II wins $A_{u, x}$ with play f iff f is not in $A_{u, x}$. If II plays the original game A from position u with strategy $\tau_{u, x}$, he always reaches a position u^{\prime} such that $\neg R\left(x, u^{\prime}\right)$ and $u^{\prime} \notin W_{\infty}$. At position u^{\prime}, he can switch to a winning strategy $\tau_{u^{\prime}, x^{\prime}}$ for any x^{\prime}. Playing in this manner, he can construct an infinite sequence $f=u * u_{0} * u_{1} * \cdots$ such that for all $i \in \omega, \neg R\left(i, u * u_{0} * u_{1} * \cdots * u_{i}\right)$, hence $\neg A(f)$, so II wins the game A. Thus II's winning strategy τ can be built from the strategies $\tau_{u, x}$ by means of the axiom of choice. However " $\tau_{u, x}$ is a winning strategy for II in the closed game $A_{u, \alpha, x}$ " is a Π_{1}^{1} relation, and ($\left.\Pi_{1}^{1}-\mathrm{AC}\right)$ is not provable in $\mathbf{A T R}_{0}$. To avoid using the axiom of choice, we invent the following game. Player I first chooses any $u \notin W_{\infty}$ and $x \in \omega$, and since then the players play natural numbers as usual. Player II wins this game iff they produce the sequence u^{\prime} such that $\neg R\left(x, u * u^{\prime}\right)$ and $u * u^{\prime} \notin W_{\infty}$. It is obvious that I has no winning strategy, since for any choice of $u \notin W_{\infty}$ and $x \in \omega$ at I's first move, II wins the game with $\tau_{u, x}$. So by Σ_{1}^{0} determinacy, II has a winning strategy in this game. From such a strategy, we can easily construct a winning strategy τ for the game A. This completes the proof.
4. (Σ_{2}^{0}-Det) implies ($\Sigma_{1}^{1}-\mathrm{MI}$)

The purpose of this section is to prove $\left(\Sigma_{2}^{0}\right.$-Det $) \rightarrow\left(\Sigma_{1}^{1}-\mathrm{MI}\right)$ within $\mathbf{A C A}_{0}$. Let Γ be a Σ_{1}^{1} monotone operator. The axiom ($\Sigma_{1}^{1}-\mathrm{MI}$) asserts the existence of pre-well-ordering W with field F such that $W_{x}=\Gamma\left(W_{<x}\right)$ for all $x \in F$, and such that $F=\Gamma(F)$. We will first construct a Σ_{2}^{0} game G_{1} such that player I has no winning strategy, and such that for any winning strategy τ of player II, W is Π_{1}^{1} in τ, which suffices to get ($\left.\Sigma_{2}^{0}-\mathrm{Det}\right) \rightarrow\left(\Sigma_{1}^{1}-\mathrm{MI}\right)$ in $\boldsymbol{\Pi}_{1}^{1}-\mathrm{CA}_{0}$ (Lemma 4.1). Then we will modify this game to obtain a proof of $\left(\Sigma_{2}^{0}\right.$-Det $) \rightarrow\left(\Sigma_{1}^{1}-\mathrm{MI}\right)$ in $\mathbf{A C A}_{0}$ (Theorem 4.2).

