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Abstract Laser melting deposition was carried out to deposit a 1Cr12Ni2WMoVNb steel bar on a

wrought bar of same material. Room-temperature tensile properties of the hybrid fabricated

1Cr12Ni2WMoVNb steel sample were evaluated, and microstructure, fracture surface morphology,

and hardness profile were analyzed by an optical microscope (OM), a scanning electron microscope

(SEM), and a hardness tester. Results show that the hybrid fabricated 1Cr12Ni2WMoVNb steel

sample consists of laser deposited zone, wrought substrate zone, and heat affected zone (HAZ)

of the wrought substrate. The laser deposited zone has coarse columnar prior austenite grains

and fine well-aligned dendritic structure, while the HAZ of the wrought substrate has equiaxed

prior austenite grains which are notably finer than those in the wrought substrate zone. Besides,

austenitic transformation mechanism of the HAZ of the wrought substrate is different from that

of the laser deposited zone during the reheating period of the laser deposition, which determines

the different prior austenite grain morphologies of the two zones. Microhardness values of both

the laser deposited zone and the HAZ of the wrought substrate are higher than that of the wrought

substrate zone. Tensile properties of the hybrid fabricated 1Cr12Ni2WMoVNb steel sample are

comparable to those of the wrought bar, and fracture occurs in the wrought substrate zone during

the tensile test.
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1. Introduction

Martensitic stainless steel 1Cr12Ni2WMoVNb (GX-8) with

excellent mechanical properties and moderate corrosion resis-
tance is widely used as compressor blade, disc, shaft, etc. in
gas and steam turbines.1

Laser melting deposition (LMD) is a rapid solidification-
based near-net-shaping technology for building fully dense com-
ponents through layer-by-layer melting deposition of metal
SAA & BUAA. Open access under CC BY-NC-ND license.
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Fig. 1 Schematic illustration of the laser deposition process for

the hybrid fabricated 1Cr12Ni2WMoVNb steel sample.
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powders.2–8 This technology has the advantage of producing
complex components of difficult-to-process materials by con-
trast with conventional manufacturing routes like forging or

casting. Moreover, laser deposited metal parts have excellent
mechanical properties which are usually comparable or even
superior to forged materials due to fine rapidly solidified micro-

structures. Laser deposited titanium alloy components have
been successfully used as aircraft load-bearing structural
components.9,10

Special features can be added to local areas of a simplified
forging or casting by LMD in order to obtain a large and com-
plex final part.11,12 This process is a hybrid fabrication based
on LMD. Conventional manufacturing routes like forging or

casting are suitable for making large and regular parts, while
LMD has significant process flexibility on producing complex
parts. Combining the advantages of both conventional manu-

facturing routes and laser melting deposition, the hybrid fabri-
cation can make substantial savings in the amount of materials
and time required to make the final parts.11 Another applica-

tion for LMD is laser repairing or rebuilding worn compo-
nents, which can effectively extend service lives of
components and reduce costs.13–18 One common concern for

hybrid fabrication and laser repair is the mechanical properties
of the final parts, which are expected to be at least equal to
those of the substrate materials. The mechanical properties
of the hybrid fabricated or laser repaired final parts are depen-

dent on microstructure of the parts especially in the heat af-
fected zone (HAZ) of the substrate materials. Repaired parts
using conventional welding techniques such as tungsten-arc in-

ert-gas (TIG) welding or metal-inert gas (MIG) welding usu-
ally have high thermal stresses and wide HAZ with
coarsening grains and microstructure due to high heat input,

which obviously deteriorates the mechanical properties of the
repaired parts.16–18 By contrast with TIG welding and MIG
welding, small HAZ with fine microstructure and high

mechanical properties could be obtained through hybrid fabri-
cation or laser repair due to low heat input. With regard to
martensitic stainless steels, relevant papers on microstructure
and mechanical properties are very limited. Xue et al. investi-

gated microstructure and tensile properties of laser repaired
1Cr12Ni3MoVN steel casting, and found that fracture oc-
curred from casting substrate during tensile tests.19 To gain a

further understanding on microstructure and mechanical prop-
erties of hybrid fabricated or laser repaired martensitic stain-
less steels, more work needs to be done.

