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1. Introduction. 

While discussing the smoothenss properties of certain Banach (or B-) 
spaces, in [1 ], BoNIC and FRAMPTON state: "It is likely that if a B-space 
and its dual are 02-smooth, then it is a Hilbert space". The purpose of 
this note is to prove this statement in the following form. 

Theorem 1. If f£ is a B-space and f£* its dual and if the norms in 
f£ and f£* are twice Frechet (or F-) differentiable at every point except 
posmbly the origin, then f£ is isomorphic to a Hilbert space in the sense 
that f£ may be provided with an inner-product in such a way that the resulting 
(inner-product) norm is equivalent to the given norm of f£. 

Even though there are several characterizations of the Hilbert space 
(e.g., [3], [6], [8], [5]), they are mostly based on geometric considerations. 
The corresponding characterizations based on smoothness properties are 
of interest in certain analytical work (cf. [1]). Such a method is considered 
here. The terminology employed here essentially follows [2], and some 
results of the latter will be used freely. 

2. Proof. The proof obtains from the following seven steps starting 
with the real case. Then the complex case will be obtained using ( [3], 
p. 335). 

(1) Iff£ is a B-space and the norm off£* is F-differentiable then f£ 
is reflexive. If also the norm of f£ is F-differentiable then f£ and f£* 
are homeomorphic (under a 'spherical image map', [2], p. 306). 

For, by ([2], Cor. 3.18) the norm in f£* is F-differentiable iff the unit 
sphere off£ is weakly uniformly rotund (and hence it is k-rotund, [2], 
p. 309). This implies in turn (cf. [2], Thm. 5.4 (i)) that the unit ball of 
f£ is weakly compact since f£ is complete. It follows that f£ is reflexive 
([4], p. 38). The last statement is a consequence of ([2], Cor. 3.18 and 
Thm. 4.18). Moreover, by a well-known result of SMULIAN (cf. also [2], 
p. 289), f£ and f£* are simultaneously rotund and smooth. 

(2) Iff£ is a B-space whose norm is twice F-differentiable and if Tz. 
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is the second derivative at xo( ¥= 0), then the map T z.: te x te -+ reals, 
is a positive definite symmetric bounded bilinear functional. 

Indeed, if !p(t)=l/xo+txl/, for xo, x in the unit sphere S={x: llxll=1} 
of te, then the convex function 9'( ·) is twice differentiable so that IJ?"(t):;;;. 0 
and IJ?"(O)=Tz.(x, x):;;;.O. The result is now an immediate consequence of 
([10], Thm. 5.1; or [4], Thm. 26.3.5). (Here, positive=non negative.) 

(3) For all xo, x in the unit sphereS, one has Tz.(xo, x)=Tz.(x, xo)=O. 
By symmetry, consider Tz.(Xo, x). Let G(x0 ; ·) be the weak derivative 

of the norm in te at xo E S. Then 

G(xo; x) = lim llxo+~a_:l[-1' 
t-+0 

by definition, and clearly G({Jxo; ·) = G(xo; ·) for all f3 > 0. Since 

T (h h) =l· G(xo+th1;h2)-G(xo;~) h h 8 Zo 1, 2 Im t , 1, 2 E , 
1-+0 

it follows from the preceding comment, on setting h1 = xo, that 

for It I< 1, and all h2 E S. Hence Tz.(xo, x) = 0. 
(4) For each xo E S, G(xo; ·) E S*, the unit sphere of te*. This is im

mediate from G(xo; xo) = 1 and IG(xo, x)l < 1 for all xES. 
( 5) Under the hypothesis of the theorem, if 0 ¥= x E te 1 = te 8 xo 

(direct difference) then Tz.(x,x)>O. 
Suppose this is not true. Then Tz.(x, x) = 0 for some 0¥=x E te1. Then 

by step (2), via Schwarz inequality, it follows that Tz.(x, y)=O for all 
y E te so that T z.x = 0, i.e., T z.: te1 -+ te1 * is not 1-1 and has no inverse 
on te1. Consider the map T:te-+ff* defined by Tx=llxllvz/uzu for x¥=0, 
and =0 for x=O, where v<·l is the spherical image map of S (cf. [2]). 
Then under the hypothesis of the theorem T and T-1 are single-valued 
continuous onto maps ([2], Thm. 4.18). In fact on S and 8*, one can 
identify Tx as G(x; ·) and T-lx* as G(x*; ·) where G and G are the first 
(strong or F-) derivatives of the norms in te and te* at x and x* re
spectively. If Yt=(xo+ty)JIIxo+tyll, xo, yES, then with the hypothesis of 
~wice F-differentiability of norms in te it follows that 

lim (Tye- Txo) (y) 
t-+0 t 

exists and is continuous and hence Tis F-differentiable, (cf. [10], Th. 3.3). 
It also follows easily from the definition ofT on S, that the above limit 
equals Tz.(y, y). Thus T'(xo)=Tz. where prime denotes the F-derivative 
ofT at xo. Since te* satisfies the same hypothesis, (T-1)'(xo*) exists and 
=Tz:: te*-+ te. Now consider the identity xo=T-1(Txo) where xo, xES 
are given at the beginning of this step. Now using the 'chain rule' for 
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the F-derivatives (cf. [10], p. 41) one obtains 

I= (T-1)'(y)T'(x0), y=Txo. 