The outline of our proof is as follows. In the game G_{1}, player I starts the game with playing a number y^{*}, intending to raise a question whether or not y^{*} is in the field of W. In reply to this question, player II may either accept y^{*} or reject y^{*}. If II accepts y^{*}, II is requested to list the ($\leqslant y^{*}$)-segment of W and also to give certain witnesses for his assertions. The role of I is then to watch his opponent's moves, and point out a possible error in them. If II rejects y^{*} at the beginning, the roles are reversed. After the initial stage, the player constructing the ($\leqslant y^{*}$)-segment of W is called Pro, and the other player Con. Roughly speaking, Pro wins the game iff Con can not prove to the last that Pro makes a false or erroneous assertion. A more precise definition of game G_{1} given in the proof of Lemma 4.1 will disclose that it is indeed a Σ_{2}^{0} game. Since I has no winning strategy in this game (Sublemma 4.1.1), II must have a winning strategy, say τ, by (Σ_{2}^{0}-Det). We let \tilde{W} be the set of pairs (x, y) such that the strategy τ calls for II as Pro to put (x, y) into the list for W at every meaningful position. By the series of Sublemmas 4.1.2-7, we show that the maximal well-founded initial segment of \tilde{W} is actually our desired set W. This proves $\left(\Sigma_{2}^{0}\right.$-Det $) \rightarrow\left(\Sigma_{1}^{1}-\mathrm{MI}\right)$ in $\boldsymbol{\Pi}_{1}-\mathbf{C A}_{0}$. In the proof of Theorem 4.2, we definc the game G to be the same as G_{1} but allowing Con to win the game by finding or predicting an infinite descending sequence through the preordering Pro constructs. Then if we define \tilde{W} as before, we can show that \tilde{W} itself is our desired set W.

Lemma 4.1. $\boldsymbol{\Pi}_{1}^{1}-\mathrm{CA}_{0} \vdash\left(\Sigma_{2}^{0}\right.$-Det $) \rightarrow\left(\Sigma_{1}^{1}-\mathrm{MI}\right)$.
Proof. Pick any Σ_{1}^{1} monotone operator Γ, and fix it throughout the proof. By Lemma 2.1, there is a recursive relation R such that for $x \in \omega$ and $X \in \mathscr{P}(\omega)$,

$$
x \in \Gamma(X) \leftrightarrow \exists f \forall z R(f[z], x, X[z]),
$$

where $f[z]$ and $X[z]$ encode the finite sequence $\langle f(0), f(1), \ldots, f(z-1)\rangle$ and the finite set $X \cap\{0,1, \ldots, z-1\}$, respectively.

Let us begin to describe our game G_{1} thoroughly. Player I starts the game with playing a number y^{*}. Player II then replies either 1 (to accept y^{*}) or 0 (to reject y^{*}). If II chooses 1 (resp. 0), then in the rest of the game, II is called Pro (resp. Con) and I is called Con (resp. Pro). We regard Pro as the first player of the rest
of the game. Then players Pro and Con alternatively choose a couple of numbers as follows:

Pro	Con
$v(0), f(0)$	
$v(1), f(1)$	$c(0), u(0), g(0)$
\vdots	$c(1), u(1), g(1)$
	\vdots

where $v, u \in\{0,1\}^{\omega}, c \in\{\{-1\} \cup \omega\}^{\omega}$, and $f, g \in \omega^{\omega}$.
To explain the meaning of the game, we need the standard pairing function

$$
p(m, n)=(m+n)(m+n+1) / 2+m .
$$

We often write (m, n) for $p(m, n)$ and $\left(n_{0}, n_{1}\right)$ for $p^{-1}(n)$, unless they may cause a serious confusion. Turning back to the game, Pro builds a preordering $V=\left\{\left(n_{0}, n_{1}\right): v(n)=1\right\}$ with y^{*} in its field, and for each (x, y) in V, he gives a witness for $x \in \Gamma\left(V_{<y}\right)$ by means of f. At a stage n, Con may make a challenge on Pro's assertion $v(m)=0, m \leqslant n$, by setting $c(n)=m(\neq-1)$. If he does so, he is requested to give a witness for $x \in \Gamma\left(V_{<y}\right)$, using u and g.
The winning conditions (or pay-off) of the game G_{1} are described as follows.

