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Abstract 

Tanaka, K., Weak axioms of determinacy and subsystems of analysis II (1; games), Annals of 
Pure and Applied Logic 52 (1991) 181-193. 

In [lo], we have shown that the statement that all Zi partitions are Ramsey is deducible over 
ATR, from the axiom of Z: monotone inductive definition, but the reversal needs ZZ~CA,, 
rather than Am. By contrast, we show in this paper that the statement that all pz games are 
determinate is also deducible over ATR, from the axiom of Xi monotone inductive definition, 
but the reversal is provable even in AC&. These results illuminate the substantial differences 
among lightface theorems which can not be observed in boldface. 

1. Introduction 

In this paper, we investigate the proof-theoretic strength of Z$ determinacy 
from the standpoint congenial to the program of Reverse Mathematics, whose 
goal is to answer the following question: Whut set existence axioms are needed to 
prove the theorems of ordinary mathematics? For information on the program, see 
[l, 2, 6, 7, 81. Although this paper has many ideas coming from its predecessor 
[ll], in which the determinancy of Ai games was mainly discussed, it can be read 
separately. 

A function r : P(W) + 9(w) is called a monotone operator (over o), if 
T(X) c r(Y) whenever X c Y c w. r is a 2: operator if its graph {(x, X): x E 
T(X)} is 2: without second-order parameters. The axiom of 2:: monotone 
inductive definition, denoted as (Xi-MI), asserts that for each 2:: monotone 
operator r, there exists a transfinite sequence (r,: cz < a), cr E Ord, such that 
r,=r(lJ{&:/3<a}) for all &<a, and such that E = r(L) with r, = 
u {rm: a< 0). 
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In the context of ordinary descriptive set theory, the importance of 2: 
monotone inductive definitions has been well established. It is known that many 
different notions (e.g., Kolmogorov’s %-operator, weakly representability in 
Enderton’s system a) define the same class as .Zi monotone inductive definitions 
(see Hinman [4]). In addition, Solovay has shown that the Z: monotone- 
inductively definable sets can be characterized in terms of Xi games (for an 
account, see Moschovakis [5, pp. 414-4151). In [9, p. 241, Steel mentions that 
Solovay’s work actually shows that (Z$-Det) and (Xi-MI) are equivalent over 
A&CA + (full induction scheme). In this paper, we obtain a lightface refinement 
of this result. 

The weakest base theory considered in this paper is AC&, a second-order 
arithmetic based on the Arithmetical Comprehension Axiom, and equipped with 
the induction axiom: 

instead of the usual induction scheme. The system Al&, is obtained from ACA, 
by adding the boldface axiom of Arithmetical Transjinite Recursion: there exists a 
Turing jump hierarchy starting at any set along any well-ordering. 

For any formula I#J with a variable ranging over w”, we associate a two-person 
infinite game G+ (or simply $J)? in which players I and II alternately choose 
natural numbers, and in which I wins iff the resulting infinite sequence satisfies 9. 
We say that the game G+ is determinate if either I or II has a winning strategy in 
G+. For a class of formulas C, the axiom (C-Det) asserts that any game 
(associated with a formula) in C is determinate. 

In this paper, we prove 

AC& 1 (.Z:“,-Det) + (Zi-MI), 

AT& b (&MI) + (.Z$Det). 

And the following is conjectured 

AC&X (Z:-MI) + (Z$-Det). 

These relations are well contrasted with the following results in [lo]: 

ATR,, k (Zi-MI)-, (Z’:-Ram), 

#-CA k (Z:-Ram) + (;I:-MI), 

ATlQ, X (Ii-Ram) + (Z:-MI), 

where (Z:-Ram) means that any Z: partition P s 9(o) is Ramsey, i.e., there is 
an infinite set H E o such that either all infinite subsets of H are in P or all out of 
P. We should also remark that the boldface versions of the three statements 
(Z!$Det), (JZ:-Ram), and (Z:-MI) can be easily shown to be pairwise equivalent 
over ACAo, or indeed RCAo. 
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2. Preliminaries 

The language of second-order arithmetic consists of the following symbols: 
number variables x, y, z, . . . ; set variables X, Y, 2, . . . ; constants 0,l; binary 
operations + and a; binary relations = , <, E . The terms and formulas are defined 
in the usual way. The formulas are classified as follows. 

