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a b s t r a c t

The advent of recombinant DNA technology, development of infectious cDNA clones of RNA viruses, and
reverse genetic technologies have revolutionized how viruses are studied. Genetic manipulation of full-
length cDNA clones has become an especially important and widely used tool to study the biology,
pathogenesis, and virulence determinants of both positive and negative stranded RNA viruses. The first
full-length infectious cDNA clone of equine arteritis virus (EAV) was developed in 1996 and was also the
first full-length infectious cDNA clone constructed from a member of the order Nidovirales. This clone
was extensively used to characterize the molecular biology of EAV and other Nidoviruses. The objective
of this review is to summarize the characterization of the virulence (or attenuation) phenotype of the
recombinant viruses derived from several infectious cDNA clones of EAV in horses, as well as their
application for characterization of the molecular basis of viral neutralization, persistence, and cellular
tropism.

& 2014 Elsevier Inc. All rights reserved.
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Historical perspective of putative “prototype strains” of equine
arteritis virus used in various laboratories

Equine arteritis virus (EAV) was first isolated from the lung of
an aborted fetus following an extensive outbreak of respiratory

disease among horses on a Standardbred breeding farm in
Bucyrus, Ohio in 1953 (Doll et al., 1957a, b). This original isolate
was identified prior to the advent of routine cell culture; specifi-
cally, tissues collected from the aborted foal caused disease
(“equine viral arteritis” [EVA]) in an experimentally inoculated
horse, although the infection was not lethal (Doll et al., 1957a, b;
Jones et al., 1957). This experimentally infected horse was eutha-
nized and a homogenate of the animal's spleen was inoculated
into another horse. The virus was then serially passaged 15 times
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in horses by the late Dr. William H. McCollum and colleagues at
the University of Kentucky (Fig. 1). The repeated serial passage of
this original “Bucyrus virus” in its natural host markedly enhanced
its virulence. The H9 (horse passage 9) and H15 (horse passage 15)
strains of the passaged virus consistently caused severe clinical
disease, and frequently death in horses (60% fatality rate; so-called
“velogenic or virulent Bucyrus EAV”) following experimental
inoculation (MacLachlan et al., 1996; McCollum and Timoney,
1999). Following the creation of continuous cell lines, the H15
virus (pleural fluid archived by the late Drs. Roger Doll and
William H. McCollum) was passaged in rabbit kidney (RK-13) cells
and aliquots of this RK-13 passaged Bucyrus strain of EAV were
deposited in the American Type Culture Collection (ATCC, Mana-
ssas, VA; catalog number VR-796). Significantly, many historic
references to use of the putative “Bucyrus strain of EAV” do not,
in fact, include the original virus associated with the 1953 EVA
outbreak. Unfortunately, the original Bucyrus virus and the sub-
sequent horse passage strains (up to 9th horse passage [H9]) have
all been lost due to freezer failures. Only the archived pleural fluid
from horse passage 15 (H15, also identified as EAV VB53 or
virulent Bucyrus strain [VBS]) and the limited RK-13 passaged
derivative of this virus (ATCC VR-796) now remain. Full-length
genome sequence analysis of these two viruses (H15 and ATCC VR-
796) in our laboratory has shown them to be 99.9% identical, and
both cause fatal EVA in the majority of experimentally inoculated
horses (MacLachlan et al., 1996; McCollum and Timoney, 1999).
Thus, the pleural fluid from the original 15th horse passage and
the ATCC VR-796 are now both designated as the VBS strain of
EAV. Importantly, however, VBS is itself an artifact in that it causes
severe, often fatal disease in horses, whereas field strains of EAV
do not typically cause fatal disease in adult horses (Balasuriya
et al., 2013 and references therein; Balasuriya and Maclachlan,
2004; McCollum and Timoney, 1999). Indeed, many field strains
cause very mild disease or even subclinical infections (Balasuriya
et al., 1999b, 2002, 2007; Balasuriya and MacLachlan, 2004; Go et
al., 2012a; Patton et al., 1999; Pronost et al., 2010; Vairo et al.,
2012; Zhang et al., 2010, 2012).

Drs. Doll and McCollum distributed the VBS strain of EAV to
various laboratories in Europe and elsewhere during the late 1950s
and thereafter. This original VBS virus was then extensively
passaged in vitro, and sometimes plaque purified, in different
laboratories. These extensively cell culture passaged, essentially
laboratory-adapted EAV strains are often misleadingly designated

as Bucyrus EAV without any reference to their passage history.
Simply stated, these are highly cell culture passaged laboratory
derivatives of the VBS strain of EAV, with distinctive genetic
sequences and phenotypic properties. Finally, although the VBS
strain of EAV is itself somewhat of a laboratory aberration due to
its sequential experimental passage in horses, this virus is useful
for studying virulence determinants of EAV and mechanisms of
viral pathogenesis. Furthermore, the current modified live virus
(MLV; live attenuated) EAV vaccine (ARVACs, Zoetis, Kalamazoo,
MI, USA) used for immunization of horses in the United States was
originally produced by extensive cell culture passage of EAV VBS,
as were laboratory strains such as EAV 030 fromwhich the original
infectious cDNA clone was derived (van Dinten et al., 1997) (Fig. 2).

Infectious cDNA clones of equine arteritis virus

It has long been known that positive-sense viral RNA is
infectious and can generate progeny virus following its introduc-
tion into cells. Alexander et al. (1958a, b) first demonstrated the
infectivity of poliovirus RNA in HeLa cells. Subsequently, Racaniello
and Baltimore (1981a, b) developed the first infectious cDNA clone
of poliovirus by cloning the full-length RNA genome into a
bacterial plasmid vector. The advent of reverse transcription
polymerase chain reaction (RT-PCR) technology in the mid-
1980s, along with other recombinant DNA techniques, expedited
the development of infectious cDNA clones of other RNA viruses
(Boyer and Haenni, 1994; Mullis and Faloona, 1987). It was
subsequently shown in numerous virus systems that in vitro
transcripts of cDNA clones, and in some instances the cDNA itself,
can initiate a complete productive infectious cycle in susceptible
mammalian cells. As a result, genetic manipulation (reverse
genetics) of full-length cDNA clones has become the most impor-
tant tool to study the biology, pathogenesis, and virulence deter-
minants of both positive and negative stranded RNA viruses.
Reverse genetic strategies are especially useful for identification
and functional characterization of specific viral genes because they
demonstrate phenotypic effect(s)/consequences of introducing
defined nucleotide change(s) to the gene of interest.

EAV is included within the order Nidovirales, and it is the
prototype virus of the genus Arterivirus, family Arteriviridae
(Fig. 3). Similar to other positive stranded RNA viruses, the genomes

Original Bucyrus Strain of EAV from the Lung of an Aborted Fetus

MLV Vaccine History 
Passaged in horses 
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Fetal lung tissues 

HK  cells, 131 & RK cells, 111 

ED, 24 

MLV Vaccine 
266 serial passages

in cell culture 
(HK131 RK111 ED24)

V

A

Fig. 1. Passage history of the parental virulent Bucyrus strain of EAV. (H = Passaged in horse; HK = Primary horse kidney cell, RK = Primary rabbit kidney cell passage,
ED = Equine dermis cell [NBL-6; ATCC CCL-57]).
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of Arteriviruses are infectious to cells (Meulenberg et al., 1993; van
der Zeijst and Horzinek, 1975). The first full-length infectious
cDNA clone of EAV was developed in 1996 by cloning twelve
fragments from a cDNA library spanning the entire genome of a
highly cell culture adapted laboratory strain of EAV downstream of
the T7 RNA polymerase promoter in the pUC18 plasmid vector
(pEAV 030 [GenBank accession number Y07862], Fig. 2) (van
Dinten et al., 1997). This was also the first full-length infectious
cDNA clone constructed from a member of the order Nidovirales.
A second infectious cDNA clone of a very similar, highly cell
culture-adapted laboratory strain of EAV was described soon
thereafter (de Vries et al., 2000, 2001; Glaser et al., 1999). More
recently, we have described the development of two infectious
cDNA clones of EAV; the first from the highly-virulent, horse-
adapted VBS strain of EAV (pEAVrVBS [DQ846751]) (Balasuriya
et al., 2007) and the other from the MLV vaccine strain of EAV
(ARVACs, Zoetis, Kalamazoo, MI, USA, pEAVrMLV [FJ798195])
(Zhang et al., 2012) that was originally developed by extended
cell culture passage of the VBS virus.