1. First of all, we require Con to make challenges along the order already constructed by Pro in the decreasing way and below y^{*}. Strictly speaking, at stage n, Con may challenge Pro's assertion $m=\left(m_{0}, m_{1}\right) \notin V$, if (i) it has already been stipulated by Pro that $m_{1} \leqslant_{V} y^{*}$ (i.e., $v\left(\left(m_{1}, y^{*}\right)\right)=1$ and $\left.\left(m_{1}, y^{*}\right)<n\right)$, and if (ii) for all previous challenges $c\left(n^{\prime}\right)=m^{\prime}=\left(m_{0}^{\prime}, m_{1}^{\prime}\right), n^{\prime}<n$, it has been stipulated by Pro before stage n that $m_{1}<_{V} m_{1}^{\prime}$ (i.e., $v\left(\left(m_{1}, m_{1}^{\prime}\right)\right)=1$, $\left(m_{1}, m_{1}^{\prime}\right)<n, v\left(\left(m_{1}^{\prime}, m_{1}\right)\right)=0$, and $\left.\left(m_{1}^{\prime}, m_{1}\right)<n\right)$. If Con disobeys this rule, he loses whatever the opponent plays.

Assuming that this rule has been obeyed, we describe the further conditions.
2. The case that Con makes no challenges. Then Pro wins iff (i) V is a preordering with the field $F=\{x$: there is y such that $(x, y) \in V$ or $(y, x) \in V\}$ such that $y^{*} \in F$, and (ii) for all m such that $v(m)=1$,

$$
\forall z R\left(f_{m}[z], m_{0}, V_{<m_{1}}[z]\right),
$$

where $f_{m}(n)=f((m, n))$.
3. The case that Con makes a positive but finite number of challenges. Let \boldsymbol{n} be the last stage such that $c(n) \neq-1$. Suppose $c(n)=m$. Then Con wins iff (i) $V_{<m_{1}}$ is not a preordering with y^{*} in its field, or (ii)

$$
\forall z R\left(g^{n}[z], m_{0}, U^{n}[z]\right) \wedge U^{n} \subseteq V_{<m_{1}},
$$

where $g^{n}(k)=g(k+n)$ and $U^{n}=\{k \in \omega: u(k+n)=1\}$.
4. The case that Con makes infinitely many challenges. Then player II wins. This completes the definition of G_{1}. It is then obvious that G_{1} is a Σ_{2}^{0} game.

Sublemma 4.1.1. Player II has a winning strategy.

Proof. We will show that player I has no winning strategy in game G_{1}, which implies by (Σ_{2}^{0}-Det) that II has a winning strategy. By way of contradiction, assume I had a winning strategy σ. Let y^{*} be I's first move called by σ. Since II may either accept or reject y^{*}, I must defend both cases. In the case II rejects y^{*}, I needs construct V such that y^{*} is in the field of V. But if such a construction is successful, II could accept y^{*} and win the game by constructing the same V. To be more precise, we consider the following two plays of the game p_{0}, p_{1}, both of which are consistent with I's winning strategy $\sigma . p_{0}$ begins with I's proposal y^{*} and II's reply 0 (to reject). p_{1} begins with I's proposal y^{*} and II's reply 1 (to accept). The rest of the two plays are the same except the roles of the players, that is, I is Pro in p_{0} and II is Pro in p_{1}. The plays are simultaneously constructed as follows. Suppose that σ calls for I to choose $v(n), f(n)$ at stage n in p_{0}. Then player II copies these numbers to his move at stage n in p_{1}. Following σ, player I replies $c(n), u(n), g(n)$ in p_{1}. Again, Player II copies these three numbers to his move at stage n in p_{0}. Then σ specifies I's move at stage $n+1$ in p_{0}, and so on. In this way, they produce exactly the same sequences, which are both consistent with σ. But, it is clear from the definition of winning conditions that player I can not win in both the plays. This is a contradiction.

Let us fix a winning strategy $\boldsymbol{\tau}$ for player II throughout the proof of Lemma 4.1. A play (or a partial play) is said to be τ-consistent if it can be produced while player II follows τ and Con obeys rule (1) (challenging in the decreasing order). By a partial play, we here mean a finite initial segment of a whole play of the game, which at least includes the preliminary stage (where I chooses y^{*} and II replies 1 or 0). Given a τ-consistent partial play p ending with Pro's move at stage n, we say that at stage n (or at p), Con can challenge Pro's move $v(m)=0$ in p ($m \leqslant n$) if Con can set $c(n)=m$ without breaking rule (1).

