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1. INTRODUCTION

Let S be a semigroup. An associative ring R s [ R is said to besg S s
S-graded if R R : R for all s, t g S. An ideal I of R is homogeneous ifs t st
I s [ I , where I s I l R . The Jacobson radical of R is denoted bysg S s s s
Ž .JJ R . It is well known that many important properties of the radicals can

Ž w x.be deduced with the use of homogeneity see 4, 6 .
The problem of when the Jacobson radical is homogeneous has been

Ž w x.investigated by several authors see 6 . In general this question is very
difficult. It is related to the famous semiprimitivity problem for group

Ž w x.algebras see 13 . Indeed, if the radical is homogeneous in every algebra
of characteristic zero graded by a group, then all group algebras of this
group over fields of characteristic zero are semiprimitive.

It would be interesting to obtain positive results under natural addi-
tional assumptions. Most of the theorems obtained so far deal with
restrictions on the underlying group and show that the radical is homoge-
neous in rings graded by groups of various special types. It is also
interesting to determine whether important ring-theoretic conditions im-
posed on a graded ring force the Jacobson radical of the ring to be
homogeneous. Our paper is devoted to this question for a large class of
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rings, including in particular PI-rings and rings with left or right Krull
dimension.

The first positive results on homogeneity of the Jacobson radical were
w x w x wobtained by Bergman 1 and Cohen and Montgomery 3 . In particular, 3,

Ž .xTheorem 4.4 3 tells us that in characteristic zero every algebra graded by
a finite group has homogeneous radical.

In this paper we shall prove that the radical is homogeneous in all
PI-algebras of characteristic zero graded by cancellative semigroups. The
question of whether the same is true of every right Noetherian algebra of
characteristic zero seems to be quite difficult. It is not even known
whether every right Noetherian group algebra over a field of characteristic
zero is semiprimitive. On the other hand, for every non-cancellative
semigroup S there exists an S-graded algebra whose radical is not homo-

Ž w x.geneous see 2 .
The other main result of this paper deals with the following question,

w x w xaddressed in 5 and recorded in 4 : Is the Jacobson radical of every ring
graded by a u.p.-semigroup homogeneous? A semigroup S is a u. p.-semi-
group if, for any two non-empty finite subsets X, Y of S, there exists at
least one element uniquely expressed in the form xy, where x g X, y g Y.
Obviously, every u.p.-semigroup is cancellative. The investigation of rings
graded by u.p.-semigroups is motivated by earlier results on group algebras

Ž w x.of u.p.-groups see 13 . Previous facts related to this question are dis-
w x w xcussed in the survey 4 and the monograph 6 . The answer is not known

even in the case of rings graded by u.p.-groups.
We shall prove that the answer to this question is positive for a large

class of graded rings. It will follow that the radical of a ring with right Krull
dimension, or more generally a ring that is right Goldie modulo the prime
radical, or a PI-ring or a semilocal ring graded by a u.p.-semigroup is
homogeneous.

2. MAIN RESULTS

Let us begin with PI-algebras of characteristic zero.

THEOREM 2.1. Let S be a cancellatï e semigroup, R an S-graded PI-
algebra o¨er a field of characteristic zero. Then the Jacobson radical of R is
homogeneous.

Easy examples of group algebras of finite groups show that the restric-
tion on characteristic cannot be removed from Theorem 2.1.

Further, we investigate rings graded by u.p.-semigroups. Let R s
Ž .[ R be an S-graded ring, and let H R s D R be the set of allsg S s sg S s
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homogeneous elements of R. The largest homogeneous ideal contained in
Ž . Ž .JJ R will be denoted by JJ R and will be called the homogeneous radicalgr

of R. Our second main theorem includes three classes of rings.

THEOREM 2.2. Let S be a u. p.-semigroup, and let R be an S-graded ring
such that at least one of the following conditions is satisfied:

Ž . Ž Ž ..i all nil subsemigroups of H RrJJ R are locally nilpotent;gr

Ž .ii e¨ery nil subsemigroup of e¨ery right primitï e homomorphic image
of R is locally nilpotent;

Ž .iii for e¨ery minimal prime ideal P of R, the ring RrP is a domain or
embeds into a matrix ring o¨er a skew field.