(i) 4 is bounded or f10 if it is built up from atomic formulas by propositional 
connectives and bounded numerical quantifiers Vx < t and 3x < t; 

(ii) $I is arithmetical or ITA if it contains no set quantifiers; 
(iii) @ is 2; if 4 = 1~ where I/J is IT!, (i = 0,l and n E 0); 

(iv; ; F z+r if G = Vxi . . - V.Q q where rj~ is z”, (n E 0); 

v 1s l n+l if $=VX,-* - VXk W where W is 2: (n E 0). 
The IIlL Comprehension Axiom, denoted (ni,-CA), is defined to be the 

scheme: 

3x vx (x E x * f)(x)), 

where @ is l7; and it has no free set variables (parameters); the boldface axiom 
(17’,-CA) is the same scheme but allowing $J to involve free set variables except 
X. 

The system ACA, consists of the ordered semiring axioms for (N, + , . , 0, 1, <) 
together with (@,-CA) and the following induction axiom; 

AC& is a conservative extension of first-order Peano arithmetic. The following 
lemma is a useful fact in ACA,. 

Letima 2.1. For any .Z: formula $I, there exists a n”, formula R such that 

AC&, t 9 - 3 Vx R(f [xl), 

where f [x] is a code for the sequence (f(O), f(l), . . . , f(x - 1)). 

Proof. The usual Tarski-Kuratowski algorithm works in AC&. •i 

We next define the Axiom of Wi Transfinite Recursion (II:-TR) and its 
boldface version (IZk-TR). In particular, (fl-TR) is called the Axiom of 
Arithmetical Transjinire Recursion, and denoted by (ATR). The lightface axiom 
(Z7;-TR) is the following scheme: for any recursive well-ordering <, there exists a 
set H c w such that 

(i) if b is the <-least element, then (I!&, = 0, 
(ii) if b is the immediate successor of a (w.r.t. <), then 
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(iii) if b is a limit, then 

Vu Vn ((n, a) E (H)b -a -C b A n E (H),), 

where C#J is a nk formula without second-order parameters and 

(H), = in: (n, a) E H), (n, a) = (n + u)(n + u + 1)/2 + n. 

The boldface axiom (n’,-TR) is the following: for any X c o and for any 
well-ordering -C, there exists a set H E o such that 

(i) if b is the <-least element, then (H)b =X, 
(ii) and (iii) the same as above, 

where C# is any J7: formula (which may have second-order parameters). 
The system ATR,,, which consists of ACA,, + (HA.-TR), was first introduced by 

Friedman [2], and has been extensively studied in Friedman-McAloon-Simpson 

[31. 
In [ll], we have shown 

AC& t (ATR) c* (Z$Det) c* ( A’$Det) , 

AC& k (II:-TR) c, ( A$Det) . 

3. (,$-MI) implies (,@Det) 

We might as well begin with the formalities of Z: monotone inductive 
definition. First of all, a function r: S(o)* 8(o) is identified with its graph 
{(x, X): x E T(X)}. So, r is a Z: operator if its graph is .7$ without second-order 
parameters. A function r: 9(o) + P(w) is called a monotone operufor (over o), 
if r(X) c T(Y) whenever X c Y c w. We here notice that T(X) c r(Y) simply 
means that if x E r(X) then x E r(Y), hence it does not imply the existence of 

r(X) or r(Y). 

Definition 3.1. The Axiom of Xi Monotone Inductive Definition, denoted 
(&MI), is the following scheme: for any 2: monotone operator r with no 
second-order parameters, there is a W E CO x w such that 

(1) W is a pre-well-ordering on its field F c w, 
(2) for all x E F, W, = r(W,,), where W, ef {y E F: (y, x) E W} and W,,gf 

{y E F: (y, x) E W and (x, Y) $ WI, 

(3) F = Z-(F). 

