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The time average reward for a discrete-time controlled Markov process subject to 
a time-average cost constraint is maximized over the class of al causal policies. Each 
epoch, a reward depending on the state and action, is earned, and a similarly con- 
stituted cost is assessed; the time average of the former is maximized, subject to a 
hard limit on the time average of the latter. It is assumed that the state space is 
finite, and the action space compact metric. An accessibility hypothesis makes it 
possible to utilize a Lagrange multiplier formulation involving the dynamic 
programming equation, thus reducing the optimization problem to an 
unconstrained optimization parametrized by the multiplier. The parametrized 
dynamic programming equation possesses compactness and convergence properties 
that lead to the following: If the constraint can be satisfied by any causal policy, the 
supremum over time-average rewards respective to all causal policies is attained by 
either a simple or a mixed policy; the latter is equivalent to choosing independently 
at each epoch between two specified simple policies by the throw of a biased coin. 
‘9 1985 Academic Press, Inc. 

I. INTRODUCTION 

Markov systems have frequently served as models for computer-com- 
munication networks, production operations, computer operating systems, 
and macroeconomic system behavior-among many other applications. 
These models have naturally suggested the potential for optimization 
engendered by the Markov property. Accordingly, many journal articles, 
text, and monographs have dealt with stochastic dynamic programming as 
an optimization technique (see References for a small recent sample) 
applicable to the Markov setting. 

Optimizations over a finite horizon and /or with a discounted cost struc- 
ture are appropriate to many applications, and are the most easily 
amenable to analysis; therefore, finite horizon and discounted cost 
problems appear to predominate in the literature. Nevertheless, systems 
that perform a large number of operations over a short time span involve 
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negligible discounting over their useful lifespan, while moving into an 
equilibrium mode relatively quickly. It follows that a long-term average 
reward criterion is more suitable to the latter type of system. 

Communication systems commonly handle a large number of message 
blocks in a very short period, just as computers typically process a tremen- 
dous number of jobs rapidly. At the same time, such systems can often be 
represented by Markovian queueing networks [ 111. These characteristics 
suggest that a time-average reward be used as being the most relevant for 
applications to such systems. Indeed, a number of recent works (e.g., [3, 
13, 151) take precisely this approach, applying dynamic stochastic 
optimization with a time-average reward to a system of queues. 

However, there is little literature pertinent to dynamic optimization of 
systems respective to a time-average reward while subject to global con- 
straints (but see [S, 9, 12, lo]). For instance, there could be absolute limits 
on the prevalence of system crashes, the average throughput of certain sub- 
systems, the resources suitable for a specialized component, etc. 

In this work, we study the dynamic optimization of discrtete-time 
Markovian systems by Lagrangian multiplier techniques. We assume a 
finite state space, a compact action space, continuity of probabilities and 
rewards respective to the actions, plus an accessibility condition. These 
hypotheses lead to the existence of an optimal policy. The optimal policy is 
always stationary. It is either non-randomized stationary (i.e., simple) or 
consist of a mix of two non-randomized policies, equivalent to choosing 
independently one of two simple policies at each epoch by the toss of a 
(biased) coin.’ Moreover, the optimization procedure requires only 
repeated solutions of the time-average dynamic programming equation (see 
[l, 141 for solution methodology), so that the optimum policy subject to 
the global constraint can be found in principle. 

The plan of this paper is as follows. In the present section, we shall 
establish our notation and present the problem statement. The second sec- 
tion discusses the dynamic programming equation (DPE), with special 
reference to properties required in the remainder of the paper. The 
Lagrange multiplier and the consequent parametrized version of the DPE 
are introduced and analyzed in Section III. These results enable us to 
exhibit the specific form of the optimum policy for the most interesting 
problem setting; this is the theme of the fourth section. The final section 
briefly treats cases other than the one analyzed in Section IV. 

The basic random process, {Xk}, is defined on the finite state space, S = 
(0, l,..., N}. An action, designated by a, is a parametrization of the tran- 

’ We shall show in a future paper that additional (reasonable) assumptions met in realistic 
models of queueing networks can assure a non-randomized stationary policy, or even bang- 
bang control. 
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sition law, which is described more fully below. An action belongs to the 
action space, designated by A, and assumed throughout to be a fixed com- 
pact metric space equipped with the u-algebra generated by its open sets. 