Then the Jacobson radical of R is homogeneous.

Ž .The class of rings satisfying i contains all rings R such that in all
homomorphic images of R all multiplicative nil subsemigroups are locally
nilpotent. This applies to all PI-rings, left or right Noetherian rings, and,

Ž wmore generally, all rings with left or right Krull dimension see 9, 6.3.5,
x.13.4.2 .

Ž .The class of rings satisfying ii contains, beyond the classes mentioned
above, all semilocal rings.

Ž .Condition iii concerns all rings which are ‘‘nice’’ modulo the Baer
Ž .radical. In particular, this covers the case where RrBB R is a right Goldie

ring.

3. NOTATION AND PRELIMINARIES

w xFor the previous results on radicals of graded rings we refer to 6 . Let R
be an S-graded ring. If r g R and r s Ý r , where r g R , then thesg S s s s

Ž .elements r are called the homogeneous components of r. Put supp r ss
� 4 Ž . < <s ¬ r / 0 . We assume that supp 0 s B. By the length r of r we means
< Ž . < Ž . � 4supp r . Let H r s r ¬ r / 0 be the set of all homogeneous compo-s s

Ž . Ž . � Ž . 4nents of r. Put H 0 s 0. For P : R, let H P s H r ¬ r g P . If T : S,
define R s [ R and r s Ý r .T sg T s T sg T s

Let R s [ R be an S-graded ring, and let I be a homogeneoussg S s
Ž . Ž .ideal of R. Then RrI s [ R rI is S-graded. If I : JJ R , then JJ Rsg S s s

Ž . Ž .is homogeneous if and only if JJ RrI is homogeneous. If I : BB R , then
Ž . Ž .BB R is homogeneous if and only if BB RrI is homogeneous.

wThe following lemma was obtained by Cohen and Montgomery 3,
xTheorem 4.4, Corollaries 4.2, 5.4, and 6.4 .
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w xLEMMA 3.1 3 . Let G be a finite group of order n, and let R be a
G-graded ring. Then

n
JJ R s R l JJ R , H JJ R : JJ R ,Ž . Ž . Ž . Ž .Ž .e e

n
BB R s R l BB R , H BB R : BB R .Ž . Ž . Ž . Ž .Ž .e e

Next, we include all the necessary information on the structure of the
Ž wfull matrix semigroups in one lemma these facts are well known; see 10,

xLemma 1.4, Theorems 1.3, 1.6 which use the concepts of completely
.0-simple semigroups and Rees matrix semigroups .

LEMMA 3.2. Let F be a skew field, F the set of all n = n matrices o¨er F.n
For i s 0, 1, . . . , n, denote by M the set of all matrices of rank F i. Theni

0 s M ; M ; ??? ; M s F0 1 n n

are the only ideals of the multiplicatï e semigroup F . For e¨ery i s 1, . . . , n,n
the set M _ M is a disjoint union of subsets G , indexed by the elementsi iy1 a b

a , b of a certain set L , and such that, for all a , b , g , d g L ,i i

Ž . 2i either G is a group, or G : M ;ab a b iy1

Ž .ii G F G : G j M ;ab n gd ad iy1

Ž .iii G # j M is a right ideal of F , where G # s D G ;a iy1 n a lg L a li

Ž .iv G# j M is a left ideal of F , where G# s D G ;b iy1 n b lg L lbi

Ž .v G j M is a left ideal of G # j M ;ab iy1 a iy1

Ž .vi G j M is a right ideal of G# j M .ab iy1 b iy1

4. TECHNICAL PROPOSITION

wThis section contains our main technical proposition generalizing 5,
xTheorem 3.2; 4, Theorem 4.2 , which played the key roles in most of the

previous results on rings graded by t.u.p.-semigroups. A semigroup S is
called a t.u. p.-semigroup if, for any two nonempty finite subsets X, Y of S