Theorem 3.1. ATR,, I- (Z&MI)+ (J$-Det). 

Proof. The proof is almost straightforward from Wolfe’s original proof of g 
determinacy. So we just indicate how it can be carried out in AT& + (Z:-MI). 
For other details of Wolfe’s proof, see Moschovakis [5, pp. 290-2921. 
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Let A E ww be a J$ predicate. So there is a recursive predicate R G o such that 
for allf E w” 

A(f) f* 3-x VY R(x, f]rl), 

where f[y] encodes the sequence (f(O),f(l), . . . ,f(y - 1)). We define, by 
(Zi-MI), a set W of sure winning positions for player I as follows: for any ordinal 

o, 

u E W, t* 3x [I has a winning strategy in the closed game A,,,, = 

{f E co*: VY (Rb (u *f)]~l) v (u *f)]rl E U (5: B< a])]l. 

Clearly, the right-hand side of the above formula is Z:, hence the transfinite 
sequence {W,} exists by (X:-MI), and so does its limit W = W,. 

Now what we want to show is the following: if the empty sequence 0 is in W,, 
player I has a winning strategy in the game A, and if not, player II has a winning 
strategy. First suppose that u E W,. By the definition of W,, there exists x such 
that I has a winning strategy u~,~,~ for the game A,,,,,. If I plays the original 
game A from the position u with strategy G_~, then he wins A without any 
change of strategy or he reaches a position U’ E W, for some /3 < (Y. In the latter 
case, he can switch to a winning strategy a,,,,,, for some x ‘. Changing strategies 
this way, player I can eventually win A from the position U. In particular, I wins 
A if 0 E W,. Here we should notice that I’s winning strategy o for A is built from 
infinitely many strategies a,,,,,. Since “a,,,,, is a winning strategy for I in the 
closed game A,, _” is a @ relation, the construction of u needs (@-AC), which 
is known to be deducible in AT& (see [ll]). 

Next suppose u 4 W,. Fix an x E w arbitrarily. By the definition of W, and g 
determinacy, II has a winning strategy r,_ in the game 

4, = A,,_,, = {f E 0 O: VY 0% f]y I) v f]r 1 E K)>- 

Note that II wins A,,, with play f iff f is not in A,,,. If II plays the original game A 
from position u with strategy r,,,, he always reaches a position u’ such that 
lR(x, u’) and U’ $ Wm. At position u’, he can switch to a winning strategy r,,,,,, 
for any x’. Playing in this manner, he can construct an infinite sequence 
f=U*Uo*U1*. . - such that for all i E w, iR(i, u * uo* u1 *a - . * ui), hence 
lA(f), so II wins the game A. Thus II’s winning strategy r can be built from the 
strategies rUsX by means of the axiom of choice. However “r,,, is a winning 
strategy for II in the closed game A,,,,,” is a fl: relation, and (#-AC) is not 
provable in AT&. To avoid using the axiom of choice, we invent the following 
game. Player I first chooses any u 4 W, and ‘x E w, and since then the players play 
natural numbers as usual. Player II wins this game iff they produce the sequence 
U’ such that lR(x, u *u’) and u *u’ $ W,. It is obvious that I has no winning 
strategy,‘since for any choice of u $ W, and x E o at I’s first move, II wins the 
game with r,,,. So by g determinacy, II has a winning strategy in this game. 
From such a strategy, we can easily construct a winning strategy r for the game 
A. This completes the proof. Cl 
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4. (g-Det) implies (.Z’:-MI) 

The purpose of this section is to prove (Z”,-Det)+ (Zt-MI) within AC&,. Let r 
be a Z: monotone operator. The axiom (Z:-MI) asserts the existence of 
pre-well-ordering W with field F such that W, = I’(W,,) for all x E F, and such 
that F = T(F). We will first construct a z game Gi such that player I has no 
winning strategy, and such that for any winning strategy t of player II, W is Z7: in 
r, which suffices to get (E$Det)+ (Z:-MI) in #-CA, (Lemma 4.1). Then we 
will modify this game to obtain a proof of (Z$Det)+ (.Zi-MI) in AC&, 
(Theorem 4.2). 