To describe the transition law, first let 

H, = (X0, A,, x, 3 A I)...> x,, A,) (1.1) 

be a history of {X,}; such a history consists not only of the variates up to 
the “present” (i.e., epoch n), but also the corresponding actions A, taken at 
the respective epochs. We require that (X, 1 be a controlled Markov process 
by demanding that (compare [ 141) 

wn + I =yIH,_,,X,=x;A,=a)=P(X,+,=yIX,=x;a). (1.2) 

We call the right side of (1.2) the law of motion, which we write as P,,(a). 
We shall consistently require that the controlled transition probability is 
continuous in a for all x, y E S; this hypothesis not only takes care of all 
measurability requirements, but it is also essential for convergence pur- 
poses. 

Control of the process appears through the application of a policy or 
strategy to the transition function. In general, the policy u in the policy 
space (designated U) can be described as u = { uO, Us,...), where uk is 
applied at epoch k. Specifically, nk + , (. 1 H,, X, = x) is a conditional 
probability measure in the wide sense (see [6, p. 29jJ]) over A. It is seen 
that this notion of policy inherently demands causality. 

There are also subspaces of U representing less complex policies. A 
policy is said to be a stationary policy f in space F if it is constituted by a 
probability measure over A that is conditioned only on the preceding state. 
More precisely, we write mr( ., x) to represent f, and obtain (for instance) 

P,,.(f) = 1 PAa) mAda, xl. 
A 

(1.3) 

It is known (see [ 14, p. 303) that application of a stationary policy to a 
controlled Markov process yields a Markov process with stationary transi- 
tion probabilities. 

A still more restricted class G is that of simple or non-randomized 
stationary policies. These are obtained by specializing the measure m, to 
consist of a single atom. Consequently, G can be characterized by a simple 
mapping, namely, g: S + A; hence, g(x) acquires meaning as an element of 
A, and g is viewed as a deterministic vector. 

Finally, we shall need a mixed policy, whose space is indicated by ,F. A 
mixed policy is merely a stationary policy with atoms of mass q and 1 -q 
for each x E S. Such a policy may be written symbolically for convenience 
f,=qa+(l-q)g,, with qECO,11. 
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At each epoch, the system earns a reward (or payoff) that depends on 
both state and action taken at that time; thus, the reward at epoch k is 
C(X,, A,J, where A, is the action taken at that epoch. It is assumed that 
C(x, *) is continuous on A. Since C is then a continuous function on a 
compact set, we may assume that C: S x A + R + is not only bounded, but 
also non-negative. 

The reward just mentioned gives rise to an average reward defined by 

n-l 

R,(u) & liminfn-‘E, 1 C(X,, Ak)lXO=x . 1 (1.4) 
k=O 

where E, is the (conditional) expectation when the policy u is applied to 
the system. Ordinarily, it is desired to find the u E U that yields the 
supremum of the average reward (1.4) over u E U for all XE S, if such 
exists; however, we have yet to consider the supremum only over those 
policies that satisfy a specified constraint. 

To this end, let the system incur a cost called D( ., .) with definition and 
properties entirely analogous to those of the reward. The average cost is 
given by 

n-l 

K,(u) 4 hmsupn-‘E, c D(X,, Ak)lXO=x , 1 (1.5) n k=O 

Our constraint is on the average cost, in the sense that we require 

K,(u) 6 a (1.6) 

for all x. Then, if U, is the subspace of U on which the constraint (1.6) is 
satisfied, we shall discuss the attainment of 

Rx = U”E”W~ R,(u). (1.7) 

Any policy u that attains R, for each x while simultaneously satisfying the 
constraint (1.6) is termed a constrained optimal policy, or more simply, an 
optimal policy. 

Specifically, we shall attempt to answer each of these questions as com- 
pletely as possible:* 

Question 1.1. What are necessary and sufficient conditions for U, to be 
non-empty? 

Question 1.2. When does there exist an optimal policy? 

2 We consider these questions only in light of the accessibility assumption (Hypothesis 2.2). 
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Question 1.3. If such a policy exists, are there simpler optimal policies, 
that is, optimal policies belonging to G or ,F? 

Question 1.4. If an optimal policy exists, how can it be determined? 

For the most part, we shall be able to resolve each of the above 
questions completely. In the next section, we will establish certain facts on 
the dynamic programming equation (DPE) which probably have little 
independent interest, but are needed to analyze the equation as a function 
of a running parameter. Then, Section III introduces the Lagrangian, and 
shows how the DPE behaves in terms of the parameter. This leads into 
Section IV, where the properties of the preceding sections enable one to 
show the existence of optimal policies belonging to G and ,F. Finally, Sec- 
tion V discusses cases not amenable to the techniques of Section IV. 

