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Abstract

Different analytical approximations to the time-dependent fission-decay width used to extract the influence of dissipation
on the fission process are critically examined. Calculations with a new, highly realistic analytical approximation to the exact
solution of the Fokker–Planck equation sheds doubts on previous conclusions on the dissipation strength made on the basis of
less realistic approximations.
 2002 Elsevier Science B.V.
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Viscosity is a fundamental collective property of
nuclei that is scarcely known, in spite of intense ex-
perimental and theoretical efforts. The absolute mag-
nitude as well as the dependences on temperature and
deformation are still subject of debate [1,2]. The ob-
servation of dissipative effects in fission provides a
very powerful tool to extract the relevant experimen-
tal information. However, the model calculations ap-
plied for interpreting these results are often not satis-
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factory. The present publication provides an improved
treatment of the time evolution of the fission-decay
width under the influence of dissipation and demon-
strates the application to a set of experimental data.

The modeling of the fission-decay width at high
excitation energies requires the treatment of the evo-
lution of the fission degree of freedom as a dis-
sipative process, determined by the interaction of
the fission collective degree of freedom with the
heat bath formed by the individual nucleons [3,4].
Such a process can be described by the Fokker–
Planck equation (FPE) [5], where the variable is the
time- and dissipation-dependent probability distribu-
tion W(x,p; t, β) as a function of the deformation in
fission directionx and its canonically conjugate mo-
mentump. β is the reduced dissipation coefficient.
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Fig. 1. Fission rateλf (t) = �f (t)/h̄ as a function of time for three different values of the reduced dissipation coefficientβ for 238U
at a temperatureT = 3 MeV. The solid line is the numerical solution of the FPE while the dashed line is calculated using Eq. (8) with
Wn(x = xb; t, β) taken from Eqs. (9) and (10). The initial conditions correspond to the zero-point motion (see text).

The solution of the FPE leads to a time-dependent
fission-decay widthΓf (t), whose shape is influenced
by the dissipation strength.

Grangé, Jun-Qing and Weidenmüller [4] solved nu-
merically the time-dependent FPE for a nucleus with
a certain intrinsic excitation energy and with the phase
space initially populated according to the zero-point
motion. In order to systematically study the influence
of different parameters such as fission barrier, nuclear
temperatures and dissipation strength on the fission-
decay widthΓf (t), we have repeated such calcula-
tions1 using a deformation-dependent nuclear poten-
tial given by two smoothly joined parabolas with op-
posite curvatures. The absolute values of the curva-
tures in the ground state and at the barrier have been
taken from Ref. [6]. The obtained time-dependent
fission-decay width in the case of238U at a tempera-
ture of 3 MeV for different values of the reduced dissi-
pation coefficientβ is shown in Fig. 1 with solid lines.

However, these numerical calculations are too time
consuming to be implemented in nuclear-reaction
codes, which have to be used in order to extract the
relevant physical information from available experi-
mental data. The same problem holds for the appli-
cation of the Langevin equation, which has been de-
veloped as an alternative possibility [7,8]. Therefore,
in the model calculations usually one of the following
approximations [9,10] for the time-dependent fission-
decay widthΓf (t) is applied:

1 The numerical solutions of the FPE were obtained with the
software package FEMLAB (Comsol AB, Stockholm).

A step function [9] that sets in at timeτf :

(1)Γf (t)=
{

0, t < τf ,

Γ k
f , t � τf .

An exponential in-growth function [10]:

(2)Γf (t)= Γ k
f

{
1− exp(−t/τ )},

where τ = τf /2.3, τf is the transient time, de-
fined [11] as the time in whichΓf (t) reaches 90%
of its asymptotic value given by the Kramers fission-
decay widthΓ k

f [3].

(3)Γ k
f = Γ BW

f

[(
1+

(
β

2ω0

)2)1/2

− β

2ω0

]

whereΓ BW
f is the fission-decay width given by the

transition-state model [12], andω0 is the frequency of
the oscillator, corresponding to the inverted potential
at the barrier.