In the present study, LMD was carried out to deposit a
1Cr12Ni2WMoVNb steel bar on a wrought bar of same mate-
rial. Microstructure, effect of thermal cycles during the laser
deposition on prior austenite grain morphologies, and tensile

properties of the hybrid fabricated steel were investigated.
Fig. 2 Geometric shape and size of a room-temperature tensile

specimen.
2. Experimental procedure

Plasma rotation electrode processing 1Cr12Ni2WMoVNb steel
powders with a particle size ranging from 75 to 250 lmwere se-
lected as the rawmaterials. Chemical composition (wt.%) of the

powders was C 0.16, Cr 11.76, Ni 2.06,W 0.82, Mo 0.98, V 0.25,
Nb 0.23, Si 0.33, Mn 0.16, S 0.0025, P 0.016, Fe balance. The
substrate material was a 1Cr12Ni2WMoVNb steel wrought

bar with dimensions of Ø55 mm · 30 mm. The wrought bar
was in a standard quenched-and-tempered state (1150 �C
solution treatment followed by oil quenching +580 �C temper-
ing). Before laser deposition, the wrought bar was sandblasted.
LMDwas carried out using a LMD system equipped with aGS-

TFL-8000 CO2 laser (maximum output power 8 kW), a BSF-2
powder feeder together with a co-axial powder delivery nozzle,
aHNC-21M computer numerical control (CNC)multi-axismo-

tion system, and an argon-purged processing chamber with oxy-
gen content less than 100 · 10�6. A 1Cr12Ni2WMoVNb steel
bar sample with dimensions of approximately Ø55 mm ·
30 mm was laser deposited on the wrought substrate. The
processing parameters were as follows: laser beam power
4.5–5.0 kW, scanning speed 4–5 mm/s, beam diameter 5 mm,
powder delivery rate 6.5–7.5 g/min, overlap ratio 30%–50%.

The scanning mode was to-and-fro scanning. A schematic illus-
tration of the laser deposition process for the hybrid fabricated
1Cr12Ni2WMoVNb steel sample was shown in Fig. 1. The

newly laser deposited sample was tempered at 580 �C for 2 h
in order to eliminate residual stresses and obtain a tempered
microstructure.

Metallographic samples were prepared using standard prac-
tices and examined by an optical microscope (OM). The etch-
ant is a mixture of 4 g picric acid, 5 ml hydrochloric acid, and
100 ml ethanol. Microhardness profile of the hybrid fabricated

sample was measured by using a HXZ-1000 semi-automatic
Vicker tester with a test load of 500 g and a dwell time of



Fig. 4 Microstructure of the laser deposited zone and the

wrought substrate zone.
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10 s. Room-temperature tensile tests based on the standard of
ISO 6892: 1998 were performed on 3 mm diameter round spec-
imens with 15 mm gauge length and 47 mm total length. The

principle axis of the specimens was parallel to the deposition
direction (Z direction), and the bonding interface between
the laser deposited zone and the wrought substrate (melting

line) was in the middle of the specimens, as shown in Fig. 2.
The fracture surfaces were examined by a scanning electron
microscope (SEM).

3. Results and discussion

3.1. Microstructure

Fig. 3 shows microstructure of the hybrid fabricated

1Cr12Ni2WMoVNb steel sample. There is a good metallurgi-
cal bonding between the laser deposited zone and the wrought
substrate without metallurgical defects such as gas porosities,
lack-of-fusion porosities, etc. The hybrid fabricated

1Cr12Ni2WMoVNb steel sample consists of laser deposited
zone, wrought substrate zone, and heat affected zone (HAZ)
of the wrought substrate.

Fig. 4 shows microstructure of the laser deposited zone and
the wrought substrate zone. The laser deposited zone has
coarse columnar prior austenite grains, and the width of the

columnar grains exceeds 100 lm. The columnar prior austenite
grains are composed of many fine well-aligned dendrites with a
primary arm spacing of 11–15 lm. Microstructure of the laser

deposited zone is fine tempered sorbite. The wrought substrate
zone has equiaxed grains, and the average grain size is 27.9 lm.
Microstructure of the wrought substrate is typical tempered
sorbite, which is much coarser than that of the laser deposited

zone.
Microstructure of the HAZ of the wrought substrate has a

gradual transition along the depth direction, as shown in

Fig. 5(a), which is associated with the thermal cycles during la-
Fig. 3 Microstructure of the hybrid fabricated 1Cr12Ni2W-