I I. PRELIMINARIES 

In this section, we outline a number of properties of the dynamic 
programming equation (hereafter called DPE) which do not depend on the 
Lagrangian formulation of the constraint. As indicated in the preceding 
section, P,(a) is the transition probability when action a is apllied, and 
C(x, a) is the reward corresponding to state x E S and action a E A. In 
terms of this notation, a central result (see [14, 1, 71) is 

THEOREM 2.1. Suppose there exists a scalar c and a bounded vector h 
such that the DPE 

c + h(x) = itz C(x, 0) + c P&d h(y) 
” E s 1 

is satisfied for each x E S. Then any policy g E G specified by 

g(x) = ar,g,yp C(x, a) + C p,(a) h(y) 
VES 1 

(2.1) 

(2.2) 

attains 

J= SUE R,(u) (2.3) 
UE 

for all x E S. Moreover, the constant c in (2.1) satisfies c = J. 

It is clear that no solutions to the DPE can exist unless the suprema on 
the right of (1.2) can be attained. More difficult, however, is the deter- 
mination of simple sufficiency conditions under which Theorem 2.1 is 
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applicable. The most transparent of these necessitates that the process { Xn} 
has only one recurrent class, into which it inevitably moves. In fact, for 
some state-call it @-one requires for a sufficiency condition the stronger 
property that TX, the hitting time for 0 starting from x E S, satisfy 

sup su~&(W-, 
xeS g.eG 

(2.4) 

where E, denotes the probability measure corresponding to policy g. This 
standard condition [ 14, l] is usually applied to finite action spaces; 
however, no change in proof is needed to extend it to compact A. If S and 
A are of finite cardinality, the accessibility hypothesis below suffices to 
satisfy (2.3). 

HYPOTHESIS 2.2. For every g E G. the state 0 is accessible from each 
XE S. In fact, weaker assumptions that divide S into fixed recurrent classes 
are possible, but these complicate the theory without providing additional 
insights. 

When A is not finite, as here, it is not a priori obvious that 
Hypothesis 2.2 implies the validity of (2.4). Accordingly, we must prove 
that (2.4) continues to hold for compact A. This is turn requires some sub- 
sidiary results on convergence and continuity. Let us first define P as the 
space of transition matrices parametrized by the elements of G. Also, we 
shall take, for non-periodic P(g), 

P*(g) 4 lim [P(g)]“; (2.5) 
n 

the definition could easily be extended to the periodic case by substituting 
the Cesaro means on the right of (2.5). In terms of the above notation, we 
now state and prove certain technical results that will imply (2.4) under 
Hypothesis 2.2 

LEMMA 2.3. If Hypothesis 2.2 holds for G, it is also true for F. 

Proof Suppose Hypothesis is true for G, but fails for some f c F. Then 
there is a closed (see [S, p. 3841) set C c S such that 0 4 C and 

1 p.xym = 0 
Y4C 

for each XE C. Consequently, there exists for each such x a a,E A for 
which 

C P,(a,) = 0. 
Y4C 
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Then for any g with g(x) = a,, the set C is closed also with respect to this 
g, which is inconsistent with Hypothesis 2.2 

LEMMA 2.4. F and G are sequentially compact. Both P(.) and P*( .) are 
continuous functions on F. 

Remark. Since P and P* have only a finite number of components, all 
metrics are equivalent to componentwise convergence on the reals. There 
are also equivalent metrics on F such as, for example, that induced by the 
metric 2 of A by 

4f, f’) = 1 ;S(mf(., xl, mf4., xl). 
ret3 

The metric 2 is determined by the weak convergence of probability 
measures; see [2]. For g E G, the latter is equivalent to the pointwise con- 
vergence of each component. 

Proof: The first statement follows because A is compact and F therefore 
tight (see [2, Sect. 6 of Chap. 11). For the second claim, it need only be 
observed that G c F, where G is closed because the same is true of A. Since 
the respective elements of P(. ) are continuous functions of f by the 
definition of weak convergence of probability measures, the third assertion 
is also valid. 

Suppose now that P*( .) is not continuous respective to F. Then for 
some f, + f, there is a subsequence-which we shall also denote by {fn} for 
convenience-such that P*(f,) -+ P*, the latter not being equal to P*(f,). 
But P*(f,) P(f,)=P*(f,) implies P*P(f,) = P*. On the other hand, the 
preceding Lemma assures that there is only one recurrent class, whence the 
latter equation has the unique transition probability solution P*(f,,); thus, 
the desired contradiction is reached. 