The outline of our proof is as follows. In the game G,, player I starts the game 
with playing a number y *, intending to raise a question whether or not y * is in 
the field of W. In reply to this question, player II may either accept y * or reject 
y *. If II accepts y *, II is requested to list the (<y *)-segment of W and also to give 
certain witnesses for his assertions. The role of I is then to watch his opponent’s 
moves, and point out a possible error in them. If II rejects y* at the beginning, 
the roles are reversed. After the initial stage, the player constructing the 
(<y*)-segment of W is called Pro, and the other player Con. Roughly speaking, 
Pro wins the game iff Con can not prove to the last that Pro makes a false or 
erroneous assertion. A more precise definition of game G1 given in the proof of 
Lemma 4.1 will disclose that it is indeed a 2: game. Since I has no winning 
strategy in this game (Sublemma 4.1.1), II must have a winning strategy, say r, 
by (J$-Det). We let @ be the set of pairs (x, y) such that the strategy r calls for 
II as Pro to put (x, y) into the list for W at every meaningful position. By the 
series of Sublemmas 4.1.2-7, we show that the maximal well-founded initial 
segment of w is actually our desired set W. This proves (Z$Det)-, (Et-MI) in 
Hi-C&. In the proof of Theorem 4.2, we define the game G to be the same as 
G1 but allowing Con to win the game by finding or predicting an infinite 
descending sequence through the preordering Pro constructs. Then if we define 
w as before, we can show that @ itself is our desired set W. 

Lemma 4.1. #-CA, l- (J$-Det) + (JZ:-MI). 

Proof. Pick any Z: monotone operator r, and fix it throughout the proof. By 
Lemma 2.1, there is a recursive relation R such that for x E w and X E 9(o), 

x E r(X) * 3f Vz R(f[z], x, X[zl), 

where f[z] and X[z] encode the finite sequence (f(O),f(l), . . . ,f(z - 1)) and 
the finite set X fl (0, 1, . . . , z - l}, respectively. 

Let us begin to describe our game Gr thoroughly. Player I starts the game with 
playing a number y *. Player II then replies either 1 (to accept y*) or 0 (to reject 

y*). If II chooses 1 (resp. 0), then in the rest of the game, II is called Pro (resp. 
Con) and I is called Con (resp. Pro). We regard Pro as the first player of the rest 
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of the game. Then players Pro and Con alternatively 
as follows: 

Pro Con 

choose a couple of numbers 

u(O), f(O) 
C(O), u(O), g(O) 

u(l), 01) 
c(l), u(l), g(l) 

where u, u E (0, l}“, c E ((-1) U co}“, andf, g E w”. 
To explain the meaning of the game, we need the standard pairing function 

p(m, n) = (m + n)(m + n + 1)/2 + m. 

We often write (m, n) for p(m, n) and (no, ni) for p-‘(n), unless they may cause 
a serious confusion. Turning back to the game, Pro builds a preordering 
V = {(no, nl): u(n) = 1) with y* in its field, and for each (x, y) in V, he gives a 
witness for x E T(V<,,) by means of $ At a stage II, Con may make a challenge on 
Pro’s assertion u(m) = 0, m s n, by setting c(n) = m (# -1). If he does so, he is 
requested to give a witness for x E T(V,,,), using u and g. 

The winning conditions (or pay-off) of the game G1 are described as follows. 
1. First of all, we require Con to make challenges along the order already 

constructed by Pro in the decreasing way and below y*. Strictly speaking, at stage 
n, Con may challenge Pro’s assertion m = (m,, ml) $ V, if (i) it has already been 
stipulated by Pro that m, bV y * (i.e., u((ml, y*)) = 1 and (mr, y*) < n), and if 
(ii) for all previous challenges c(n’) = m’ = (m& m;), n’ <n, it has been 
stipulated by Pro before stage it that ml <“rn; (i.e., u((mr, ml)) = 1, 
(ml, ml) < n, u((m;, ml)) = 0, and (m;, ml) <n). If Con disobeys this rule, he 
loses whatever the opponent plays. 