We then say that player II asserts $x \neq y$ in p if II is Pro in p, and if $v((x, y))=0$ occurs in p and it can be challenged at p. Player II never asserts $x \neq y$ if there is no τ-consistent partial play p in which II asserts $x \neq y$, yet if τ calls for II to accept I's initial proposal y^{*} when $y^{*}=y$. We also say that player II asserts $x \leqslant y$ in p if II is Pro in p, and both $v((x, y))=1$ and $v\left(\left(y, y^{*}\right)\right)=1$ occur in p, and further if $v((y, z))=1$ occurs in p supposing that the last challenge in p was made to (w, z) for some w (the last condition is satisfied vacuously when no challenge occurs in p).

We now define

$$
\begin{aligned}
& \tilde{W}=\{(x, y): \text { (1) II never asserts } x \neq y \& \\
& \text { (2) for any } n, \\
& \text { if II asserts } w_{1} \leqslant w_{0}=y \text { in some } p_{1}, \\
& \text { and } w_{2} \leqslant w_{1} \text { in some } p_{2}, \\
& \vdots \\
& \text { and } w_{n} \leqslant w_{n-1} \text { in some } p_{n}, \\
& \text { then II never asserts } \left.w_{n} \neq w_{i}, i<n\right\},
\end{aligned}
$$

where p_{i} ranges over the τ-consistent partial plays. Obviously, \tilde{W} is Π_{1}^{0} in τ, and so it exists by ($\left.\Pi_{1}^{0}-\mathrm{CA}\right)$. Our goal is to show that the well-founded part of \tilde{W} is the desired set.

We need some other new notion. Let $(x, y) \in \tilde{W}$. If I plays $y^{*}=y$ at the initial stage, then τ tells II to accept y^{*} since Player II never asserts $x \neq y$ (clause (1) in the definition of \bar{W}). We now consider a τ-consistent play p in which I proposes y^{*}, then II accepts it, and no challenge occurs to the last. We call such a play a simple y-play. For any play p, let V^{p} be the set constructed by Pro in p, i.e.,

$$
V^{p}=\{(x, y): v((x, y))=1 \text { occurs in } p\} .
$$

We then prove
Sublemma 4.1.2. Let $(x, y) \in \tilde{W}$. Let p be a simple y-play. Then the $(\leqslant y)$-segment of \tilde{W} is exactly the same as the $(\leqslant y)$-segment of V^{p}.

Proof. Assume $(x, y) \in \tilde{W}$, and let p be a simple y-play. We first show $\tilde{W}_{y}=V_{y}^{p}$ without regard to the orders. If $(w, y) \in \tilde{W}$, then II never asserts $w \neq y$ and hence II asserts $w \leqslant y$ in p, i.e., $(w, y) \in V^{p}$. Conversely, assume $(w, y) \in V^{p}$. By clause (2) in the definition of \tilde{W} applied to $(x, y) \in \tilde{W}$, II never asserts $w \neq y$ since II asserts $w \leqslant y$ in p. Thus $(w, y) \in \tilde{W}$, since clause (1) is just shown and clause (2) is the same as clause (2) applied to $(x, y) \in \tilde{W}$.

Now choose any (v, w) in the $(\leqslant y)$-segment of \bar{W}. Then $(v, w) \in \bar{W}$ and $(w, y) \in \tilde{W}$. By the above paragraph, $(w, y) \in \tilde{W}$ implies that II asserts $w \leqslant y$ in p, and so (v, w) could be challenged at p if he asserts $v \neq w$ in p. However, by clause (1) in the definition of \tilde{W} for $(v, w) \in \tilde{W}$, II never asserts $v \neq w$. So II must assert $v \leqslant w$ in p, that is, (v, w) is in the $(\leqslant y)$-segment of V^{p}.