Eric Snijder and colleagues at Leiden University in the Nether-
lands have performed pioneering work using the pEAV 030
infectious cDNA clone to characterize the molecular biology of
EAV and other Nidoviruses (Siddell et al., 2005; Snijder et al.,
1995, 2005, 2013; Snijder and Spann, 2007; Snijder, 1998, and
references therein; Snijder and Kikkert, 2013 and references
therein). Specifically, they have used this infectious clone to
better characterize EAV replication, including the processing of
viral non-structural proteins (nsps) (Balasuriya et al., 2013; den
Boon et al., 1995; Snijder, 1998, 2001; Snijder and Spann, 2007;
van Aken et al., 2006a, b; van Dinten et al., 1999), mechanisms of
subgenomic mRNA (sgmRNA) transcription (Tijms et al., 2001,
2007; Tijms and Snijder, 2003; van den Born et al., 2005; van
Dinten et al., 2000; van Marle et al., 1999a, b), and the role of the
viral replication complex (Snijder et al., 2006; Snijder, 2001).
These studies have broad relevance and implications to the
molecular characterization and replication strategies of all mem-
bers of the order Nidovirales, including Coronaviruses, Toro-
viruses, and other Arteriviruses (lactate dehydrogenase
elevating virus [LDV] of mice, porcine reproductive and respira-
tory syndrome virus [PRRSV], simian hemorrhagic fever virus
[SHFV], and wobbly possum disease virus [WPDV]) (den Boon et
al., 1991b; Dunowska et al., 2012; Gorbalenya et al., 2006; Kroese

et al., 2008; Molenkamp et al., 2000; Pasternak et al., 2006;
Siddell et al., 2005; Smits et al., 2006; Snijder et al., 2013). The
small size of the EAV genome, as compared to those of Corona-
and Toroviruses, has made it an ideal model system with which
to study the replication strategy of Nidoviruses (Siddell et al.,
2005; Smits et al., 2006). This work has been extensively
reviewed previously (Snijder et al., 2001; Snijder and Spann,
2007; Snijder et al., 2013 and references therein, Snijder and
Kikkert, 2013 and references therein), thus the objective of this
article is to review our recent work using three infectious cDNA
clones of EAV (pEAV 030, pEAVrVBS and pEAVrMLV) that are all
ancestrally related to the parental VBS strain of EAV but which
differ significantly in their virulence phenotypes (Fig. 2). Speci-
fically, this review is focused on characterization of the virulence
phenotype of the recombinant viruses derived from these infec-
tious cDNA clones of EAV (EAV 030, EAV rVBS and EAV rMLV) in
horses (Balasuriya et al., 1999b, 2007; Go et al., 2012b; Zhang et
al., 2012), as well as their application to characterization of the
molecular determinants of EAV neutralization, persistence, and
protective host immunity.

Characterization of the genetic basis of attenuation of
recombinant strains of EAV (EAV rVBS and EAV 030)

The virulence phenotype of recombinant viruses derived from
the pEAVrVBS and pEAV 030 infectious cDNA clones of EAV (EAV
rVBS and EAV 030, respectively) was characterized by experi-
mental inoculation of horses (Balasuriya et al., 1999b, 2007; Go
et al., 2012b) (Table 2). Horses inoculated with rVBS all devel-
oped severe clinical signs of EVA, including high fever, marked
lymphopenia, petechial and ecchymotic hemorrhages in the oral
mucous membranes, serous nasal discharge, supraorbital and
limb edema of variable severity, and skin eruptions (hives). All
horses developed high titer viremia with significant virus shed-
ding in their nasal secretions. EAV was isolated for 28–56 days
post-infection (DPI) from buffy coat, up to 12 DPI from plasma,
and nasal shedding was detected until 10–12 DPI. Virus
clearance coincided with the appearance of neutralizing anti-
bodies in serum. However, in contrast, to the results of experi-
mental infections with the original VBS strain, virus derived
from the rVBS infectious clone did not cause fatal disease in
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Fig. 2. Most commonly used infectious cDNA clones of EAV.
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horses. Comparative nucleotide sequence analysis of the original
VBS virus (GenBank accession number DQ846750) and rVBS
(DQ846751) showed 99.9% identity, with only 6 coding differ-
ences between the two viruses. Five of these amino acid
differences are located in non-structural proteins (nsp2 [2],
nsp9 [1] and nsp10 [2]) and the sixth amino acid change is
present in the major envelope glycoprotein (GP5 [1])
(Tables 3 and 4). These data strongly suggest that major viru-
lence determinants leading to fulminant EVA in horses (char-
acterized by disseminated intravascular coagulopathy and death)
are localized to one or more key amino acid residues located in
nsp2 (382 Gly-Asp and 559 Asn-Ser), nsp9 (1970 Asp-Gly),
nsp10 (2400 Val-Ala and 2657 Ser-Cys), and GP5 (104 Asp-
Asn). These amino acid changes that were inadvertently intro-
duced during the cloning process clearly had a significant impact
(attenuation) on the virulence phenotype of the parental VBS
strain of EAV.

We have also previously evaluated the virulence phenotype
of the recombinant virus derived from the pEAV 030 infectious
cDNA clone (EAV 030) by experimental inoculation of two
stallions (Balasuriya et al., 1999b). Neither stallion developed
significant clinical manifestations of EVA, rather both had mild
transient fever and mild to moderate lymphopenia (Table 2).
Virus was isolated transiently from nasal swabs and mono-
nuclear cells collected from both stallions. Virus was also
isolated from the semen of one stallion at 7 DPI, but neither
stallion became persistently infected with EAV. These data
confirm that the recombinant EAV 030 virus is highly attenuated
as compared to VBS and its recombinant counterpart (EAV
rVBS). Importantly, although designated as a prototype strain
of EAV, EAV 030 is a laboratory variant that was derived by
extensive cell culture passage of VBS as well as its cloning by
end point dilution and plaque purification in African green
monkey cells (Vero cells; see above and Fig. 2). Viral RNA from
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Fig. 3. EAV genome organization (a) and virion architecture (b). (a) The genomic open reading frames (ORFs) are indicated and the names of the corresponding proteins are
depicted. The pink boxes represent the body transcription regulatory sequences (TRSs). The papain-like cysteine protease (PCPβ), papain-like protease domain 2 (PLP2
[previously known as cysteine protease; CP] that is predicted to contain the ovarian tumor domain-containing [OTU] superfamily of deubiquitinating enzymes [DUBs] on the
basis of comparative sequence analysis) and serine protease (SP) are located in the nsp1, nsp2 and nsp4 of viral replicase, respectively. The nested set of mRNAs that is found
in infected cells is depicted below the genome, with RNA1 being identical to the viral genome and sgmRNAs 2 to 7 being used to express the structural protein genes located
in the 30-proximal quarter of the genome. The light blue box at the 50 end of each sgmRNA represents the common leader sequence, which is derived from the 50 end of the
genome. With the exception of the bicistronic sgmRNAs 2 and 5, the sgmRNAs are functionally monocistronic. Translation of proteins from sgmRNAs 2 (E and GP2 proteins)
and 5 (ORF5a protein and GP5) by leaky scanning of the 50-proximal end of these sgmRNAs (Firth et al., 2011; Snijder et al., 1999). The ORFs 1a and 1b located at the 50 end of
the genome are translated into two polyproteins (pp1a and pp1ab) that are further processed into 12–13 nonstructural proteins by three viral proteases (nsps 1, 2, and 4). (b)
EAV particle consists of a nucleocapsid (N) and seven envelope proteins which include two major envelope proteins (GP5 and M form a dimer), three minor envelope
glycoproteins (GP2, GP3, and GP4 form a trimer), and two other minor envelope proteins (E and ORF5a protein). Adapted from Balasuriya et al. (2013) with permission.
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this highly cell culture adapted laboratory strain of EAV was
used to generate the genomic cDNA library that was used to
construct the original infectious cDNA clone of EAV 030
(Balasuriya et al., 1999b; van Dinten et al., 1997). Most probably,
plaque purification and cell culture propagation of the original
virus subjected it to a genetic bottleneck that led to the
selection of an attenuated variant. The comparative nucleotide
and amino acid sequence analysis between EAV 030 and the
original VBS strain identified 9 amino acid changes in nsps (nsp1