With the aid of the Lemma, we now prove 

THEOREM 2.5. Let S be finite and A compact, as previously assumed, and 
let Hypothesis 2.2 apply. Then (2.4) is valid, and in fact 

sup sup E,( TX) < CO. 
xes feS 

ProoJ It is enough to show that for arbitrary x E S - { 0) 

supP,(T,>n)=fi(x)<l (2.6) 
fe F 

since this implies 

sup Pf( T.x > kn) < P” 
fc F 
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where /?Pmax[fi(x)] < 1. In turn, the latter inequality implies 

supE,(T,)C--r-iio. 
fs F 1-P 

For the proof of (2.6), observe that 

Pf( L > n 1 = i &:,(f), 

y= I 
(2.7) 

in which P is the matrix obtained from P by deleting the row and column 
corresponding to state 0. Suppose then that (2.6) is false. Then there exists 
a sequence {f,,,} E F and hence a convergent subsequence (which we shall 
also call {f,,,}) such that f,+f, (say), and 

f &“(f,)> 1 -m-l. 
y = 1 

The continuity result of Lemma 2.4 therefore implies that 

P,,(T,>n)= 1. 

(2.8) 

Because the cardinality card S = N+ 1, we obtain P,( T, = co) = 1, which 
is in clear contradiction to Lemma 2.3. 

Theorem 2.5 leads to the eventual conclusion that our hypotheses 
guarantee at least one solution to the DPE. However, the presence of the 
Lagrange multiplier complicates the situation sufficiently to create a need 
for further discussion of the DPE. In particular, we must obtain a better 
understanding of the (vector) h appearing in the DPE. To this end, we 
adopt the notation C(g) for the vector whose components are C(x, g(x)), 
and e the (N+ 1)-vector all of whose entries are unity. Also, take G to be 
the subspace of G defined by 

G = {g: g E C, g(x) satisfies (2.2) for all x E S} 

Then for any g E G 
Je = P*(g) C(g); (2.9) 

this is easily derived from (2.1) by setting the right side equal to its 
supremum, writing the result in the vector form 

Je + h(g) = C(i) + P(ii) W, (2.10) 

and premultiplying (2.10) by P*(g).’ 

3 A g E G may satisfy (2.9) and hence attain the supremum without belonging to G. For 
instance, if the x column of P*(g) consists of zeros, the value of C(x, g(x)) is irrelevant to J. 
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The principal Lemma regarding h is now the following: 

LEMMA 2.6. Let the DPE be satisfied. Then the h appearing in (2.1) is 
unique up to a constant vector. If we require 

h,(g) = 0, (2.11) 

h is uniquely speciJied (independently of g E e) by 

h = A(1 - P(g) + P*(g))- ‘(I - P*(g)) C(g). (2.12) 

Here I is the identity matrix, and A denotes the square matrix all of whose 
elements are zero, except that A,V = - 1 and A,, = 1 for i = 1, 2 ,..., n. 

Proof: For fixed g E G, it is shown in [ 1, p. 3313 that h(g) takes a form 
(2.12), but without the premultiplication by A. Furthermore, h(g) may be 
uniquely specified up to an arbitrary constant vector, as indicated on page 
340 of the same reference. Now A has the effect of subtracting h,,(g) from 
each component, so that the h(g) of (2.12) is valid in the DPE, and 
moreover satisfies (2.11) also. 

Suppose now that g and $ both belong to G To complete the proof of 
the Lemma, we must then verify that h(g) = h(g) modulo a constant vector. 
To this end, compare (2.10) with 

Je + W 2 W) + W M), (2.13) 

where “ 2” in a vector relation means “ > ” for each component. Here 
(2.13) applies because g satisfies (2.2) and (2.10) with h(g). Next, take 
v 4 h(g) -h(g), so that subtracting (2.10) from (2.13) produces v 2 P(g) v 
and therefore also 

v 2 P*(g) v. (2.14a) 

Interchanging g and Q in the above argument also yields 

P*(g) v > v. (2.14b) 

Letting rc(g) denote any row of P*, we obtain from (2.14) that 

(2.15) 

However, the accessibility hypothesis requires that no(g) >O, so that the 
first inequality of (2.15) implies v(0) & min[v(x)]; similarly, max[v(x)] d 
v(0). Thus v(x) = v(0) for all x E S, i.e., v is a constant vector. 
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This completes our discussion of the properties of the DPE; while some 
of these are not needed for the usual dynamic programming considerations, 
they will turn out to be crucial in the Lagrangian constraint formulation of 
the constrained optimization problem. 