< < < <such that X q Y ) 2, there exist at least two elements s g S uniquely
expressed in the form s s xy, where x g X, y g Y. Obviously, every
t.u.p.-semigroup is a u.p.-semigroup. However, there are u.p.-semigroups

w xwhich are not t.u.p.-semigroups; see 10, Example 10.13 . After we shall
have proved the new stronger result, many of the known theorems will
automatically transfer from t.u.p.- to u.p.-semigroups. Note that even in
the case of rings graded by t.u.p.-semigroups our proposition tells more
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than earlier results mentioned above. Also, our proof uses ideas different
from those used in earlier proofs.

We shall say that an element r of a graded ring R is rigid if xry s 0 m
Ž . Ž .xr y s 0 for each t g supp r and all x, y g H R . It is routine to verifyt

that if the ring R is graded by a cancellative semigroup and I is an ideal of
R, then all elements of minimal positive length in I are rigid. In particular,
all homogeneous elements of I are rigid.

If M is a subset of a ring R and r g R, then adopt the convention that
1 � 4 1 1 � 4rM s rM j r and M rM s MrM j rM j Mr j r .

PROPOSITION 4.1. Let S be a u. p.-semigroup with identity e, R an
S-graded ring, r a rigid element of R, and let M be the multiplicatï e semigroup

Ž .generated by H r . Then

Ž . 1 1i if r f R and M rM consists of quasiregular elements, then M ise
nilpotent;

Ž . Ž .1 Ž .1 Ž .ii if H R rH R consists of quasiregular elements, then r g JJ R ,e e
and if , additionally, r f R , then r belongs to the nilradical of R .e e e

In order to prove this proposition, let us begin with the following lemma,
which will allow us to consider rings and semigroups with identities.

Ž .LEMMA 4.2. i Let S be a u. p.- or t.u. p.-semigroup without identity
element. Then the semigroup Se with identity e adjoined is also u. p. or t.u. p.,
respectï ely.

Ž .ii Let R s [ R be an S-graded ring, and let R9 be the ring withsg S s
identity 1 adjoined in the usual way. Denote by R the subring generated in R9e
by 1. Then R9 s [ e R is Se-graded.sg S s

Ž . Ž .Proof. The assertion ii is obvious. In i we shall only consider the
case where S is a t.u.p.-semigroup, since the proof for u.p.-semigroups is
similar.

e < < < <Take two nonempty finite subsets X, Y g S with X q Y ) 2, and
any elements a, b g S. The sets aX and Yb are contained in S, and
< < < < eaX q Yb ) 2 because S is cancellative. Therefore there exist distinct
elements u9, ¨ 9 uniquely expressed in the form u9 s axyb, ¨ 9 s aztb,
where ax, az g aX and yb, tb g Yb. Put u s xy, ¨ s zt. By the cancellativ-
ity of S these representations of u and ¨ as products of elements from X

eand Y are unique. Thus S is a t.u.p.-semigroup.

LEMMA 4.3. Let S be a cancellatï e semigroup, R an S-graded ring, r a
rigid element of R, and let M be the multiplicatï e semigroup generated by
Ž .H r in R. If M contains 0, then M is nilpotent.

Proof. Suppose that M contains 0. This means that y ??? y s 0 for1 m
Ž .some y , . . . , y g H r . Choose m and the y , . . . , y such that q s y ???1 m 1 m 1
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y / 0, and consider the product z s qr. Since q is homogeneous, z ismy 1
also a rigid element of R. Given that S is cancellative, we see that qy is am
homogeneous component of z. Therefore qy s 0 implies qr s 0 for allm s

Ž .s g S; whence z s 0 and, moreover, y ??? y H r s 0. Similarly, con-1 my1
Ž . Ž Ž .2 .sidering that y ??? y rH r s 0, we get y ??? y H r s 0. Re-1 my2 1 my2

Ž Ž ..mpeating this m times, we conclude that H r s 0. Thus M is nilpotent.