[4], nsp2 [3], nsp9 [1], and nsp10 [1]) and 12 in structural
proteins (GP2 [2], GP4 [4], ORF5a protein [1], GP5 [3], and M [2])
(Tables 3 and 4 and Fig. 4). Of these, two amino acid changes in
nsp9 and nsp10 were common to both EAV rVBS and EAV 030
and appear to have a significant effect on the attenuation of
these two recombinant viruses. Furthermore, substitution of
81Asn-Asp in the GP5 protein of EAV 030 led to the loss of a
glycosylation site that might also contribute to attenuation of
the virus.
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Fig. 4. Comparative amino acid sequence analysis between the EAV VBS and attenuated EAV strains derived from it identified several amino acid substitutions in both non-
structural (A) and structural proteins (B and C). The putative glycosylation sites in GP2 (Asn-155), GP3 (Asn-28, Asn-29, Asn-49, Asn-96, Asn-106, and Asn-118), GP4 (Asn-33,
Asn-55, Asn-65, and Asn-90), and GP5 (Asn-56, Asn-71, and Asn-81) are depicted in blue dots. The most significant amino acid changes are highlighted (blue and bold) in the
figure.

Table 1
Sequential passage history of EAV virulent Bucyrus strain en route to development of the MLV vaccine strain of EAV.

Horse/cell culture passage
of the virus

In vivo studies (virulence/clinical signs) Reference

EAV Virulent Bucyrus Strain
(EAV VBS; ATCC-VR-796)a

Velogenic – severe fatal disease (60% fatality rate), abortion MacLachlan et al. (1996), McCollum and
Timoney (1999)

EAV HK25b Mesogenic – less severe disease (40.41C body temperature, severe leukopenia) McCollum et al. (1961b), McCollum (1969)
EAV HK116b Lentogenic – no clinical signs and horses developed immunity to EAV McCollum et al. (1962), McCollum (1969,

1970a, b)
EAV HK131 RK111 ED24
[ARVACs MLV vaccine]b

Lentogenic – no clinical signs and horizontal transmission in inoculated horses.
Intramuscular administration – horses developed protective immunity and did not transmit
the virus to contact animals. Intranasal inoculation – did not immunize effectively.

Harry and McCollum (1981), McKinnon
et al. (1986), Timoney et al. (1988, 2007)

H¼Passaged in horse; HK¼primary horse kidney cell, RK¼primary rabbit kidney cell passage, and ED¼equine dermis cell (NBL-6; ATCC CCL-57).
a H9, H10 or H15 (Horse passage 9, 10 or 15).
b Each virus is identified by the cell type followed by the number of passages in that particular cell type (HK25 and HK116 – EAV VBS was serially passaged 25 and 116

times respectively in primary horse kidney cells; HK131RK111ED24 – EAV VBS was serially passaged in primary horse kidney cells for 131 times, primary rabbit kidney cells
for 111 times, and equine dermis cell line for 24 times).
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Characterization of the genetic basis of attenuation of a
modified live virus (MLV) vaccine strain of EAV

With the advent of cell culture systems, the VBS strain of EAV
(H9) was serially passaged in primary equine kidney (HK), primary
rabbit kidney (RK), and equine dermal (ED; NBL-6; ATCC CCL57)
cells to attenuate the virus to create a MLV vaccine (ARVACs;
Fig. 1). Viruses at different levels of cell culture passage have been
inoculated previously into horses to characterize their virulence
phenotype (Table 1) (Doll et al., 1968; Harry and McCollum, 1981;
McCollum, 1969, 1970a, b; McCollum et al., 1961a, b, 1962;
McCollum and Timoney, 1999; McKinnon et al., 1986; Summers-
Lawyer et al., 2011; Timoney, 1988; Timoney et al., 2007; Zhang
et al., 2012). The viruses span the entire spectrum of attenuation
of the highly virulent horse-adapted VBS strain of EAV to the
completely attenuated MLV (ARVACs) vaccine derived from it
(Doll et al., 1968; Harry and McCollum, 1981; McCollum, 1969,
1970a, b; McCollum et al., 1961a, b, 1962; McCollum and Timoney,
1999; McKinnon et al., 1986; Timoney et al., 1988). Comparative
whole genome sequence analysis of viruses at different levels of
attenuation (including VBS, a moderately virulent [mesogenic; HK-
25] and two avirulent [lentogenic; HK116 and HK131/RK-111ED24;
ARVACs vaccine] strains) identified a limited number of potential
attenuating mutations (Tables 3 and 4). Interestingly, none of
these differences are located in either the 50 or 30 UTR, rather they
were located only in genes encoding various structural and non-
structural proteins.

Following 25 passages in HK cells, the HK25 virus had a
moderately virulent (mesogenic) phenotype in horses and com-
parative amino acid sequence analysis identified 12 amino acid
changes as compared to the VBS strain. Seven of these amino acid
changes were in nsps (nsp1 [4], nsp3 [1], nsp7 [1], and nsp9 [1])
and five were in structural proteins (GP4 [1], ORF5a protein [1],
GP5 [1], and M [2]; Tables 3 and 4). Subsequent passages in HK
cells further attenuated the virus and by the 116th passage
(HK116), it was completely attenuated in horses. Comparative
amino acid sequence analysis showed nine additional amino acid
changes as compared to the mesogenic HK25 virus (total of 17
amino acid changes as compared to the VBS strain; Tables 3 and 4).
These include four amino acid changes in nsps (nsp2 [1], nsp3 [1],
and nsp7 [2]; Table 3), and five additional amino acid substitutions

in structural proteins (GP2 [2], GP5 [2], and M [1]; Table 4). In
summary, comparison of the virulence phenotype in horses and
sequences of the VBS, HK25, and HK116 viruses identified just 16
amino acid substitutions that individually or collectively appear to
be responsible for attenuation of the HK116 virus. These include
six amino acid substitutions in the replicase proteins (nsp1:
Val51-Met, Ser141-Asn, Ile156-Thr; nsp2: Arg647-Cys;
nsp7: Asn1620-Thr; and nsp 9 Asp1970-Gly) and 10 amino
acid substitutions in the structural proteins (GP2: Ile92-Thr,
Arg223-Pro; GP4: Leu8-Ser; ORF5a protein: Tyr46-His; GP5:
Asn81-Asp, Ser100-Gly, Asp104-Gly; and M: Met81-Thr,
Ile122-Val, Ala154-Thr) of EAV (Tables 3 and 4).