Assuming that this rule has been obeyed, we describe the further conditions. 
2. The case that Con makes no challenges. Then Pro wins iff (i) V is a 

preordering with the field F = {x: there is y such that (x, y) E V or (y, x) E V} 
such that y* E F, and (ii) for all m such that u(m) = 1, 

vz Wm[4, moJ LIM), 
where f,(n) =f(h, n)). 

3. The case that Con makes a positive but finite number of challenges. Let n be 
the last stage such that c(n) # -1. Suppose c(n) = m. Then Con wins iff (i) V..,, 
is not a preordering with y * in its field, or (ii) 

b’z JW’[zl, mo, WI) A IJ” E V,,,, 

where g”(k) = g(k + n) and U” = {k E w: u(k + n) = 1). 
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4. The case that Con makes infinitely many challenges. Then player II wins. 
This completes the definition of Gi. It is then obvious that G1 is a p2 game. 

Sublemma 4.1.1. Player II has a winning strategy. 

Proof. We will show that player I has no winning strategy in game G,, which 
implies by (2$-Det) that II has a winning strategy. By way of contradiction, 
assume I had a winning strategy u. Let y * be I’s first move called by u. Since II 
may either accept or reject y*, I must defend both cases. In the case II rejects y*, 
I needs construct V such that y * is in the field of V. But if such a construction is 
successful, II could accept y* and win the game by constructing the same V. To 
be more precise, we consider the following two plays of the game PO, pi, both of 
which are consistent with I’s winning strategy o. p. begins with I’s proposal y * 
and II’s reply 0 (to reject). p1 begins with I’s proposal y* and II’s reply 1 (to 
accept). The rest of the two plays are the same except the roles of the players, 
that is, I is Pro in p,, and II is Pro in pl. The plays are simultaneously constructed 
as follows. Suppose that o calls for I to choose v(n), f(n) at stage IZ in p,,. Then 
player II copies these numbers to his move at stage n in pl. Following a, player I 
replies c(n), u(n), g(n) in pl. Again, Player II copies these three numbers to his 
move at stage it in po. Then u specifies I’s move at stage IZ + 1 in p,,, and so on. In 
this way, they produce exactly the same sequences, which are both consistent 
with u. But, it is clear from the definition of winning conditions that player I can 
not win in both the plays. This is a contradiction. 0 

Let us fix a winning strategy r for player II throughout the proof of Lemma 4.1. 
A play (or a partial play) is said to be t-consistent if it can be produced while 
player II follows t and Con obeys rule (1) (challenging in the decreasing order). 
By a partial play, we here mean a finite initial segment of a whole play of the 
game, which at least includes the preliminary stage (where I chooses y * and II 
replies 1 or 0). Given a r-consistent partial play p ending with Pro’s move at stage 
n, we say that at stage n (or at p), Con can challenge Pro’s move v(m) = 0 in p 
(m s n) if Con can set c(n) = m without breaking rule (1). 

We then say that player II asserts x + y in p if II is Pro in p, and if v((x, y)) = 0 
occurs in p and it can be challenged at p. Player II never asserts x + y if there is 
no r-consistent partial play p in which II asserts x + y, yet if r calls for II to 
accept I’s initial proposal y * when y * = y. We also say that player II asserts x c y 
in p if II is Pro in p, and both v((x, y)) = 1 and v((y, y*)) = 1 occur in p, and 
further if v((y, 2)) = 1 occurs in p supposing that the last challenge in p was made 
to (w, z) for some w (the last condition is satisfied vacuously when no challenge 
occurs in p). 
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IV = {(x, y ): (1) II never asserts x + y & 
(2) for any n, 

if II asserts w, 6 w0 = y in some pl, 
and w2 < w1 in some p2, 

and w, 6 w,_~ in some p,,, 
then II never asserts w,, + wi, i <n}, 

where pi ranges over the r-consistent partial plays. Obviously, I&’ is x in r, and 
so it exists by (G-CA). Our goal is to show that the well-founded part of ti is 
the desired set. 