Conversely, assume $(v, w) \in V^{p}$ and $(w, y) \in V^{p}$. By clause (2) in the definition of \tilde{W} for $(x, y) \in \tilde{W}$, II never asserts $v \neq w$, since II asserts $v \leqslant w$ and $w \leqslant y$ in p. So clause (1) for ($v, w) \in \tilde{W}$ is satisfied. For clause (2), assume that $w_{0}=w$ and II asserts $w_{i+1} \leqslant w_{i}$ somewhere for all $i \leqslant n$. Since II asserts $w \leqslant y$ in p, by clause (2) for $(x, y) \in \tilde{W}$, II never asserts $w_{n+1} \leqslant w_{i}$ for all $i \leqslant n$, which satisfies the clause (2) for $(v, w) \in \tilde{W}$. Therefore, we have $(v, w) \in \tilde{W}$.

Sublemma 4.1.3. \tilde{W} is transitive and reflexive.

Proof. Assume $(v, w) \in \tilde{W}$ and $(w, y) \in \tilde{W}$. Let p be a simple y-play. By Sublemma 4.1.2, we have $(v, w) \in V^{p}$ and $(w, y) \in V^{p}$. Since V^{p} is a preordering (rule (2)), $(v, y) \in V^{p}$. Again by the previous sublemma, $(v, y) \in \tilde{W}$. Hence \tilde{W} is transitive. The reflectivity can be shown similarly.

Sublemma 4.1.4. Let p be a τ-consistent play with II as Pro such that a positive but finite number of challenges are made. Let y be such that I's last challenge in p is made against (x, y) for some x. Then the $(<y)$-segment of V^{p} is a subset of the $(<y)$-segment of \tilde{W}. Furthermore, if y is in the well-founded part of \tilde{W}, the $(<y)$-segment of V^{p} is the same as the $(<y)$-segment of \bar{W}.

Proof. Let p and y be as in the above statement. In the same way as the proof of Sublemma 4.1.2, we can prove that if (v, w) is in the $(\leqslant y)$-segment of V^{p}, then it is in ($\leqslant y$)-segment of \tilde{W}. Moreover, if $(w, y) \in V^{n}$ and $(y, w) \notin V^{p}$, then II asserts $y \neq w$ in p, so we can not have $(y, w) \in W$, which finishes the first part of the sublemma.

By the way of contradiction, we assume the second part is false, and let y be minimal with respect to (the well-founded part of) \tilde{W} such that the second conclusion fails for y. By the first part, we have $V^{p}{ }_{<y} \subseteq \tilde{W}_{<y}$. We first show that $V_{<y}^{p}$ is unbounded in $\tilde{W}_{<y}$ with respect to \tilde{W}, i.e., $\forall w \in \tilde{W}_{<y} \exists z \in V_{<y}^{p}(w, z) \in \tilde{W}$. By Sublemma 4.1.2, the $(\leqslant y)$-segment of \tilde{W} is the same as the $(\leqslant y)$-segment of V^{s} with a simple y-play s, so it is a preordering. Hence, if $V_{<y}^{p}$ is bounded in $\tilde{W}_{<y}$, there exists a $u \in \tilde{W}_{<y}$ such that $V_{<y}^{p} \subseteq \tilde{W}_{<u}$. Fix such a u. Since $u \in \tilde{W}_{<y}$, we have $(y, u) \notin \tilde{W}$, and so II asserts $y \neq u$ in some τ-consistent partial play q. Consider the τ-consistent play p^{\prime} in which I challenges (y, u) at q, and after that, he plays $U=\tilde{W}_{<u}$ and a witness for $y \in \Gamma\left(\tilde{W}_{<u}\right)$. Remark that $y \in \Gamma\left(\tilde{W}_{<u}\right)$ holds since $y \in \Gamma\left(V_{<y}^{p}\right)$ and $V_{<y}^{p} \subseteq \tilde{W}_{<u}$. Since y is chosen as a minimal element for which the second part of the sublemma fails, the claim of the sublemma must hold for $u \in \tilde{W}_{<y}$, so we have $\tilde{W}_{<u}=V_{<u}^{p^{\prime}}$. Thus I wins with p^{\prime}, a contradiction. Therefore, $V^{p}{ }_{c y}$ is unbounded in $\tilde{W}_{<y}$.