Interestingly, some of the amino acid substitutions acquired
during sequential cell culture passage of EAV 030 (BHK-21) and
HK116 (primary horse kidney) virus strains were identical, further
suggesting that these common amino acid changes play an
important role in attenuation of the virulent VBS virus during
sequential cell culture passage. Both attenuated viruses had
amino acid substitutions in nsp1 (Val51-Met, Ser141-Asn,
and Ile156-Thr), nsp9 (Asp1970-Gly), GP4 (Leu8-Ser), GP5
(Asn81-Asp), and M (Ile122-Val, Ala154-Thr). Attenuation of
the VBS strain of EAV to the mesogenic HK25 virus involves a
single amino acid change (Asn81-Asp) that results in a loss of the
glycosylation site at position 81 in the GP5 protein. This substitu-
tion was conserved among all of the cell culture adapted viruses.
The variable retention of the glycosylation site at position 81 in the
GP5 protein among field strains of EAV further suggests this
residue might play a central role in EAV virulence and pathogen-
esis (Balasuriya et al., 1997, 1998, 1999a, 2004b; Zhang et al.,
2008b, 2010). Similarly, the loss of glycosylation sites of the
equivalent LDV protein (VP-3P) alters both virulence and the
cellular tropism of the virus (Chen et al., 2000; Plagemann,
2001a; Plagemann et al., 2001b, c). Moreover, most of the amino
acid substitutions in the GP5 protein were located in three (B, C,
and D) of the four major neutralization sites (Balasuriya et al., 2013
and references therein). Unequivocal determinations of the sig-
nificance of individual nucleotide and amino acid substitutions
were further determined in prospective studies using reverse
genetic manipulation of infectious cDNA clones (see below).

To further confirm the significance of 14 amino acid substitu-
tions identified by comparative sequence analysis in three nsps

Table 2
Virulence phenotype of the prototype VBS of EAV and various recombinant viruses derived from the infectious cDNA clones.

Virus strain Virulence phenotype Clinical signs/necropsy findingsa Reference

EAV VBS
(H15)/ATCC
VR-796

Velogenicb – fatal
disease in adult horses

Severe fatal disease (lethargy and anorexia; 5–8 DPId high fever 39.1–40.3 1C; ventral and
dependent edema; periocular edema; serous nasal discharge; petechial hemorrhages in the
oral mucosa; death 9 DPI). Necropsy (several liters of straw-colored transudate in the pleural
cavity and extensive petechial and ecchymotic hemorrhages on the serosa of the bowel). High-
titer viremia (1.1�103–1.1�104 TCID50/50 μl, 3–8 DPI). Neutralizing antibodies appear 6–
8 DPI.

MacLachlan et al. (1996),
McCollum and Timoney
(1999)

EAV rVBS Mesogenicb – less
severe disease

Moderate to severe disease (depression; 5–6 DPI high fever 38.9–40.6 1C [3–9 DPI];
supraorbital and limb edema; severe lymphopenia [4–8 DPI]; serous nasal discharge [6–9 DPI];
petechial and ecchymotic hemorrhages in the oral mucosa [7–8 DPI]; skin eruptions (hives) on
the neck, shoulder, along the back: High-titer viremia (6�103–1�105 PFU/ml; [4–10 DPI]);
virus isolated from buffy coat for 28–56 DPI; nasal shedding of virus (4 and 6 DPI, virus titer
4�104 PFU/ml). Neutralizing antibodies appear 6–8 DPI and increased to 4512 by 10–14 DPI.

Balasuriya et al. (2007),
Go et al. (2012b)

EAV 030 Lentogenicb – mild
transient clinical signs

Mild, transient fever 39.1 1C; mild to moderate lymphopenia; mild viremia (r1�101 PFU/ml
[2–14 DPI]; nasal shedding (r1�101 PFU/ml [2–14 DPI]. Neutralizing antibodies appear
10 DPI and increased to 64–256 by 14–42 DPI.

Balasuriya et al. (1999a,
1999b)

EAV rMLV Lentogenicc – no
clinical signs

No fever; mild transient viremia (o1–2 PFU/ml in a few horses [2 DPI]); transient nasal
shedding (2 PFU/ml in a few horses [2 DPI or 4 DPI or 4–6 DPI]).

Zhang et al. (2012)

a Fatal disease.
b Following intranasal inoculation.
c Following intramuscular inoculation.
d DPI – days post infection.
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(nsp1, nsp2, and nsp7) and four structural proteins (GP2, GP4, GP5,
and M) to attenuation, we introduced these substitutions into the
virulent infectious cDNA clone (pEAVrVBS) that was derived from
the VBS strain (DQ846751) (Zhang et al., 2008a). Site-directed
mutagenesis was used to individually introduce the four amino
acid substitutions in the nsps 1, 2, and 7 of the pEAVrVBS
infectious clone (the new recombinant virus was identified as
rVBS/Vacc NS4m), and the ten amino acid substitutions contained
in the structural proteins (GP2, GP4, GP5, ORF5a protein, and M) of
the HK116 virus were introduced by swapping ORFs2-7 of the
HK116 virus in their entirety into the pEAVrVBS clone (chimeric
rVBS/HK116 S virus; Tables 3 and 4). Horses inoculated with the
chimeric rVBS/HK116 S virus developed only mild serous nasal
discharge whereas some of the horses inoculated with rVBS/Vacc
NS4m developed typical clinical signs of EVA, confirming that this
virus is less attenuated than rVBS/HK116 S (Table 7). Since both
recombinant viruses share the backbone of the virulent pEAVrVBS
infectious clone, the virulence phenotypes of the rVBS/HK116 S

and rVBS/Vacc NS4m viruses were also compared to that of the
virulent parental rVBS virus. The average body temperature of the
rVBS-inoculated horses was significantly higher than that of
horses inoculated with either the rVBS/HK116 S or rVBS/Vacc
NS4m viruses. Whereas nasal virus shedding and viremia were
similar between rVBS- and rVBS/VaccNS4m-inoculated horses,
both nasal shedding of virus and viremia in rVBS/HK116 S-
inoculated horses were significantly lower than those in horses
inoculated with either the rVBS- or rVBS/Vacc NS4m viruses. In
summary, the rVBS/HK116 S virus had substantially reduced
virulence for horses as compared to the parental rVBS strain, and
the rVBS/Vacc NS4m virus caused only subclinical infection. Taken
together these data suggest that amino acid changes in either the
replicase (nsp1, nsp2 and nsp7) or structural proteins (GP2, GP4,
GP5 and M) led to attenuation, but the recombinant virus with
multiple substitutions in the structural proteins was more atte-
nuated than the recombinant virus with substitutions only in the
replicase proteins. The significance of the numerous non-coding

Table 3
Comparative amino acid sequence analysis of non-structural proteins between VBS of EAV and two recombinant viruses (EAV rVBS and EAV 030) and three cell culture
passaged EAV strains (HK25, HK116 and ARVAC MLV vaccine).

†¼No amino acid changes occurred.
Critical amino acid changes are identified in bold. All these changes are tested/confirmed by reverse genetics. Other major amino acid changes are identified in color.
a Amino acid substitutions as compared to the parental EAV VBS.
b Phe/Leu¼Phe or Leu.
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mutations that occurred during cell culture passage of the VBS
virus was not directly evaluated by reverse genetics.