LEMMA 4.4. Let S be a cancellatï e semigroup, R an S-graded ring, I the
Ž .ideal of nonunits of S, and G s S _ I if S has no identity, then S s I .

Assume that x q y s yx for some x g R , y g R. Then y g K, where K is theI
Ž .subring generated by H x .

Proof. We will show that y g K, for each g g I. The case whereg
Ž .y s 0 is trivial, and so we assume g g supp y .g

First, note that y g R because R is an ideal of R. If two elements sI I
and t of I generate the same right ideal, then s s t. Therefore there exists

Ž . 1 Ž . 1a maximum positive integer n such that supp z I > ??? > supp z I ,1 n
Ž .for some z , . . . , z g H y , where z s y . We call n the depth of y . We1 n n g g

proceed by induction on the depth of y .g
Assume first that the depth of y is 1. This means that gI 1 is maximal ing

Ž .the set of principal right ideals of I generated by the elements of supp y .
Ž .Hence g s st implies y s 0, and so y g H x : K.s g

Next, assume that the depth of y is n ) 1. Since x q y s yx, we getg
y s Ý y x y x . If st s g and y / 0, then the depth of y is less thang stsg s t g s s
n, and by the inductive assumption y g K. It follows that y g K, asg g
claimed.

Proof of Proposition 4.1. By Lemma 4.2 we may assume that R has an
Ž w x.identity 1. Every u.p.-group is t.u.p. see 10, Chap. 10 , and so the group

of units G of S is a t.u.p.-group. It is routine to verify that I s S _ G is an
ideal of S.

Assume that r f R and M 1rM 1 consists of quasiregular elements. Bye
Lemma 4.3 in order to show that M is nilpotent it suffices to prove that
0 g M.

w xFirst, consider the case where r g R . In view of 6, Corollary 22.9 ,G
all elements of M 1rM 1 are quasiregular in R . Since G is t.u.p., weG

w xcan follow the argument used in 5 . Replacing r by r rr for some g,g h
Ž .h g supp r , without loss of generality we may assume that all elements

1 1 Ž . < <of M rM are quasiregular, and that e f supp r . Then 1 y r ) 1 and
Ž .1 y r is a unit of R . Therefore 1 y r b s 1 for some b g R , and soG G

kŽ . k Ž . Ž .c 1 y r b s c for any c g H r and any k. Choose c g H r , k ) 1, and
< <b such that b is minimal among the lengths of all elements b satisfying

kŽ . k kc 1 y r b s c for some c, k. If b s 0, then 0 s c g M and we are
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< <done. Suppose b / 0. Since S is t.u.p. and 1 y r ) 1, we can find an
Ž k .element w g S, w / supp c , uniquely expressed in the form w s u¨ ,

Ž kŽ .. Ž . kŽ . kwhere u g supp c 1 y r , ¨ g supp b . Then c 1 y r b s c implies
w kŽ .x Ž .c 1 y r b s 0. Since r is rigid and c g H r , it follows easily thatu ¨

kq1Ž . kq1Ž .Ž .c 1 y r b s 0. Therefore c 1 y r b y b s 0, contradicting the¨ ¨
choice of b, and proving the claim.

Second, suppose that r f R . Then there exists h g I such that r / 0.G h
Given that I is an ideal of S, we get b s r r g R . Obviously, b inheritsh I
the hypothesis imposed on r, and so we may assume that from the very
beginning r g R .I

Suppose that the semigroup M does not contain 0. Denote by T the
Ž .subsemigroup generated in S by supp r . Then for every t g T we have

M l R / 0.t
Suppose that T is not a right Ore semigroup. Let r be the left reversive

w xcongruence on T defined in 11 . Then there exists t g T such that the set
Ž . w x Ž .t supp r is r-separated in the sense of 12 and h, e f r for every

Ž .h g t supp r . Choose a nonzero element b g M l R . We know thatt
x s br / 0 and x q y s xy s yx for some y g R . By Lemma 4.4, y g R .I T