Now, let (v, w) belong to the $(<y)$-segment of \tilde{W}. Since $V^{p}{ }_{<y}$ is unbounded in $\tilde{W}_{<y}$, we can choose a $z \in V^{p}{ }_{<y}$ such that $(w, z) \in \tilde{W}$. If $(w, z) \notin V^{p}$, then II asserts $w \neq z$ in p, which contradicts $(w, z) \in \tilde{W}$. If $(w, z) \in V^{p}$ and $(v, w) \notin V^{p}$, then II asserts $v \notin w$ in p, which contradicts $(v, w) \in \tilde{W}$. Therefore, $(v, w) \in V^{p}$, that is, ($v, w)$ belongs to the $(<y)$-segment of V^{p}.

We define W as the maximal well-founded initial segment of \tilde{W}.
Sublemma 4.1.5. For each y in the field of $W, W_{y}=\Gamma\left(W_{<y}\right)$.
Proof. Choose any y in the field of W. Let p be a simple y-play. By Sublemma 4.1.2, $W_{y}=V_{y}^{p} \subseteq \Gamma\left(V_{-y}^{p}\right)=\Gamma\left(W_{<y}\right)$. Next suppose $x \in \Gamma\left(W_{<y}\right)-W_{y}$. Then II asserts $x \neq y$ in some τ-consistent partial play q. We consider the τ-consistent
play p in which I challenges (x, y) at q, and after that, plays $U=W_{<y}$ and a witness that $x \in \Gamma\left(W_{<y}\right)$. By Sublemma 4.1.4, we get the contradiction that p is a win for I.

Sublemma 4.1.6. W is a pre-well-ordering.

Proof. We have shown \tilde{W} is transitive and reflexive in Sublemma 4.1.3. Hence, W is also transitive and reflexive. The well-foundedness of W is straightforward from the definition. So we need only show that W is connected. By way of contradiction, assume there were x and y in W such that $(x, y) \notin W$ and $(y, x) \notin W$. Choose a W-minimal such x. Then we must have $W_{<x} \subset W_{<y}$ (by the transitivity). By using Sublemma 4.1.5, we have $W_{x}=\Gamma\left(W_{<x}\right) \subset \Gamma\left(W_{<y}\right)=W_{y}$. So, by the reflexivity, $(x, y) \in W$, which contradicts with the assumption.

Sublemma 4.1.7. Let F be the field of W. Then $F=\Gamma(F)$.
Proof. By way of contradiction, we assume $\Gamma(F)-F \neq \emptyset$, and choose a $y \in \Gamma(F)-F$. We will finally get the contradiction that the $(\leqslant y)$-segment of \tilde{W} is well-founded and properly extends W. The kernel of the proof is to show that if $x \in \Gamma(F)$, then $(x, y) \in \tilde{W}$. For this sake, we first show
(i) for any $x \in \Gamma(F)$, II never asserts $x \neq y$, and
(ii) for any $x \notin \Gamma(F)$, II never asserts $x \leqslant y$.

To prove (i), we choose an $x \in \Gamma(F)$. For a contradiction, we assume that II asserts $x \neq y$ in a τ-consistent partial play q. Then consider the τ-consistent play p in which I makes a challenge to (x, y) at q, and plays $U=F$ and a witness for $x \in \Gamma(F)$. Since p is not a win for I, F is not a subset of $V_{<y}^{p}$. Then take an $x^{\prime} \in F-V_{<y}^{p}$. Since $y \in \Gamma\left(V_{<y}^{p}\right)$ and $y \notin \Gamma\left(W_{<x^{\prime}}\right)$, there must be a $y^{\prime} \in V_{<y}^{p}-$ $W_{<x^{\prime}}$. Let I challenge (x^{\prime}, y^{\prime}) at an appropriate $q^{\prime} \subset p$, and play $U=W_{<x^{\prime}}$ and a witness for $x^{\prime} \in \Gamma\left(W_{<x^{\prime}}\right)$. Call this τ-consistent play p^{\prime}. Since I can not win with $p^{\prime}, W_{<x^{\prime}}$ is not a subset of $V_{<y^{\prime}}^{p}$. Continuing in this way, we obtain an infinite descending sequence through W, a contradiction.