We need some other new notion. Let (x, y) E I@. If I plays y * = y at the initial 
stage, then r tells II to accept y * since Player II never asserts x + y (clause (1) in 
the definition of I?). We now consider a r-consistent play p in which I proposes 
y*, then II accepts it, and no challenge occurs to the last. We call such a play a 
simple y-play. For any play p, let VP be the set constructed by Pro in p, i.e., 

VP = {(x, y): v((x, y)) = 1 occurs in p}. 

We then prove 

Sublemma 41.2. Let (x, y) E @. Let p be a simple y-play. Then the (Gy)-segment 
of w is exactly the same as the (<y)-segment of VP. 

Proof. Assume (x, y) E I&‘, and let p be a simple y-play. We first show WY = VT 
without regard to the orders. If (w, y) E w, then II never asserts w + y and hence 
II asserts w my in p, i.e., (w, y) E VP. Conversely, assume (w, y) E VP. By clause 
(2) in the definition of w applied to (x, y) E w, II never asserts w $ y since II 
asserts w G y in p. Thus (w, y) E w, since clause (1) is just shown and clause 
(2) is the same as clause (2) applied to (x, y) E w. 

Now choose any (v, w) in the (Gy)-segment of I% Then (u, w) E w and 
(w, y) E I$‘. By the above paragraph, (w, y) E w implies that II asserts w <y in p, 
and so (v, w) could be challenged at p if he asserts v # w in p. However, by 
clause (1) in the definition of I@ for (v, w) E l8’, II never asserts v $w. So II must 
assert v < w in p, that is, (v, w) is in the (cy)-segment of VP. 

Conversely, assume (v, w) E VP and (w, y) E VP. By clause (2) in the definition 
of w for (x, y) E I$‘, II never asserts v # w, since II asserts ZJ < w and w <y in p. 
So clause (1) for (v, w) E w is satisfied. For clause (2), assume that w. = w and II 
asserts Wi+l - < wi somewhere for all i G n. Since II asserts w <y in p, by clause (2) 
for (x, y) E IV, II never asserts wn+i s Wi for all i s II, which satisfies the clause (2) 
for (v, w) E l@. Therefore, we have (v, w) E m. 0 

Sublemma 4.1.3. @ is transitive and reflexive. 



190 K. Tanaka 

Proof. Assume (v, w) E I%’ and (w, y) E I@. Let p be a simple y-play. By 
Sublemma 4.1.2, we have (v, w) E VP and (w, y) E VP. Since VP is a preordering 
(rule (2)), (v, y) E VP. Again by the previous sublemma, (u, y) E I%‘. Hence w is 
transitive. The reflectivity can be shown similarly. 0 

Sublemma 4.1.4. Let p be a t-consistent play with II as Pro such that a positive 
but finite number of challenges are made. Let y be such that I’s last challenge in p is 
made against (x, y) for some x. Then the (<y)-segment of VP is a subset of the 
(<y)-segment of W. Furthermore, if y is in the well-founded part of W, the 
(<y)-segment of VP is the same as the (<y)-segment of W. 

Proof. Let p and y be as in the above statement. In the same way as the proof of 
Sublemma 4.1.2, we can prove that if (v, w) is in the (<y)-segment of VP, then it 
is in (Qy)-segment of I8’. Moreover, if (w, y) E VP and (y, w) 4 VP, then II asserts 
y $ w in p, so we can not have (y, w) E W, which finishes the first part of the 
sublemma. 