The left cancellativity of r implies that x9 q y9 s x9y9 s y9x9 for every
r-class in T and the corresponding r-components x9, y9 of x, y. Let X be
the semigroup generated by the support of x. Replacing x by any cxd,
where c, d g M, we see that the element cx9d has a quasiinverse u g R .I
Again, we know that u g R . Therefore x9 and R inherit the hypothesesX X
on x and R. Proceeding in this way we eventually come to an element z
whose support is in a single r -class, where r is the left reversiveZ Z
congruence on the semigroup Z generated by the support of z.

w xFrom 11, Lemma 3 , we know that Z is a right Ore semigroup. Hence Z
Ž w x.is a t.u.p.-semigroup cf. 10, Theorem 10.6 . Since z inherits the hypothe-

ses on r, we can apply the first paragraph of the proof to see that 0 is
contained in the semigroup generated by the components of z. But z g M,
so this contradicts the supposition that 0 f M. If T is a right Ore
semigroup, then it is t.u.p., and we get a contradiction again. It follows that

Ž .0 g M, which completes the proof of i .
Ž . Ž .Further, we show that ii easily follows from i . Indeed, assume that

Ž .1 Ž .1H R rH R consists of quasiregular elements.
Ž .1 Ž .1If r g R , then R rR : H R rH R consists of quasiregular ele-e e e

w xments. By 6, Corollary 22.9 , all these elements are quasiregular in R , ase
Ž .well. Therefore r g JJ R .e e

Assume that, in addition, r f R . Given that all elements ine
Ž .1 Ž .1 Ž .H R rH R are quasiregular, clearly i applies to every nonzero xry,

Ž .1 Ž .1 Ž .1where x, y g H R . Therefore L s D H R r H R is a nil ideal ofsg S s
Ž .H R . In particular, r generates a nilideal of R . This completes thee e

proof.
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5. PROOFS OF THE MAIN THEOREMS

A semigroup S is said to be permutational if there exists n ) 1 such
that, for any n elements x , . . . , x of S, their product can be rearranged1 n
as x ??? x s x ??? x for a nontrivial permutation s . We shall use the1 n s 1 s n

Ž wfollowing properties of permutational semigroups see 10, Theorem 19.8,
x.Corollary 19.13 .

LEMMA 5.1. E¨ery permutational group is finite-by-abelian-by-finite. A
finitely generated permutational group is abelian-by-finite. E¨ery permutational
cancellatï e semigroup has a permutational group of fractions.

LEMMA 5.2. Let R be an S-graded PI-ring, and let T be a multiplicatï e
Ž . Ž .subsemigroup of H R . If T does not contain zero, then supp T is a

permutational subsemigroup of S.

Ž . Ž .Proof. Let H s supp T . Every PI-ring or PI-algebra satisfies a multi-
linear identity, i.e., an identity of the form

x ??? x q k x ??? x s 0, 1Ž .Ý1 n s s 1 s n
1/sgSn

Žwhere S is the symmetric group, k are integers elements of the field inn s

w x.the case of algebras; cf. 16 . Let n be the degree of a multilinear identity
Ž .1 satisfied in R.

Take any elements t , t , . . . , t in T. Suppose that t g R , for i s1 2 n i h i
Ž .1, . . . , n. Applying 1 to the elements t , . . . , t we get1 n

t ??? t g R l R .Ý1 n h ? ? ? h h ? ? ? h1 n s 1 s n
1/sgSn

Given that T does not contain 0 it follows that t ??? t / 0. Therefore1 n

0 / t ??? t g R l R1 n h ? ? ? h h ? ? ? h1 n s 1 s n

for some s / 1. Hence h ??? h s h ??? h . This means that the semi-1 n s 1 s n
group H is permutational, as claimed.

LEMMA 5.3. Let S be a permutational cancellatï e semigroup, and let R be
Ž .an S-graded PI-algebra o¨er a field of characteristic zero. Then JJ R is

homogeneous.