To prove (ii), we choose any $x \notin \Gamma(F)$. Again by way of contradiction, assume that II asserts $x \leqslant y$ in a τ-consistent partial play q. Then consider the τ-consistent play p extending q with no more challenges. Since $x \in \Gamma\left(V_{<y}^{p}\right)$ and $x \notin \Gamma(F)$, there must exist a $y^{\prime} \in V^{p}{ }_{<y}-F$. Let I challenge (y, y^{\prime}) at an appropriate $q^{\prime} \subset p$, and play $U=F$ and a witness for $y \in \Gamma(F)$. Call this τ-consistent play p^{\prime}. Since I does not win with p^{\prime}, there must be an $x^{\prime} \in F-V_{<y^{\prime}}^{p^{\prime}}$. Since $y^{\prime} \in \Gamma\left(V_{<y^{\prime}}^{p^{\prime}}\right)$ and $y^{\prime} \notin \Gamma\left(W_{<x^{\prime}}\right)$, there must be a $y^{\prime \prime} \in V_{<y^{\prime}}^{p^{\prime}}-W_{<x^{\prime}}$. Then let I challenge $\left(x^{\prime}, y^{\prime \prime}\right)$ at an appropriate $q^{\prime \prime} \subset p^{\prime}$, and play $U=W_{<x^{\prime}}$ and a witness for $x^{\prime} \in \Gamma\left(W_{<x^{\prime}}\right)$. Continuing as in the previous case, we get a contradiction.

By using (i) and (ii), we next show that

$$
(x, y) \in \tilde{W} \Leftrightarrow x \in \Gamma(F)
$$

The direction \Rightarrow is obvious. To show the other direction, assume that $x \in \Gamma(F)$. By (i), II never asserts $x \neq y$, which is exactly the clause (1) in the definition of \tilde{W}. For clause (2), suppose that II asserts $w_{1} \leqslant w_{0}=y$ in somc p_{1}, and $w_{2} \leqslant w_{1}$ in some p_{2}, \ldots and $w_{n} \leqslant w_{n-1}$ in some p_{n}. It is easy to see by (ii) that $w_{i} \in \Gamma(F)$ for all $i \leqslant n$. If $w_{i} \in F$, then II never asserts $w_{n} \neq w_{i}$ by the definitions of \tilde{W} and F. If $w_{i} \in \Gamma(F)-F$, then by (i), II never asserts $w_{n} \neq w_{i}$. So in any case, clause (2) is satisfied by (x, y). Hence $(x, y) \in \tilde{W}$.

From the equivalence we have just shown, we can easily deduce

$$
(x, y) \in \tilde{W} \&(y, x) \in \tilde{W} \Leftrightarrow x \in \Gamma(F)-F .
$$

So if x is strictly below y (with respect to \tilde{W}), then $x \in F$. Thus the $(\leqslant y)$-segment of \bar{W} is well-founded and properly extends W, which contradicts with the definition of W.

Now, the proof of Lemma 4.1 is completed.
Theorem 4.2. $\mathbf{A C A}_{0} \vdash\left(\Sigma_{2}^{0}\right.$-Det $) \rightarrow\left(\Sigma_{1}^{1}-\mathrm{MI}\right)$.
Proof. To begin with, we recall that in the above proof of lemma, ($\left.\boldsymbol{\Pi}_{1}^{1}-\mathrm{CA}\right)$ is used only to obtain the well-founded part W from \tilde{W}. We here add machinery to the game G_{1} so that W can be obtained directly from a winning strategy without using (Π_{1}-CA). Roughly speaking, this can be done by asking the players whether a given number y^{*} is in the well-founded part or not. The details will be given below.