To produce the current commercial MLV vaccine of EAV, the
HK116 virus was further passaged 15 times in HK cells, followed
respectively by 111 and 24 passages in RK and ED cells. These addi-
tional cell culture passages fixed all of the amino acid substitutions
present in the HK116 virus, together with 43 additional amino acid
substitutions as compared to HK116, including 15 in the nsps and

28 (including a 5 aa insertion) in the structural proteins (Zhang et
al., 2008a). However, the numerous additional amino acid sub-
stitutions that accumulated during further cell culture passage of
HK116 to HK131RK111ED24 (ARVACs seed virus) did not alter the
attenuation phenotype of the virus significantly as the virus was
already fully attenuated by HK passage 116 (McCollum, 1969,
1970a, b; McCollum et al., 1962). However, this extensive addi-
tional cell culture passage did alter key neutralization epitopes

Table 4
Comparative amino acid sequence analysis of structural protiens between VBS of EAV and two recombinant viruses (EAV rVBS and EAV 030) and three cell culture passaged
EAV strains (HK25, HK116 and ARVACs MLV vaccine).

**¼No amino acid changes occurred.
Critical amino acid changes are identified in bold. All these changes are tested/confirmed by reverse genetics. Other major amino acid changes are identified in color.
a Amino acid substitutions as compared to the parental EAV VBS.
b In ARVACs MLV vaccine strain, the ORF3 spans from nucleotides 10,306–10,812 and the GP3 is 168 amino acids in length.
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located in the GP5 protein and significantly changed the neutrali-
zation phenotype of the MLV vaccine virus (see below; (Balasuriya
et al., 1997, 2013; Balasuriya and MacLachlan, 2004; Zhang et al.,
2010). Previous studies have shown that antibodies generated
in horses (polyclonal equine antisera) against the MLV vaccine
strain do not neutralize some field strains of EAV as effectively as
equine antisera generated against the VBS strain (Balasuriya
et al.,1998; Balasuriya et al., 2004b; Balasuriya et al., 2004a;
Zhang et al., 2010) and, thus, excessive cell culture passage has
perhaps overly attenuated this MLV vaccine virus and potentially
compromised its protective efficacy.

Taken together, comparative amino acid sequence data analysis of
EAV strains of different virulence to horses and the MLV vaccine
strain confirm that the virulence determinants of EAVmay be located
in genes encoding both non-structural (nsp1 [contains a papain-like-
cysteine protease domain that plays a major role in virus replication,
sgmRNA synthesis, and virus production, and coordinates the viral
replicative cycle], nsp2 [contains a papain-like protease domain 2;
PLP2 and possesses deubiquitinating enzyme activity that antago-
nizes the host innate immune response], nsp9 [contains a RdRP
domain and directs viral RNA synthesis in conjunction with other
viral and cellular proteins], possibly nsp10 [contains a predicted zinc-
binding domain; ZBD] in its N-terminus and a nucleoside tripho-
sphate-binding/helicase (Hel) motif in its C-terminal domain (den
Boon et al., 1991a) and both minor (GP2, GP4, and ORF5a protein)
and major (GP5 and M) envelope proteins (Tables 3 and 4 and Fig. 4).
Interestingly, viruses with very different cell culture passage histories
share multiple common amino acid substitutions, confirming their
likely importance in determining the virulence phenotype of EAV.
Thus, it appears that attenuation of EAV is a complex process that
potentially involves a variety of structural and nonstructural viral
proteins, and perhaps the interaction of different proteins. Further-
more, these studies also identified several lethal amino acid sub-
stitutions that cause in vitro transcribed RNA to be noninfectious (no
genomic replication or infectious progeny virus production) follow-
ing transfection into mammalian cells. These include Ser1022-Leu
(nsp3) (Zhang et al., 2012), Ser1453-Arg (nsp7) (Balasuriya et al.,
2000) and Ser2429-Pro (nsp10) (van Dinten et al., 1997). The

Ser1022-Leu substitution is located in the cytoplasmic tail of nsp3
and it is not clear how this mutation adversely affected virus
replication. The arginine substitution at position 1453 affected the
cleavage of nsp7 from nsp6 (Glu1452 [nsp6]/Ser1453 [nsp7]), which
made the in vitro transcribed IVT RNA noninfectious following
transfection. The Ser2429-Pro substitution located in the ZBD of
nsp10 may affect multiple functions, specifically viral RNA replica-
tion, sgmRNA transcription, and biogenesis that may lead noninfec-
tious RNA resulting in non-viable viruses.

Characterization of the genetic basis of persistent EAV infection

Some 10–70% of stallions infected with EAV subsequently
become persistently infected carriers that continuously shed the
virus in their semen (Timoney and McCollum, 1993). Persistently
infected stallions are the principal reservoir of EAV and are
responsible for perpetuation and dissemination of EAV in equine
populations (Balasuriya and MacLachlan, 2004 Timoney and
McCollum, 1993). Carrier stallions are also a significant natural
source of genetic and phenotypic diversity of EAV (Balasuriya et al.,
1999a, 2004b; Hedges et al., 1999). However, the viral factors
involved in the establishment and maintenance of EAV persistence
in the stallion are not well characterized. To identify the viral
proteins involved in establishment of EAV persistence, we devel-
oped an in vitro model in HeLa-H (passage 170–222) cells (Zhang
et al., 2008c). The VBS virus established persistent infection in
HeLa-H cells and the virus recovered from the 80th passage of the
persistently infected HeLa-H cells (HeLa-H-EAVP80) readily estab-
lished persistent infection in the HeLa-L cells (passage 95–107),
whereas the original VBS virus did not establish persistent infec-
tion in HeLa-L cells. Comparative nucleotide sequence analysis
identified 33 nucleotide differences between the VBS and HeLa-H-
EAVP80 viruses and no nucleotide differences were identified in
the 50 or 30 UTR or ORFs 6–7. Approximately 50% of the nucleotide
changes were silent and there were only 16 amino acid differences
between the two viruses, including four in the replicase (nsp1,
nsp2, nsp7, and nsp9) and 12 in the structural proteins (E, GP2,

Table 5
Amino acid differences between the VBS and HeLa-H-EAVP80 viruses.

Open Reading Frames (ORFs) Protein (aa length)b Amino acid substitutionsa

Position EAV VBS HeLa-H-EAVP80

ORF1ab (225–9751) Nonstructural proteins (nsp)
1ab polyprotein (3175)
nsp1: Met1-Gly260 (260) 145 Ala Val
nsp2: Gly261-Gly831 (571) 577 Asp Gly
nsp7: Ser1453-Glu1677 (225) 1599 Lys Arg
nsp8/9: Gly1678-Asn1727 (50)/Glu2370(693) 1933 Pro Ser