Proof. Lemma 5.1 says that S has a permutational group of fractions
Q. Put R s 0 for q g Q _ S. Then R is Q-graded and R s R . It sufficesq S

Ž .to prove that JJ R is homogeneous for every finitely generated subgroupT
Ž Ž . wT of Q because then it will follow that JJ R is homogeneous, too; cf. 6,

x.Lemma 30.27 .
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Lemma 5.1 shows that T is abelian-by-finite. This means that T has a
normal abelian subgroup A such that TrA is finite. Hence A is also

w xfinitely generated 15, 1.6.11 , and so it contains a torsion-free subgroup of
finite index. Therefore we may assume that A is torsion-free itself. It

w x Ž .follows from 6, Theorem 30.28 that JJ R is homogeneous. It is easilyA
Ž . Ž .seen that R is TrA-graded. Lemma 3.1 implies JJ R s R l JJ R .T A A T

Ž .Therefore JJ R generates a homogeneous ideal I in R contained inA T
Ž . Ž .JJ RR . We can factor out I and assume that JJ R s 0.T A

Ž Ž .. Ž .Take any element x in H JJ R . There exists r g JJ R such that
w xx s r . Given that TrA is a finite group, it follows from 3, Theorem 4.4g

Ž . Ž .that JJ R is TrA-homogeneous. Therefore we may assume that supp r is
Žcontained in one coset gA of TrA otherwise we could replace r by its

.TrA-homogeneous component involving r . Let n be a positive integerg
n ny1 Ž . n ny1such that g g A. Then g supp r : g A s A, and so x r g R . ItA

w x ny1 Ž . ny1follows from 6, Corollary 22.9 that x r g JJ R s 0; whence x r sA
0. Given that G is cancellative, x n is a homogeneous component of x ny1r,
and so x n s 0.

Ž Ž .. w xThus H JJ R consists of nil elements. By 16, Theorem 1.6.36 ,
Ž Ž .. Ž . Ž . Ž .H JJ R : BB R : JJ R . It follows that JJ R is homogeneous, as re-T

quired.

We are now ready for the proofs of the main theorems. First, note that
Ž . Ž .the hypotheses of Theorems 2.1 and 2.2 i , ii are inherited by the ring

Ž . Ž .RrJJ R . Hence, for these proofs one can factor out JJ R and assumegr gr
Ž .that JJ R has no nonzero homogeneous elements.

In all proofs we will suppose to the contrary that the Jacobson radical
Ž .JJ R is not homogeneous. Then we can choose an element r of minimal

Ž . Ž . Ž .1 Ž .1length in JJ R with r f JJ R for some s g S. Let W s H R rH R ,s
Ž .and let V s H W . Denote by A the additive subgroup generated in R by

V. Since S is a cancellative semigroup, it is routine to verify that V is an
Ž .ideal of H R , and so A is an ideal of R.

Proof of Theorem 2.1. We know that r f P for some right primitives
ideal P of R and some s g S. Let V 9 be the image of V in R9 s RrP.
Since S is cancellative, every element of V is a homogeneous component

Ž .of an element of JJ R . We know that RrP ( F for a skew field F.n
Choose a g V such that its image a9 g V 9 is of minimal positive rank as a
matrix in F . We can choose a that is not nilpotent, since otherwisen

Ž . Ž .a9H R 9 is a right ideal of H R 9 that consists of nilpotents, so it is
nilpotent, and therefore a9R9 is a nilpotent right ideal of R9, contradicting
the fact that a9 / 0.

Ž .Lemma 3.2 tells us that a9H R 9a9 : G j 0 for a maximal subgroup of
the multiplicative semigroup of F . Therefore it has no zero divisors.n
Replacing a by some aN we can also assume that every projection of a



GRADED RINGS 827

onto a right primitive homomorphic image of R lies in a maximal sub-
group of this image.

Ž . Ž .It is easily verified that JJ R l aRa : JJ aRa . The choice of a implies
that the image of aRa in every right primitive homomorphic image of R is

Ž .a matrix ring over a skew field. Therefore it follows that JJ R l aRa s
Ž .JJ aRa .