By the way of contradiction, we assume the second part is false, and let y be 
minimal with respect to (the well-founded part of) @ such that the second 
conclusion fails for y. By the first part, we have VP,, c WC,,. We first show that 
Vt& is unbounded in WC,, with respect to m, i.e., VW E l6’<, 32 E VP,, (w, z) E W. 
By Sublemma 4.1.2, the (sy)-segment of w is the same as the (Gy)-segment of 
V” with a simple y-play s, so it is a preordering. Hence, if VP,, is bounded 
in WcY, there exists a u E 6’<, such that VP,, E WC,+,. Fix such a u. Since u E pcY, 
we have (y, u) $ w, and so II asserts y + u in some r-consistent partial play q. 
Consider the r-consistent play p ’ in which I challenges (y, u) at q, and after that, 
he plays U = WC, and a witness for y E r(I%‘+). Remark that y E r(@<,) holds 

since y E T(VP,,) and VP,, G WC,,. Since y is chosen as a minimal element for 
which the second part of the sublemma fails, the claim of the sublemma must 
hold for u E WC,,, so we have I%‘<,, = V!&. Thus I wins with p’, a contradiction. 
Therefore, VP,, is unbounded in WC,,. 

Now, let (v, w) belong to the (<y)-segment of @. Since VP,, is unbounded in 
@<,,, we can choose a z E VP,, such that (w, z) E w. If (w, z) $ VP, then II asserts 
w # z in p, which contradicts (w, z) E 6’. If (w, z) E VP and (v, w) $ VP, then II 
asserts v + w in p, which contradicts (v, w) E w. Therefore, (v, w) E VP, that is, 
(v, w) belongs to the (<y)-segment of VP. Cl 

We define W as the maximal well-founded initial segment of @. 

Sublemma 4.1.5. For each y in the field of W, WY = r( WC,,). 

Proof. Choose any y in the field of W. Let p be a simple y-play. By Sublemma 
4.1.2, WY = Vc E T(VP,,) = T(W,,). Next suppose x E T(W,,) - WY. Then II 
asserts x + y in some r-consistent partial play q. We consider the r-consistent 
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play p in which I challenges (x, y) at 4, and after that, plays U = W,, and a 
witness that x E T(W,,). By Sublemma 4.1.4, we get the contradiction that p is a 
winfor1. 0 

Sublemma 4.1.6. W is a pre-well-ordering. 

Proof. We have shown @ is transitive and reflexive in Sublemma 4.1.3. Hence, 
W is also transitive and reflexive. The well-foundedness of W is straightforward 
from the definition. So we need only show that W is connected. By way of 
contradiction, assume there were x and y in W such that (x, y) $ W and 
(y, X) $ W. Choose a W-minimal such X. Then we must have W,, c W,, (by the 
transitivity). By using Sublemma 4.1.5, we have W, = r(W<J c r(W,,) = WY. 
So, by the reflexivity, (x, y) E W, which contradicts with the assumption. q 

Sublemma 4.1.7. Let F be the field of W. Then F = T(F). 

Proof. By way of contradiction, we assume T(F) -F #0, and choose a 
y E T(F) - F. We will finally get the contradiction that the (<y)-segment of l%’ is 
well-founded and properly extends W. The kernel of the proof is to show that if 
x E T(F), then (x, y) E I@. For this sake, we first show 

(i) for any x E T(F), II never asserts x + y, and 
(ii) for any x r$ T(F), II never asserts x my. 
To prove (i), we choose an x E I’(F). For a contradiction, we assume that II 

asserts x $ y in a r-consistent partial play 4. Then consider the r-consistent play 
p in which I makes a challenge to (x, y) at q, and plays U = F and a witness for 
x E T(F). Since p is not a win for I, F is not a subset of VP,,. Then take an 
X’,E F - VP,,. Since y E T(V!&,) and y $ T(W,.), there must be a y’ E VP,, - 

W<,,. Let I challenge (x’, y’) at an appropriate q’ cp, and play U = W,,. and a 
witness for x’ E r(Wcx,). Call this r-consistent play p’. Since I can not win with 

p’, W<,, is not a subset of VP,,.. Continuing in this way, we obtain an infinite 
descending sequence through W, a contradiction. 