The new game G starts like G_{1}. Player I proposes a number y^{*}, then player II replies either 1 (to accept y^{*}) or 0 (to reject y^{*}). If II chooses 1 (resp. 0), then in the rest of the game, II is called Pro (resp. Con) and I is called Con (resp. Pro). Pro and Con plays as in G_{1} except that in the new game, Con is given another chance to win, that is, he can win by finding or predicting an infinite descending sequence d through the preordering Pro constructs. Strictly, they play as follows:

Pro	Con
$v(0), f(0)$	
$v(1), f(1)$	$c(0), u(0), g(0), d(0)$
\vdots	$c(1), u(1), g(1), d(1)$
\vdots	

where $v, u \in\{0,1\}^{\omega}, c \in\{\{-1\} \cup \omega\}^{\omega}$, and $f, g, d \in \omega^{\omega}$.
The winning conditions of G are the same as those of G_{1} except for (2) the case that Con makes no challenges. In this case, Pro wins G iff (i) V is a preordering
with y^{*} in its field, (ii) for all m such that $v(m)=1, \forall z R\left(f_{m}[z], m_{0}, V_{<m_{1}}[z]\right)$, where $f_{m}(n)=f((m, n)$), and additionally (iii) the sequence d is not a descending sequence through $V_{<y^{*}}$. Clearly, G is still a Σ_{2}^{0} game.

All the terminology introduced in the proof of Lemma 4.1 (e.g., "player II asserts $x \neq y$ ") can be used in the present context without any essential change. All the Sublemmas 4.1.1-7 can be shown for the new game in the analogous way. In addition, we can prove that \tilde{W} is well-founded. Suppose that $\left\{x_{i}\right\}$ were an infinite descending sequence through \tilde{W}. If I plays $y^{*}=x_{0}$, II must accept y^{*}. Let p be a simple x_{0}-play in which I (=Con) plays $d(i)=x_{i+1}$ for each i. By the fact corresponding to Sublemma 4.1.2, we get the contradiction that this play is a win for I. Thus, \tilde{W} is well-founded. This completes the proof.

Acknowledgements

The author would like to express his deep gratitude to his teacher Prof. L.A. Harrington for his invaluable assistance and encouragement. He is also greatly indebted to the referee for his correction and reorganization of our proofs. The earlier version of this paper lacked the argument corresponding to Sublemma 4.1.4, and had gaps in the proofs of Sublemmas 4.1.2 and 4.1.7, all of which were corrected by adopting the referee's suggestions.

References

[1] H.M. Friedman, Some systems of second order arithmetic and their use, Proc. Internat. Congress of Mathematicians (Vancouver, 1974), Vol. 1, Canad. Math. Congress (1975) 235-242.
[2] H.M. Friedman, Systems of second order arithmetic with restricted induction I, II (abstracts), J. Symbolic Logic 41 (1976) 557-559.
[3] H.M. Friedman, J. McAloon and S.G. Simpson, A finite combinatorial principle which is equivalent to the 1-consistency, in: G. Metakides, ed., Patras Logic Symposion (North-Holland, Amsterdam, 1982) 197-230.
[4] P.G. Hinman, Recursion-theoretical Hierarchies (Springer, Berlin, 1978).
[5] Y.N. Moschovakis, Descriptive Set Theory (North-Holland, Amsterdam, 1980).
[6] N. Shioji and K. Tanaka, Fixed point theory in weak second-order arithmetic, Ann. Pure Appl. Logic. 47 (1990) 167-188.
[7] S.G. Simpson, Reverse mathematics in: A. Nerode and R.A. Shore, eds., Recursion Theory, Proc. Symp. Pure Math. 42 (Amer. Math. Soc., Providence, RI, 1985) 461-471.
[8] S.G. Simpson, Subsystems of Z_{2} and reverse mathematics, Appendix to: G. Takeuti, Proof Theory, second edition (North-Holland, Amsterdam, 1986).
[9] J.R. Steel, Determinateness and subsystems of analysis, Ph.D. Thesis, Berkeley (1977).
[10] K. Tanaka, The Galvin-Prikry theorem and set existence axioms, Ann. Pure Appl. Logic 42 (1989) 81-104.
[11] K. Tanaka, Weak axioms of determinacy and subsystems of analysis I. Δ_{2}^{0} games, Z. Math. Logik Grundlag. Math., to appear.