Ž . Ž Ž ..Note that aRa is an S-graded subring such that H aRa : P l H R
Ž . � Ž . 4j B a disjoint union for the subsemigroup B s x g aH R a ¬ x9 g G .

Ž .Let K be the additive subgroup generated by P l H R . Clearly, K is a
homogeneous ideal of R and a f K. Moreover, RrP is a homomorphic
image of RrK. Hence, to come to a contradiction, we can assume that

Ž . � 4 Ž .K s 0. Then H aRa s B j 0 . From Lemma 5.2 we know that supp aRa
is a permutational subsemigroup of S. Therefore, Lemma 5.3 implies that
Ž . Ž .JJ aRa is homogeneous. Since aza g JJ R for some z g R with a homoge-

Ž . 3 Ž .neous component equal to a because a g V , it follows that a g JJ aRa
Ž . 3: JJ R . Thus, a g P, which contradicts the choice of a. This completes

the proof of the theorem.

Remark. All the steps of the proof, with some simple modifications,
apply to the Baer radical. Therefore, for any cancellative semigroup S, the
Baer radical of every S-graded PI-algebra over a field of characteristic
zero is homogeneous.

Proof of Theorem 2.2. Let S be a u.p.-semigroup, and let R s [ Rsg S s
be an S-graded ring.

Ž . w xi Given that S is a u.p.-semigroup, 5, Theorem 2.2 tells us that
Ž . Ž .the Levitzki radical LL R is homogeneous. Since JJ R s 0, we mustgr

Ž .have LL R s 0.
Ž .1 Ž .1 Ž .Every nonzero w in W s H R rH R also belongs to JJ R and is of

the same length. Let M be the multiplicative semigroup generated by
Ž . 1 1 Ž . 1 1H w . Obviously, M wM : JJ R , and so all elements of M wM are

quasiregular. Proposition 4.1 shows that M is nilpotent. In particular, all
Ž . Ž .the elements of H w are nilpotent. Therefore the set V s H W consists

of homogeneous nilpotent elements. As above, V is a multiplicative ideal
Ž .of H R .

Ž Ž ..Suppose that all nil subsemigroups of H RrJJ R are locally nilpotent.gr
Then V is locally nilpotent, and so the ideal A of R generated by V is

Ž .locally nilpotent. Therefore V : LL R s 0. This contradicts the choice of
Ž .r / 0 and shows that JJ R s 0, as desired.

Ž .ii Suppose that every nil subsemigroup of every right primitive
homomorphic image of R is locally nilpotent.

As above we see that V is a nil semigroup. By the assumption, every
image of V in a right primitive homomorphic image of R is locally
nilpotent. Hence, the corresponding image of A is a locally nilpotent ideal,
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Ž . Ž .so it is zero. It follows that A : JJ R and therefore A : JJ R s 0. Thisgr
contradicts the fact that 0 / r g A.

Ž .iii Suppose that, for every minimal prime ideal P of R, the ring
RrP is a domain or embeds into a matrix ring over a skew field. We must

Ž . Ž .prove that JJ R s JJ R .gr
If J is a right primitive ideal of R, then J contains a minimal prime

w xideal P of R. Moreover, P is a homogeneous ideal by 5 . Therefore, it is
enough to show that the radical of every RrP is homogeneous. So, we may
assume that R is a domain or a subring of F for a skew field F and somen
n G 1.

Ž .As above, suppose that the Jacobson radical JJ R is not homogeneous,
Ž . Ž .choose an element r of minimal length in JJ R _ JJ R , and introducegr

Ž .1 Ž .1 Ž .W s H R rH R , V s H W and the additive subgroup A generated in
Ž .R by V. We shall prove that A is quasiregular. This will imply H r : A :

Ž . Ž .JJ R , and will give a contradiction with r f JJ R .gr
Ž .1Fix any element c in W, say c s arb, where a, b g H R . Choose any

t / e in S and consider the homogeneous component ¨ s c of c. Clearly,t
Ž .RrJJ R is graded by the u.p.-semigroup S. By the choice of r, the imagegr