These approximations strongly deviate from the
numerical solution and thus may severely influence the
results [13,14]. As an example, Table 1 summarizes
the results of different calculations in comparison with
the experimental fission cross section after nuclear
excitations of the system238U + Pb at 1 A GeV
from Ref. [17]. Obviously, the reduced dissipation
coefficient that describes the experimental result varies
by a factor of two between 2× 1021 s−1 and 4×
1021 s−1, depending on the approximation used. In
order to come to a reliable conclusion, the calculation
should be repeated using a more realistic description
of the time-dependent fission-decay width. This is the
aim of the present work. The influence of other model
parameters used in the calculation and a discussion on
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Table 1
Experimental total nuclear-induced fission cross section of238U (1 A GeV) in a lead target, compared with different calculations performed with
the code ABRABLA [15,16]. The experimental cross sections are taken from [17]. The simultaneous break-up stage as described in Ref. [18]
is included in the calculation, so that a limit for the initial temperature of 5.5 MeV of the sequential decay (evaporation cascade) is imposed.
A first set of calculations was performed with the transition-state model [12]. The other calculations were performed with different descriptions
of Γf (t) and different values ofβ. The last calculation was performed withΓf (t) as the analytical solution of the FPE given by Eq. (8) with
Wn(x = xb; t, β) taken from Eqs. (9) and (10)

Experiment (2.07± 0.38)b
Transition-state model 3.33 b
Γf (t) step (Ref. [9]) β = 2× 1021 s−1 2.00 b
Γf (t) step (Ref. [9]) β = 4× 1021 s−1 1.54 b
Γf (t)∼ 1− exp(−t/τ ) (Ref. [10]) β = 2× 1021 s−1 2.52 b
Γf (t)∼ 1− exp(−t/τ ) (Ref. [10]) β = 4× 1021 s−1 2.04 b
Γf (t) FPE (this work) β = 2× 1021 s−1 2.09 b

the validity of the initial conditions will be presented
in another publication [14].

An analytical approximate solution to the FPE for
a realistic nuclear potential was obtained in the case
of the over-damped motion (β > 2 × 1021 s−1) [11].
However, this solution did not fulfil the requirement of
the exact solution of the FPE to vanish at the beginning
of the deexcitation process [4].

We have developed a new highly realistic descrip-
tion of the fission-decay width [2] based on the analyt-
ical solution of the FPE when the nuclear potential is
approximated by a parabola.

The time-dependent fission-decay width is defined
as [4]:

Γf (t)= h̄λf (t)= h̄

∫ +∞
−∞ vW(x = xb, v; t, β) dv∫ xb

−∞
∫ +∞
−∞ W(x,v; t, β) dv dx ,

(4)

where λf (t) is the fission rate,xb is the deforma-
tion at the barrier,v is the velocity (v = dx/dt) and
W(x,v; t, β) is the probability distribution. The de-
nominator measures the part of the probability distri-
bution still caught inside the fission barrier. Due to
the flux over the fission barrier, its value gradually de-
creases.

We define the normalized probability distribution at
the barrier deformationxb,Wn(x = xb, v; t, β), as:

Wn(x = xb, v; t, β)= W(x = xb, v; t, β)∫ xb
−∞

∫ +∞
−∞ W(x,v; t, β) dv dx .

(5)

Considering Eq. (5) and taking into account the
stationary valueΓ K

f , the fission-decay width of Eq. (4)

can be reformulated as:

(6)Γf (t)=
∫ +∞
−∞ vWn(x = xb, v; t, β) dv∫ +∞

−∞ vWn(x = xb, v; t → ∞, β)dv
Γ K
f .

At this point we introduce two approximations.
First we consider that the shape of the probability dis-
tribution at the barrier deformationW(x = xb, v; t, β)
as a function of the velocityv is constant in time, and
only its height varies with time asC(t):

W(x = xb, v; t, β)≈ C(t) ·W(x = xb, v; t → ∞, β).

(7)

This statement is valid in the over-damped motion
were the equilibrium in velocity is established very
rapidly. However, this is still applicable somewhat
outside the over-damped regime, sincexb is far away
from the initial deformation. Thus, the time needed for
the probability distribution to reach the fission barrier
is long enough for the velocity to equilibrate.

As a consequence, we can express the fission-decay
width in the following form, which has no explicit
dependence on velocity:

(8)Γf (t)≈ Wn(x = xb; t, β)
Wn(x = xb; t → ∞, β)

Γ K
f .