Structural proteins
ORF2a (9751–9954) E (67) 53 Ser Cys

55 Val Ala
ORF2b (9824–10507) GP2 (227) 15 Leu Ser

31 Trp Arg
87 Val Leu
112 Ala Thr

ORF3 (10306–10797) GP3 (163) 115 Ser Gly
135 Leu Pro

ORF4 (10700–11158) GP4 (152) 4 Tyr His
109 Ile Phe

ORF5 (11146–11913) GP5 (255) 9 Phe Ser
98 Pro Leu

a Amino acid substitutios are numbered according to the published sequence of EAV 030 virus (GenBank accession no. NC_002532).
b Amino acids of non-structural proteins are numbered according to their locations in the replicase polyprotein pp1ab. Amino acids of structural proteins are numbered

according to their locations in individual structural protein. All these changes are tested/confirmed by reverse genetics (see Fig. 5).
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GP3, GP4, and GP5; Table 5). The role of these amino acid changes
in establishment of persistent EAV infection in vitro was further
evaluated in a prospective study using reverse genetic technology.
The recombinant rVBS/P80 NS4m virus, which has the identical
sequence to the rVBS virus with the exception of four amino acid
substitutions in the replicase polyprotein (nsp1 Ala145-Val, nsp2
Asp577-Gly, nsp7 Lys1559-Arg, and nsp9 Pro1933-Ser), was
unable to establish persistent infection in the HeLa-L cell line
(Fig. 5) whereas the recombinant virus rVBS/P80S, which carries
the replicase gene of the parental rVBS and the structural protein
genes of the HeLa-H-EAVP80 virus, did establish persistent infec-
tion in the HeLa-L cell line. This clearly indicated that the changes
in the structural proteins (E, GP2, GP3, GP4, and GP5), and not the
replicase, were responsible for the establishment of persistent
infection in HeLa-L cell line by the HeLa-H-EAVP80 virus. It was
further determined that recombinant viruses with substitutions in
individual structural proteins were unable to establish persistent
infection of the HeLa-L cells whereas a combination of substitu-
tions in the E (Ser53-Cys, Val55-Ala), GP2 (Leu15-Ser, Trp31-
Arg, Val87-Leu, and Ala112-Thr), GP3 (Ser115-Gly, Leu135-
Pro), and GP4 (Tyr4-His, Ile109-Phe) proteins together, or a
single point mutation in the GP5 protein (Pro98-Leu), created
viruses that were able to establish persistent infection in HeLa-L
cells (Fig. 5). In summary, these reverse genetic studies clearly
showed that substitutions in the structural proteins rather than
the replicase were responsible for establishment of persistent
infection in HeLa-L cells by the HeLa-H-EAVP80 virus. Unlike the
virulence determinants of EAV, the E and GP3 minor envelope
proteins appeared to play an important role in the establishment
of persistent infection in mammalian cells. In contrast, there were
no amino acid substitutions in the unglycosylated M envelope
protein suggesting that this protein has no role in the establish-
ment of persistent EAV infection in mammalian cells.

Characterization of viral determinants of tropism for CD3þ T
cells and CD14þ monocytes

Recent studies in our laboratory have shown that the VBS virus
not only can infect equine endothelial cells, CD14þ monocytes,
and lung macrophages, but also a small subpopulation of CD3þ T
cells (Go et al., 2010, 2011). In these studies, we evaluated the
susceptibility of equine peripheral blood mononuclear cells

(PBMCs) to infection with virulent (VBS) and attenuated (MLV)
strains of EAV. Dual fluorescent antibody staining of PBMC cultures
was performed using a panel of leukocyte differentiation antigen-
specific monoclonal antibodies (MAbs) specific for pan CD3þ T
lymphocytes (CD4þ helper T lymphocytes, CD8þ cytotoxic T
lymphocytes) and CD14þ monocytes, as well as a MAb specific
for EAV nsp1. The data suggested that the majority of CD3þ T
lymphocytes infected with the VBS virus were CD4þ T lympho-
cytes rather than CD8þ T lymphocytes. Furthermore, in contrast to
the VBS virus, the MLV virus failed to infect CD3þ T lymphocytes.
We further investigated whether CD14þ monocytes are equally
susceptible to infection with the VBS and MLV viruses. Double-
labeled flow cytometric analysis showed that monocytes could be
infected with both virus strains. However, the mean percentage of
cells infected with the MLV virus was significantly lower and
remained near the lower limit of detection as compared to those
detected in VBS virus-infected cultured equine monocytes. These
findings confirm that not only CD3þ T lymphocytes but also
CD14þ monocytes differ in their susceptibility to infection with
the VBS and MLV strains of EAV.

Taken together, these data clearly suggested that the VBS and
MLV vaccine strains of EAV differ in their ability to infect PBMCs.
We therefore used two infectious cDNA clones, EAV rVBS, and EAV
rMLV, as well as five chimeric viruses, rVBS/HK116 S (Zhang et al.,
2008a), rVBS/MLV S, rMLV/VBS S, rMLV/VBS 234 and rMLV/VBS 56
(Go et al., 2010) (Fig. 6) to infect ex vivo preparations of equine
PBMCs to identify the viral proteins involved in cellular tropism.
The rVBS/HK116 S chimeric virus containing the structural pro-
teins of the HK116 virus (which is fully attenuated for horses as
compared to the VBS virus) in the rVBS backbone infected
significantly fewer CD3þ T lymphocytes as compared to the rVBS
virus. In contrast, the percentage of CD14þ monocytes infected by
the two viruses was similar, indicating that the tropism of the
HK116 strain had changed for CD3þ T lymphocytes but not for
CD14þ monocytes following 116 passages in HK cells. When
susceptible lymphocytes and monocytes were infected with
rVBS/MLV S and rMLV/VBS S viruses, rVBS/MLV S did not infect
CD3þ T lymphocytes and replicated in CD14þ monocytes at only a
very low level, which was identical to what occurred following
infection with the rMLV virus. In contrast, the rMLV/VBS S virus
infected and replicated in both CD3þ T lymphocytes and CD14þ

monocytes, similar to the rVBS virus. These results strongly
suggest that the structural proteins of the VBS virus are respon-
sible for determining its tropism for lymphocytes and monocytes.
Furthermore, comparison of dual-color flow cytometric analysis of
PBMCs infected with rVBS/HK116 S and rVBS/MLV S showed
significant differences in CD14þ monocyte infectivity, indicating
that amino acid substitutions that occurred during further cell
culture passage of the HK116 virus may have contributed to the
change in monocyte tropism. In summary, these data suggest that
viral tropism for CD3þ T lymphocytes and CD14þ monocytes was
altered by amino acid changes in the envelope proteins of EAV
(Table 6).

To evaluate the role of the minor and major envelope
proteins in cellular tropism of EAV, additional recombinant
viruses, rMLV/VBS 234 and rMLV/VBS 56, were generated using
rMLV as the viral backbone. The rMLV/VBS 234 virus has a
genome sequence identical to that of the rMLV virus except that
the ORFs 2a, 2b, 3, and 4 (encoding the E, GP2, GP3, and GP4
minor envelope proteins) were replaced by the corresponding
regions of the rVBS virus; the ORFs 5 and 6 (encoding the GP5
and M major envelope proteins) of the recombinant rMLV/VBS
56 virus were substituted with the corresponding genes of rVBS
in the rMLV backbone. Unexpectedly, neither rMLV/VBS 234 nor
rMLV/VBS 56 chimeras infected equine T lymphocytes (Fig. 6,
panel k [rMLV/VBS 234] and panel m [rMLV/VBS 56]). However,
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Fig. 5. Ability to establish persistent infection in HeLa-L cell line with recombinant
viruses rVBS/P80NS4m, rVBS/P80S, rVBS/P80ORFs2ab, rVBS/P80ORFs34, rVBS/
P80ORFs234, and rVBS/GP5P98-L. Tissue culture supernatants from serial sub-
culture up to the 10th passage were harvested and titrated. The representative data
of two separate experiments are shown. Adapted from Zhang et al. (2008c) with
permission.
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comparisons in cultured monocytes showed that whereas the
percentage of cells infected with rMLV/VBS 56 virus was similar
to that of the rMLV and rVBS/MLV S viruses, infection rates for
rMLV/VBS 234 virus were significantly lower (Fig. 6; panels n
and l, respectively). Therefore, the higher relative fluorescence
intensity values observed in monocytes infected with rMLV/VBS
56 (Fig. 6, panel n) as compared to rMLV/VBS 234 (Fig. 6, panel
l), suggests that the GP5 and M protein sequences may play a
greater role than those of E, GP2, GP3, and GP4 in facilitating
monocyte infections, although both the major and minor envel-
ope glycoproteins appear to be important in determining mono-
cyte tropism. In summary, the data suggest that the difference in
cellular tropism and virulence phenotype of the VBS and MLV
strains of EAV is associated with the collective interactions of
both major (GP5 and M) and minor (GP2, GP3, and GP4)
envelope proteins. Furthermore, this study also demonstrated
that CD3þ T lymphocyte tropism is primarily determined by

specific amino acid residues in the GP2, GP4, GP5, and M
envelope proteins but not the GP3 minor envelope protein.