Ž .d of c in RrJJ R is a rigid element. Since t / e, Proposition 4.1 showsgr
n n Ž .that d s 0 for some n ) 1. Hence ¨ g JJ R . Given that S is u.p., we gett

n n Ž . nt / e. Therefore applying Proposition 4.1 to ¨ g JJ R we see that ¨ is
nilpotent. Hence c is nilpotent.t

First, we consider the easier case, where R is a domain. Then we get
� 4c s 0. This implies that c s c . Hence W s W , where W s c ¬ c g W .t e e e e

Denote by A the additive subgroup generated in R by W . Then A s A .e e e
Ž . Ž .Proposition 4.1 implies that W : JJ R , and so A : JJ R . Clearly, A ise e e e e

an ideal of R . Therefore A s A is quasiregular, as claimed.e e
Second, consider the case where R is embedded in a matrix ring F , forn

a skew field F and a positive integer n. Assume that n ) 1, since
otherwise F s F is a domain again. For i s 0, 1, . . . , n, denote by M then i

Ž .set of all matrices of rank F i in F . Given that V is an ideal of H R , itn
Ž .follows from Lemma 3.2 that V s V l M is an ideal of H R . Let A bei i i

the additive subgroup generated by V in R. Then A : A : ??? : A si 0 1 n
A is an ideal chain of the ring R.

We shall use induction on k to prove that all A are quasiregular.k
Obviously, A s 0 is quasiregular. Assume that A is quasiregular for0 ky1
some 0 - k F n. For simplicity, put D s V , E s V , N s A , andky1 k ky1
I s A . By the inductive assumption N is quasiregular. We shall provek
that IrN is quasiregular.

For a , b g L s L , consider subsets G and G of M _ M intro-k a b a# k ky1
duced in Lemma 3.2. Define the auxiliary sets E s E l G and E # sab a b a

E l G #. Let I and I # be the additive subgroups generated in R bya a b a
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E j D and E # j D, respectively. Lemma 3.2 shows that the semigroupab a

Ž . Ž .ErD is the union of its right ideals E # j D rD, and each E # j D rDa a

Ž .is the union of its left ideals E j D rD. It follows that IrN is the sumab

of its right ideals I #rN, and each I #rN is the sum of its left idealsa a

I rN, where a , b g L.ab

Since quasiregularity is preserved by sums of one-sided ideals, it remains
to check that all I rN are quasiregular. Fix a , b g L, and put Q sab

I rN. We shall prove that Q is quasiregular.ab

First, consider the case where G is not a group. Then G2 : M byab a b ky1
Ž . 2 2Lemma 3.2 i . It follows that E : D. Therefore Q s 0, and so Q isab

quasiregular.
Second, assume that G is a group. Let L s E3 . Pick any nonzero l inab a b

Ž .L. There exist a, b g E , u g W, and s g S such that l s aub . Putab s
Ž . � 4c s aub. Choose any t in supp c _ e . We have seen above that c mustt

Ž .be nilpotent. On the other hand, in view of Lemma 3.2, H l : D j E .ab

Since 0 f G > E , we see that E has no nilpotent elements. There-ab a b a b

fore l g D for all t / e. It follows that s s e and the images of c andt
Ž .l s c in Q coincide. Hence c y l g N s JJ N .e

Ž . Ž . Ž . 3Given that c g JJ R , we get l g JJ R . Therefore L : JJ R . But Q is
Ž .the additive group generated by L viewed as a subset of Q . Hence

3 Ž .Q : JJ IrN . Since Q is a left ideal of a right ideal of IrN, it follows that
3 Ž .Q : JJ Q . So Q is quasiregular, as desired.
We have proved that all I rN are quasiregular for all a , b g L, andab

hence IrN is quasiregular. As we have seen, this implies that all A arek
quasiregular. Thus A s A is a quasiregular ideal of R, as claimed. Thisn
contradicts the choice of r and completes the proof of the theorem.
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