The second approximation consists in using for
Wn(x = xb; t, β) the solution of the FPE obtained
using a parabolic nuclear potential [19] for zero
deformation and zero velocity as initial conditions:

Wn(x = xb; t, β)=Wpar(x = xb; t, β)
(9)= 1√

2π σ
exp

(
− x2

b

2σ 2

)
,
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whereσ 2 is a time-dependent function of the form:

σ 2 = T

µω2
1

{
1− exp(−βt)

[
2β2

β2
1

sinh2
(
β1t

2

)

+ β

β1
sinh(β1t)+ 1

]}
,

(10)

whereT is the nuclear temperature,µ is the reduced
mass associated to the deformation degree of freedom,
ω1 describes the curvature of the potential at the
ground state andβ1 = (β2 − 4ω2

1)
1/2.

Implementing Eqs. (9) and (10) in Eq. (8) results
in an analytical expression forΓf (t). As initial con-
dition of the problem, we have chosen the zero-point
motion at the ground-state deformation, which is ade-
quate [13] to the reaction listed in Table 1. The zero-
point motion was taken into account by shifting the
time scale by a certain amount: for the under-damped
case (β < 2× 1021 s−1), the deformation and the mo-
mentum coordinate saturate at about the same time.
Therefore, the time shift needed for the probability dis-
tribution to reach the width of the zero-point motion
in deformation space is equal to the time that the aver-
age energy of the collective degree of freedom needs
to reach the value12h̄ω1 associated to the zero-point
motion:

(11)t0 = 1

β
ln

(
2T

2T − h̄ω1

)
.

In the over-damped regime (β � 2 × 1021 s−1),
the momentum coordinate saturates very fast, while
the population of the deformation space is a diffusion
process. In this case, the time in which the variance in
the deformation coordinate of the probability distribu-
tion acquires the corresponding value of the zero-point
motion follows from the solution of the Fokker–Planck
equation [16]:

(12)t0 = h̄β

4ω1T

if the influence of the potential on the diffusion process
is neglected, which is anyhow small in the range of the
zero-point motion. In this way, the zero-point motion
is taken as the initial condition in our calculations
throughout this Letter, in particular in the approximate
description of the time-dependent fission-decay width
of Fig. 1. For the numerical calculations, however, the

exact distributions in position and velocity of the zero-
point motion were taken.

In addition, the reduced mass was obtained using
the relation:

(13)µω2
1 = 2K,

where K is the stiffness of the potential [6] and
h̄ω1 = 1 MeV [9]. The deformation at the barrier was
obtained using the expression of Ref. [20]

xb = 7

3
y − 938

765
y2 + 9.499768y3 − 8.050944y4,

(14)

wherey = 1− α andα is the fissility parameter.
As can be seen in Fig. 1(a), this analytical ap-

proximation quite well reproduces the exact solution
for the critical damping (β = 2 × 1021 s−1). A sim-
ilar agreement is obtained in the over-damped regime
(β > 2×1021 s−1) [14]. The approximation also gives
a rather good description of the slightly under-damped
motion (β = 1×1021 s−1), shown in Fig. 1(b). Even in
the strongly under-damped case (β = 0.5× 1021 s−1),
the onset of the fission decay and the oscillations are
reproduced very well as demonstrated in Fig. 1(c), al-
though the absolute magnitude of the fission rate is
somewhat underestimated.

Using the new description of the time-dependent
fission-decay width, given by Eqs. (8)–(10), another
model calculation has been performed. The result is
listed in the last line of Table 1. It is interesting to
note that the result is rather close to the calculation
performed with the step function, while it strongly de-
viates from the calculation with the exponential-type
in-growth function. Obviously, the total suppression of
the fission-decay width at the beginning of the deexci-
tation cascade is an essential feature of a realistic de-
scription of the influence of dissipation on the fission
process. This makes also clear that the quantitative
deviations of the new approximate description from
the numerical solution of the time-dependent fission-
decay width are not crucial and will not lead to sub-
stantially different results.

The total suppression of the fission-decay width
for small time values and the gradual increase are the
most critical features of a realistic formulation of the
time-dependent fission-decay width [2,13] in reactions
that pass by a compound nucleus with small shape
distortions. These features, which were quantitatively
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or even qualitatively missed in the previously used
descriptions, are well reproduced by the analytical
approximation proposed in the present work. Using
the new description of the time-dependent fission-
decay width in nuclear-model codes will improve the
quality of such calculations appreciably and allow for
more realistic conclusions on the dissipation strength
when interpreting experimental data. In particular, any
conclusions previously drawn from calculations using
the exponential-like in-growth function should be re-
examined.
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