To prove (ii), we choose any x $ T(F). Again by way of contradiction, assume 
that II asserts x G y in a r-consistent partial play q. Then consider the r-consistent 
play p extending q with no more challenges. Since x E T(VP,,) and x $ T(F), there 
must exist a y’ E V!& -F. Let I challenge (y, y’) at an appropriate q’ cp, and 
play V = F and a witness for y E T(F). Call this r-consistent play p’. Since I 
does not win with p’, there must be an x’ E F - V<,,,. Since y’ E T(Vck.) and 
y’ $ T(W,,,), there must be a y” E VCk, - W,,,. Then let I challenge (x’, y”) at an 
appropriate q”~p’, and play U = W,,. and a witness for x’ E T(W..,.). 
Continuing as in the previous case, we get a contradiction. 

By using (i) and (ii), we next show that 

(x, y) E ti e x E T(F). 
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The direction j is obvious. To show the other direction, assume that x E T(F). 
By (i), II never asserts x $ y, which is exactly the clause (1) in the definition of 
l&? For clause (2), suppose that II asserts w1 < w. = y in some pl, and w, 6 w1 in 
some p2, . . . and w,, < w,_i in some pn. It is easy to see by (ii) that wi E T(F) for 
all i 6 n. If wi E F, then II never asserts w, =# wi by the definitions of I$’ and F. If 
wi E T(F) - F, then by (i), II never asserts w, $ wi. So in any case, clause (2) is 
satisfied by (x, y). Hence (x, y) E l@. 

From the equivalence we have just shown, we can easily deduce 

(x,~)E%%(~,x)E@ e XEI-(F)-F. 

So if x is strictly below y (with respect to w), then x E F. Thus the (6y)-segment 
of fi is well-founded and properly extends W, which contradicts with the 
definition of W. Cl 

Now, the proof of Lemma 4.1 is completed. Cl 

Theorem 4.2. AC& k (J$-Det) ---, (&MI). 

Proof. To begin with, we recall that in the above proof of lemma, (Hi-CA) is 
used only to obtain the well-founded part W from w. We here add machinery to 
the game G, so that W can be obtained directly from a winning strategy without 
using (@CA). Roughly speaking, this can be done by asking the players 
whether a given number y * is in the well-founded part or not. The details will be 
given below. 

The new game G starts like Gi. Player I proposes a number y *, then player II 
replies either 1 (to accepf y*) or 0 (to reject y*). If II chooses 1 (resp. 0), then in 
the rest of the game, II is called Pro (resp. Con) and I is called Con (resp. Pro). 
Pro and Con plays as in G1 except that in the new game, Con is given another 
chance to win, that is, he can win by finding or predicting an infinite descending 
sequence d through the preordering Pro constructs. Strictly, they play as follows: 

Pro Con 

c(O), 6% g(O), 40) 

c(l), u(l), g(l), 41) 

where V, u E (0, l}“, c E ((-1) U o}~, andf, g, d E coo. 
The winning conditions of G are the same as those of G1 except for (2) the case 

that Con makes no challenges. In this case, Pro wins G iff (i) V is a preordering 
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with y* in its field, (ii) for all m such that v(m) = 1, Vz R(fm[z], mo, V<,,Jz]), 

where f,(n) =f(( m, n)), and additionally (iii) the sequence d is not a descending 
sequence through V<,,.. Clearly, G is still a 2: game. 

All the terminology introduced in the proof of Lemma 4.1 (e.g., “player II 
asserts x # y”) can be used in the present context without any essential change. 
All the Sublemmas 4.1.1-7 can be shown for the new game in the analogous way. 
In addition, we can prove that I&’ is well-founded. Suppose that {xi} were an 
infinite descending sequence through w. If I plays y * = x0, II must accept y *. Let 
p be a simple x0-play in which I (=Con) plays d(i) = Xi+l for each i. By the fact 
corresponding to Sublemma 4.1.2, we get the contradiction that this play is a win 
for I. Thus, w is well-founded. This completes the proof. •i 
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