Here I is the identity operator on:!£. If this operator equation is applied 
to the given element xES, one gets x=O, (recall that Tx,x=O) which 
is a contradiction since x# 0, ( #xo). This proves that the supposition 
is false and T x,(x, x) > 0, for 0 # x E :!£1. 

(6) If x,yE:!£1 and [x,y]=Tx,(x,y), then[·,·] is an inner-product 
and lllxlll = [ x, x ]! gives an equivalent norm to the given norm 11·11 of :!E. 

In view of the preceding steps only the equivalence of norms need be 
shown and this is similar to ( [6], p. 52). Briefly, 

lllxiii 2=Tx,(x, x) < IITx,llllxll2=022llxiJ2, 

being true with 022 =liT x,ll, suppose there was no 01 > 0 such that 
lllxiii>01ilxll- Then there exist Xn E:!£1 with lllxnlll=1 and llxnll>n. If 
y E :!£1 and xy*(xn)= [xn, y] so that Jxy*(xn)l < IIIYIII <oo, n;;;. 1, it follows 
from the uniform boundedness that Jxy*(xn)l .;;;M ·IJxy*JI, for some constant 
0 < M < oo. This implies llxnll < M and contradicts the choice llxnll > n. 
Hence there is a 01>0 such that 01ilxll< lllxlll <;02ilxll-

(7) The theorem holds as stated. For, since :!£ =:!£1 EB Xo, if x, y E :!£, 
let X=X1 +1hx0, y=y1 +A2Xo be the unique direct sum representations for 
x~, Y1 E :!£~, and A1, A2 real. Define (x, y) = [x~, y1] +A1A2ilxoll2. Then ( ·, ·) is 
an inner product and its norm is clearly equivalent to 11·11 of :!£. Thus the 
theorem holds if:!£ is real. If:!£ is complex, then the result can be deduced 
from the real case by ([3], Thm. 7.2). This completes the proof of the 
theorem. 

3. Complements. As a consequence of the theorem one has: 

Corollary. If (]J, 'JI are Young's complementary functions, both satis
fying a growth condition (the Lh-condition of [7], or see [9]), and if £-P, L'~' 
are Orlicz spaces on a measure space (.Q, E, f-t), then £-P is isomorphic to a 
Hilbert space whenever (]J, 'JI are twice continuously differentiable on the line. 

The result follows from the theorem if it is noted that twice continuous 
differentiability of (jJ and the growth condition imply the norm in £-P 
is twice F-differentiable, which results from a second order implicit 
differentiation, analogous to the first order case of ([7], pp. 188-189; 
[9], p. 675). It may be remarked that without a growth condition while 
£-P and £'~'are rotund since (]J, 'JI are strictly convex ([9], Thm. 4), the 
F-differentiation of the norm does not seem to hold at all elements of £-P 
(since (£-P)* #L'~'). 

Remarks. 1. By step (1) of the proof of theorem, if the norm of 
:!["* is F-differentiable and :!£ is complete then :!£ is reflexive. Thus the 
additional assumption (made in [9], Thm. 6) that :!£ be reflexive is re
dundant. 
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2. The following remark, due to Mr. J. J. Uhl, Jr., has some interest 
here. It follows easily from two applications of Holder and inverse Holder 
inequalities: If f/J, lJ' are continuous Young's complementary functions, 
then the following three statements are equivalent. (i) £<~> :::> L'~', (ii) 
£2 :::> L'~', (iii) £<~> :::> £2. 

3. The norm functional of a complex B-space, even if it is F-differ
entiable, is not necessarily analytic (of. [4], pp. 766-769). This follows 
from the above theorem applied to, for instance, the complex LP spaces 
with p>l. 

4. I was informed by Professor F. Browder that the result of Theorem I 
was also established in an unpublished manuscript, which is not yet 
available to me, by Bonic and Reis. Also after this paper was prepared, 
an announcement without proof of a similar result has appeared in the 
Bulletin of the Amer. Math. Soc., (1966), p. 521, by Sundaresan. He 
states that it is a consequence of certain other results. But, I think, the 
above simple and direct proof may be of independent interest. 
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