Characterization of viral determinants of mammalian cell
tropism

In horses, EAV replicates in endothelial cells, blood mono-
nuclear cells, selected epithelial cells, and myocytes (Balasuriya
and Snijder, 2008; Del Piero, 2000; MacLachlan et al., 1996).
Similarly, EAV replicates in a variety of primary cell cultures
including equine pulmonary artery endothelial (Hedges et al.,
2001), horse kidney, rabbit kidney, and hamster kidney cells, and
a number of continuous cell lines including baby hamster kidney
(BHK-21) (Hyllseth, 1969; Maess et al., 1970), rabbit kidney-13 (RK-
13), African green monkey kidney (VERO) (Konishi et al., 1975;
Radwan and Burger, 1973), rhesus monkey kidney (LLC-MK2),
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Fig. 6. Infection of lymphocytes and monocytes with chimeric EAV viruses. The genome of the infectious full-length cDNA clone of rVBS (red boxes) and the genome of the
rMLV clone (blue boxes) are depicted. The genes encoding structural proteins of EAV HK116 virus are shown in green. The four chimeric viruses containing nonstructural and
structural protein genes of either rVBS, or rMLV virus are also depicted. L, leader; An, poly A tail. The CD3þ T lymphocytes and CD14þ monocytes infected with recombinant
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MARC-145, and hamster lung (HmLu) (Konishi et al., 1975) cells. In
distinct contrast, PRRSV replicates in only a limited number of cell
types that include primary porcine alveolar macrophages (PAM)
and the African green monkey cell line, MA-104, or its derivative,
CL2621, and MARC-145 (Van Breedam et al., 2010). Until recently,
the viral envelope protein(s) involved in virus attachment and
entry of EAV and PRRSV were poorly characterized (Das et al.,
2011; Tian et al., 2012). Dobbe et al. (2001) demonstrated that a
recombinant chimeric strain of EAV (based on EAV 030 backbone)
expressing the ectodomain of GP5 of PRRSV IAF-Klop strain
(Pirzadeh et al., 1998) did not alter cellular tropism. More recently,
we used the prMLVB infectious cDNA clone to further characterize
the role of the two major envelope proteins (GP5 and M) in the
cellular tropism of EAV. Specifically, the prMLVB infectious cDNA
clone was used as the backbone to generate a panel of 3 recombi-
nant chimeric viruses by replacing the N-terminal ectodomains of
the EAV GP5 and M proteins with those of the IA-1107 strain of
North American PRRSV (Lu et al., 2012). The N-terminal ectodo-
main (aa 1–114) of EAV GP5 was replaced with the PRRSV GP5
ectodomain (aa 1–64) to generate the prMLVB4/5 GP5ecto con-
struct; the N-terminal ectodomain (aa 1–16) of EAV M protein was

replaced with the PRRSV M protein N-terminal ectodomain (aa 1–
17) to generate the prMLVB4/5/6 Mecto construct; and both the
GP5 and M N-terminal ectodomains of EAV were replaced with the
PRRSV N-terminal ectodomains to generate the rMLVB4/5/6
GP5&Mecto construct. The three recombinant chimeric viruses
(GenBank accession numbers JQ844156, JQ844157 and JQ844158)
infected only EAV susceptible cell lines but not PAM cells, con-
firming unambiguously that the ectodomains of GP5 and M are not
the major determinants of cellular tropism and consistent with the
recent finding that the minor envelope proteins are the critical
proteins in mediating cellular tropism of PRRSV (Tian et al., 2012).

Characterization of neutralization determinants of EAV

The major neutralization determinants of EAV have been
mapped to the GP5 major envelope glycoprotein (encoded by
ORF5) (Balasuriya et al., 1993, 1995, 1997, 2004a, b; Deregt et al.,
1994; Chirnside et al., 1995; Glaser et al., 1995, Weiland et al.,
2000). The comparative phenotypic characterization of field and
neutralization-resistant variant (escape mutant [EM]) strains of

Table 6
Amino acid substitutions between the EAV rVBS virus and the highly cell culture passaged EAV HK116 and ARVACs MLV strains.

Critical amino acid changes are identified in bold. All these changes are tested/confirmed by reverse genetics. Other major amino acid changes are
identified in color.
a Amino acid substitutions are numbered according to the rVBS (GenBank accession number DQ846751).
b In ARVACs MLV vaccine strain, the ORF3 spans from nucleotides 10,306–10,812 and the GP3 is 168 amino acids in length.
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EAV using both neutralizing MAbs and EAV strain-specific poly-
clonal equine antisera showed that antigenic variation in the V1
region of the GP5 protein principally was responsible for differ-
ences in the neutralization phenotype of various field strains of
EAV. Genotypic and phenotypic characterization of these EM and
field strains of EAV identified both conformational and linear
neutralization determinants that include amino acids 49 (site A),
61 (site B), 67–90 (site C), and 98 through 106 (site D) in the GP5
protein (Balasuriya et al., 1997; Zhang et al., 2008b). Subsequently,
reverse genetic manipulation of an infectious cDNA clone further
characterized the neutralization determinants in the GP5 envelope
glycoprotein (Balasuriya et al., 2004a). A panel of recombinant
viruses was used in these studies, including chimeric viruses that
each contained the ORF5 of different laboratory, field, and vaccine
strains of EAV, a chimeric virus containing the N-terminal ectodo-
main of GP5 of a European strain of PRRSV, and mutant viruses
with single site-specific substitutions in their GP5 proteins. The
neutralization phenotype of each recombinant chimeric/mutant
strain of EAV was determined with EAV-specific MAbs and poly-
clonal equine antisera, and compared to that of their parental
viruses fromwhich the substituted ORF5 was derived. Substitution
of individual amino acids within the GP5 ectodomain usually
resulted in differences in the neutralization phenotype of the
recombinant viruses that were analogous to differences in the
neutralization phenotype of field strains of EAV. These studies
unequivocally confirm that the GP5 ectodomain contains critical
determinants of EAV neutralization, that individual neutralization
sites (A–D) are conformationally interactive, and that interaction
of GP5 with the unglycosylated membrane protein M is likely
critical to expression of individual epitopes in neutralizing con-
formation. Interestingly, there is some overlap in neutralization
and virulence determinants located in the GP5 protein of EAV
(Table 4).

Infectious cDNA clones as potential vaccine vectors

Development of infectious cDNA clones of positive-stranded
RNA viruses and contemporary molecular biology techniques offer
a new approach toward rational vaccine design and construction,
by engineering defined mutations and/or deletions into the virus
genome to produce attenuation and to minimize the likelihood of
reversion to virulence (de Vries et al., 2000, 2001). Obviously, the
substitutions or deletions that are introduced into the cloned virus
genome must not hinder the recombinant virus from inducing
protective immunity in vaccinated animals. Castillo-Olivares et al.