MoVNb steel sample.
ser deposition. Here, the depth is defined as the distance from
the melting line. Along the depth direction, the maximum
reheating temperature decreases gradually, and the HAZ of

the wrought substrate can be divided into three zones: suffi-
ciently quenched zone, insufficiently quenched zone, and tem-
pered zone. In the sufficiently quenched zone, the reheating

temperature is above Ac3 (the temperature at which ferrite-
to-austenite transformation is completed during heating), so
the wrought substrate transforms from tempered sorbite to

austenite during the reheating period and austenite transforms
to martensite during the subsequent cooling process. The suf-
ficiently quenched zone has fine equiaxed prior austenite

grains, and the grain size decreases with the increase of the
depth. Fig. 5(b) shows the prior austenite grain morphology
of the sufficiently quenched zone close to the melting line.
The average grain size is 21.4 lm, which is finer than that of

the wrought substrate zone. Fig. 5(c) shows the prior austenite
grain morphology of the sufficiently quenched zone away from
the melting line. The average grain size becomes much finer,

which is less than 10 lm. In the insufficiently quenched zone,
the reheating temperature is between Ac1 (the temperature at
which ferrite-to-austenite transformation begins during heat-

ing) and Ac3, so the wrought substrate is partially austenitized
during the reheating period and forms a mixed microstructure
of martensite and tempered sorbite during the subsequent

cooling process (Fig. 5(d)). In the tempered zone, the reheating
temperature is below Ac1, so microstructure of the wrought
substrate has no obvious change.

During the laser deposition process, the substrate material

and the previously deposited zone suffer heat treatment from
the moving melt pool. As the scanning mode is to-and-fro cyc-
lic scanning in track-by-track and layer-by-layer manners, the



Fig. 5 Microstructure of the HAZ of the wrought substrate.
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wrought substrate and the previously deposited zone undergo
cyclic thermal fluctuations. Reheating rate and subsequent
cooling rate are very fast, meanwhile, the cyclic thermal fluctu-

ations get weaker and weaker with the increase of distance
from the layer being deposited.20 The thermal cycles during
the laser deposition can induce complex solid phase transfor-

mations and diverse microstructure. During the deposition of
the first layer, a certain depth of the wrought substrate is
austenitized and the austenitization depth is about 1–2 mm

(Fig. 3). Due to the rapid reheating rate, austenite nucleation
rate is high, and the wrought substrate is subsequently cooled
down before austenite grains grow up. Therefore, compared
with the wrought substrate zone (without heat treatment),

the HAZ of the wrought substrate (even the HAZ close to
the melting line) has notably finer grains. With the increase
of the depth, the maximum austenitization temperature de-

clines, and the austenite grains get finer gradually, as shown
in Fig. 5. During the subsequent cooling process, austenite
transforms to martensite. As a result of the rapid cooling rate

and the fine austenite grains, the martensite is also very fine.
When the second or more layers are deposited, the maximum
reheating temperature of the HAZ of the wrought substrate

declines below Ac1, so the martensite is slightly tempered.
As mentioned above, prior austenite grain refinement occurs

in the HAZ of the wrought substrate during the thermal cycles.
However, instead of forming fine equiaxed prior austenite

grains, the laser deposited zone remains coarse columnar grain
morphology despite suffering the similar thermal cycles. This
indicates that the laser deposited zone and the HAZ of the

wrought substrate have different austenite transformation
mechanisms during the thermal cycles. Due to high temperature
gradient and rapid solidification cooling rate, the newly laser

deposited 1Cr12Ni2WMoVNb steel forms columnar austenite
grains, and austenite subsequently transforms to martensite.
When the next layer is deposited, the previous layer is re-austen-

itized. For high alloy steels such as 1Cr12Ni2WMoVNb steel, if
martensite or tempered martensite is reheated very rapidly
aboveAc3 to transform to austenite, the newaustenite grainswill
inherit or recover the shape, size, and orientation of the original

austenite grains.21 In other words, the new austenite grains will
remain columnar grain morphology during the thermal cycles.
On the other hand, the original microstructure of the wrought

substrate is tempered sorbite. When martensite is tempered at
high temperature to form tempered sorbite, the orientation rela-
tionship between prior martensite laths could partially disap-

pear. As a result, when tempered sorbite is re-austenitized,
new austenite grains form fine equiaxed grains instead of inher-
iting or recovering the original coarse equiaxed grains. Accord-
ing to the analysis above, the original microstructures of the

laser deposited zone and the HAZ of the wrought substrate
are martensite and tempered sorbite, respectively, and have dif-
ferent austenite transformation mechanisms during the thermal

cycles, which determine the different austenite grain morpholo-
gies of the two zones. Provided that the newly laser deposited
layer is immediately tempered to form tempered sorbite through

some method, then the layer will be re-austenitized to form fine
equiaxed grains when the next layer is deposited. By this meth-
od, the laser deposited zone is expected to have fine equiaxed

grains instead of coarse columnar grains.



Fig. 7 Fracture surface of a tensile specimen of the hybrid

fabricated 1Cr12Ni2WMoVNb steel sample.
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3.2. Microhardness profile

Fig. 6 shows microhardness profile of the hybrid fabricated
1Cr12Ni2WMoVNb steel sample (test load is 500 g and load
time is 10 s). Microhardness of the laser deposited zone is

about 50 HV higher than that of the wrought substrate zone.
Microhardness of the HAZ of the wrought substrate close to
the melting line is slightly higher than that of the laser depos-
ited zone. With the increase of the depth, microhardness of the

HAZ of the wrought substrate keeps nearly constant at the
beginning and then declines gradually to the level of the
wrought substrate zone.

The laser deposited zone has a fine well-aligned dendritic
structure and fine tempered sorbite, which helps to improve
the microhardness. The HAZ of the wrought substrate has

notably finer equiaxed prior austenite grains and microstruc-
ture than the wrought substrate zone, thus microhardness of
the HAZ of the wrought substrate is higher than that of the

wrought substrate zone. The HAZ of the wrought substrate
close to the melting line (the sufficiently quenched zone) is suf-
ficiently re-austenitized during the thermal cycles, and microh-
ardness of the zone keeps nearly constant. With the increase of

the depth, austenitization is insufficient, and consequently
microhardness declines gradually to the level of the wrought
substrate zone.

3.3. Room-temperature tensile properties

Room-temperature tensile properties of the hybrid fabricated

1Cr12Ni2WMoVNb steel sample are comparable to the
wrought bar, as shown in Table 1. Average ultimate tensile
strength of the hybrid fabricated steel component is
1207 MPa. Moreover, the tensile properties of the laser melting

deposited 1Cr12Ni2WMoVNb steel are also listed in Table 1
for the purpose of comparison. As can be seen, the ultimate
tensile strength of the laser melting deposited steel is slightly

higher than those of the wrought bar and the hybrid fabricated
Table 1 Room-temperature tensile properties of the hybrid fabrica

Materials

Hybrid fabricated 1Cr12Ni2WMoVNb steel sample

Wrought bar (1150 �C, oil-quenched + 580 �C, air-cooled)1

Laser melting deposited 1Cr12Ni2WMoVNb steel (580 �C, air-cooled)22

Fig. 6 Microhardness profile of the hybrid fabricated

1Cr12Ni2WMoVNb steel sample.
steel sample. Fig. 7 shows fracture surface of a tensile specimen
of the hybrid fabricated 1Cr12Ni2WMoVNb steel sample. No
metallurgical defects are found. The fracture surface consists

of fibrous zone, crack propagation zone, and shear rupture
zone. There are lots of secondary cracks in the fibrous zone
ted 1Cr12Ni2WMoVNb steel sample.

rb (MPa) r0.2 (MPa) d (%) w (%)

1207 ± 5.8 1027 ± 5.8 14.0 ± 1.73 59.8 ± 3.82

1199 1041 17.2 67.2

1223 ± 20.8 7.7 ± 0.58 38.7 ± 8.50

Fig. 8 Cross-sectional morphology of a tensile specimen of the

hybrid fabricated 1Cr12Ni2WMoVNb steel sample (fracture

surface is indicated by the white arrow).
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and crack propagation zone. Magnified image of the fibrous
zone shows a dimpled morphology.

Fig. 8 shows cross-sectional morphology of a tensile speci-

men of the hybrid fabricated 1Cr12Ni2WMoVNb steel sample.
The fracture site is in the wrought substrate zone away from the
HAZ of the wrought substrate. Asmentioned previously, the la-

ser deposited zone and the HAZ of the wrought substrate zone
have finer microstructure and higher microhardness than the
wrought substrate, so tensile properties of the two zones are

superior to the wrought substrate zone accordingly.

4. Conclusions

(1) LMD was carried out to deposit a 1Cr12Ni2WMoVNb

steel bar on a wrought bar of same material. There is a
good metallurgical bonding between the laser deposited
zone and the wrought substrate. Grain refinement

occurs in the HAZ of the wrought substrate during the
thermal cycles.

(2) The laser deposited zone and the HAZ of the wrought
substrate have different austenite transformation mech-

anisms during the thermal cycles, which determine dif-
ferent prior austenite grain morphologies of the two
zones.

(3) Microhardness of the laser deposited zone and the HAZ
of the wrought substrate is higher than that of the
wrought substrate zone. Microhardness of the HAZ of

the wrought substrate close to the melting line is slightly
higher than that of the laser deposited zone. With the
increase of the distance from the melting line, microh-
ardness of the HAZ of the wrought substrate keeps

nearly constant at the beginning and then declines grad-
ually to the level of the wrought substrate zone.

(4) Room-temperature tensile properties of the hybrid fabri-

cated 1Cr12Ni2WMoVNb steel sample are comparable
to those of the wrought bar. Fracture occurs in the
wrought substrate zone during the tensile test.
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