(2003) described the generation of a candidate live marker
vaccine for EAV by deletion of the major neutralization domain
(aa 66–112) in the GP5 protein. This recombinant (deletion
mutant) virus replicated to normal titer in cell culture, but at a
lower rate than parental virus. Furthermore, two ponies immu-
nized with this deletion mutant virus remained asymptomatic,
however the virus was recovered from nasal secretions and/or
blood for up to 14 DPI. The immunized ponies developed only a
weak neutralizing antibody response as determined by serum
neutralization assay using a virus (LP3Aþ or CVL) derived by
sequential passage of the original VBS virus. In contrast, the virus
neutralizing antibody response was markedly stronger when
assayed by SN test using the mutant virus. The immunized ponies
were protected against challenge with a virulent laboratory strain
of EAV (LP3Aþ); in contrast to the non-immunized controls, nasal
shedding of virus and viremia were both minimal and transient in
vaccinates. The authors concluded that an immune effector
mechanism other than virus neutralizing antibody must exert a
critical role in protection of the vaccinated ponies, and they also
showed that the vaccinated ponies readily could be distinguished
from the ponies infected only with wild type virus using the GP5-
peptide ELISA (GP5-OVA ELISA; aa 81–106) described by Nugent
et al. (2000). Therefore, vaccination of horses with such a deletion
mutant marker vaccine can potentially facilitate the serological
discrimination between vaccinated and naturally infected horses
(so-called DIVA strategy). Similarly, the EAV 030 cDNA clone has
been used to develop disabled infectious single-cycle (DISC)
mutants using complementing cell lines expressing minor struc-
tural proteins (GP2 [formally GS], GP3, and GP4) (Zevenhoven-
Dobbe et al., 2004). However, vaccines based on recombinant DNA
technology have not yet been adopted for field use by the equine
industry.

A stable full-length cDNA clone of a MLV vaccine strain of EAV
has been recently developed (pEAVrMLV; Zhang et al., 2012), and
the recombinant virus (rMLV) from it has 100% nucleotide identity
to the parental MLV vaccine strain of EAV. A single silent nucleo-
tide substitution was introduced into the nucleocapsid gene
(pEAVrMLVB), enabling the cloned vaccine virus (rMLVB) to be
distinguished from parental MLV vaccine as well as other field and
laboratory strains of EAV using an allelic discrimination real-time
RT-PCR assay. In vivo studies confirmed that the cloned vaccine
virus was safe and induced high titers of neutralizing antibodies
against EAV in experimentally immunized horses. However, when
challenged with the heterologous EAV KY84 strain, the rMLVB
vaccine virus protected immunized horses as reflected by reduced
magnitude and duration of viremia and virus shedding, but

Table 7
Comparison of virulence phenotype of parental (EAV rVBS) and recombinant viruses with critical amino acid substitutions in the nsps and structural proteins.

Recombinant
virus

Virulence
phenotype

Body
temperature

Edema Nasal discharge Conjunctivitis Hemorrahage Hives

EAV rVBSab Moderate
to severe
disease

Fever (38.9–
40.6 1C) in
4 horses for
5–6 days

Moderate to severe
limb edema in
4 horses for 4–6
days

Serous nasal
discharge in
4 horses for 1–9
days

Mild
conjunctivitis
in 4 horses for
1–5 days

Petechial and ecchymotic
hemorrhages in the oral mucous
membranes of 4 horses for 2–5
days

Urticarial-type rash (hives) on
the neck, shoulder and along
the back of 2 horses for 2–3
days

rVBS/Vacc
NS4m
virusac

Mild
disease

Fever (39–
39.6 1C) in
2 horses for
2–3 days

Moderate to severe
limb edema in
3 horses for 11–12
days

None of the
horses had a
nasal discharge

Mild
conjunctivitis
in 1 horse for
4 days

Petechial hemorrhages in the
oral mucous membranes of
2 horses for 1 day

No hives in any horse

rVBS/HK116 S
virusac

Very mild
transient
disease

Fever
(39.4 1C) in
1 horse for
2 days

No limb edema in
any horse

Mild serous
nasal discharge
in 3 horses for
3 days

No
conjunctivitis
in any horse

None of the horses developed
mucosal hemorrhages

No hives in any horse

a Each virus was inoculated into 4 horses.
b Balasuriya et al. (2007).
c Zhang et al., (2008a).
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vaccination did not prevent development of signs of EVA, although
these were reduced in clinical severity. While it is believed there is
only one known serotype of EAV, field strains differ in their
neutralization phenotype (Balasuriya et al., 1995, 1997, 2004a;
MacLachlan and Balasuriya, 2006; Miszczak et al., 2012; Zhang et
al., 2010). It has been shown previously that the serum from
horses vaccinated with the MLV vaccine strain neutralizes some
EAV field strains, such as KY84, to only a relatively low titer
(r1:8–1:64) (Balasuriya et al., 1997, 2004a; Zhang et al., 2010),
which may explain why the vaccinated horses were not comple-
tely protected against clinical signs of EVA following challenge
with the heterologous EAV KY84 strain. This also further confirms
the importance of high titer neutralizing antibodies (Z1:64) in
protecting against the clinical signs of EAV infection (Fukunaga
and McCollum, 1977; Timoney et al., 1988). These recent data also
emphasize the importance of conducting additional in-depth
cross-neutralization, and perhaps vaccine challenge studies using
more recent EAV isolates representing all three phylogenetic
clades of EAV (North American and two European [EU-1 and EU-
2]).

The infectious cDNA clone of the MLV vaccine strain of EAV
provides a resource that could be used to design and to develop
more broadly protective recombinant MLV vaccines by system-
atically incorporating key neutralization epitopes from various
EAV isolates of significantly distinct neutralization phenotypes.
Furthermore, the vaccine clone pEAVrMLVB could be further
manipulated to improve the vaccine efficacy as well as to develop
a marker vaccine for serological differentiation of EAV naturally
infected from vaccinated animals (DIVA).

Lessons learned and insights gained

Development and reverse genetic manipulation of several
infectious cDNA clones of well-characterized EAV strains have
clearly shown that multiple viral genes are involved in determin-
ing virus phenotype (e.g. virulence/attenuation, viral persistence,
cellular tropism, and neutralization). These studies confirm that
amino acid substitutions in both structural and nonstructural
proteins may allow field strains of EAV to evade protective host
immune responses to facilitate persistent infection of stallions.
Importantly, differences in viral phenotype are typically not
associated with a single coding change in a specific viral gene
that leads to single amino acid change, rather these differences in
phenotype can involve multiple and different changes in viral
genes (multigenic) that lead to emergence/selection of variants
with diverse phenotypes. Although the use of infectious cDNA
clones derived from viruses of defined phenotype has allowed us
to better characterize the viral determinants of behavior, it is to be
stressed that the nucleotide and amino acid changes identified in
laboratory strains of EAV may not be identical and/or not con-
tribute to the same phenotypic change in field strains of the virus
that occur naturally. Furthermore, it is important to emphasize
that we have not performed any detailed biochemical functional
analyzes to identify the effect of each amino acid change in specific
nsps that might be responsible for the attenuation/virulence
phenotype of EAV. Therefore, extrapolation of findings from these
laboratory studies to identification of genetic determinants of key
phenotypic properties (e.g. virulence, persistence etc.) of field
strains of EAV should be done cautiously. Lastly, it is to be stressed
that identification of critical attenuating mutations within either
nonstructural or structural viral proteins provides the opportunity
to prospectively design a new, safe, and efficacious genetically
engineered MLV vaccine against EVA.

In summary, selection and careful analysis of genetic and
phenotypic data from well-characterized EAV strains, including

their reverse genetic manipulation, has led to the identification of
apparently critical determinants of phenotypic properties of the
virus. Similar approaches using well characterized strains (and
their respective cDNA clones) of other arteriviruses (PRRSV, LDV,
SHFV, WPDV) will also facilitate studies to define the molecular
basis of viral virulence, neutralization, persistence, and cellular
tropism.
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