III. LAGRANGE FORMULATION FOR OPTIMIZATION 

A constrained optimization problem can often be reduced to one without 
constraints through the introduction of parameters called Lagrange mul- 
tipliers (see [4, Chap. IV]). This technique turns out to be useful in the 
solution of our problem. The methodology again utilizes the DPE, which is 
now applied to the reward 

P(x, a) Li C(x, a) - AD(x, a), (3.1) 

in which A is the Lagrange multiplier. 
According to the preceding section, the DPE is solvable for each 12 0 

with the constrained reward furnished by (3.1). In fact, for each such 1, the 
supremum J’ over u E U is attained by at least one g’ E G”, where g” 
satisfies the DPE for parameter 1, and G’ is the set of all such elements 
ofG. 

It is desirable at this point to introduce further notation to clarify the 
role of the multiplier. We take 

n-l 
e(u) 0 liminf n-‘E, 

[ 
,r, B”(X,, Ak) 1 X,=x]. 

Because of the accessibility hypothesis, rewards and costs are the same for 
any initial state for each f E F, so that no reference to the state need be 
reflected in the self-explanatory notation J’ = J”(g’). We also write R” for 
R(g”) and K’ for K(g”), where it must be recognized that R” and K” may 
be multiple valued functions if G” is not a singleton. Finally, it makes sense 
to use h’ as the unique h (see (2.12)) occuring in the constrained DPE for 
parameter A. 

The first results of this section consist of a series of inequalities, namely, 

LEMMA 3.1. J’, R”, and K’. are all monotone non-increasing in 1. 

ProoJ: These assertions are all a consequence of the fundamental 
inequality that reads 

JA+“(g”)-p(g”)< p+‘l(g”+V)- J”(g”) 

<p+‘!(g”+‘+ J~(g~.+‘l)<O (3.2) 
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for any positive A 2 0, q > 0. Then 

-&< J”+“--J” -#+“<O. (3.3) 

This proves all but the last claim. For the latter, assume R’ is not 
monotone non-increasing. Then there exist i,q such that R” < R’+“. But 
K’ > K” + )I, whence, 

Consequently, we have the contradiction J” < J’(g’+‘l). 

A technical result that will soon prove useful is 

LEMMA 3.2. J” is uniformly absolutely continuous, with 

< -lim Ka + ‘I. 
710 

Also, the derivative 

(3.4) 

(3.5) 

exists for almost all A>, 0. 

Proof From (3.3) and the monotonicity of K’, P satisfies the Lipschitz 
condition 

IJ”+q -J”/6r/KQqK? (3.6) 

Note that P is bounded (for any u E U) because D( ., . ) is a continuous 
function on a compact set. 

As for the right derivative (3.4), one need only divide by v in (3.3), 
observing that the bounded monotone function K” possesses limits from 
the right. Since, moreover, K” is continuous almost everywhere, one 
obtains an equality in (3.4) for almost all 2. And, by the absolute con- 
tinuity, the right derivative must coincide with the ordinary derivative. 

The monotonicity properties just demonstrated are relevant to the 
Lagrangian use of the constraint. It will be recalled that in the classical use 
of the Lagrange multiplier technique, the multiplier 1 is chosen so that the 
constraint is met in a fashion consistent with the desired optimization. A 
similar phenomenon is seen here, although the situation is naturally more 
complicated. To use this idea, we introduce 

y & inf{A: K”<a}, (3.7) 
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where the a in (3.7) is the constraint constant mentioned in (1.6). By the 
monotonicity of K’ (according to Lemma 3.1) this y is well defined. Then 
we have 

LEMMA 3.3. Let 

for some g E G. Then y < CO. 

K(g) <a (3.8) 

Proof Suppose that the assertion of the Lemma is false. Then K’z=- a 
for all 1, and consequently J’ < R” - Ia for IE > 0. On the other hand, there 
exists a 6 > 0 and a g for which K(g) = a -6. For this g, J(g) = 
R(g) - A(a - 6). Hence, J(g) > P for all sufliciently large /2, which is clearly 
a contradiction. 

We shall also need some results on continuity and compactness. 

LEMMA 3.4. R(g) and K(g) are continuous on G; p(g) in continuous on 
(R+ x G).4 

Proof The continuity of C(x, .), together with that of P*( .) (see 
Lemma 2.4), implies P*(g,) C(g,) -+ P*(go) C(go); a similar argument 
applies to K( .). As for the last claim, note that J”(g) = R(g) -AK(g). 

The compactness result requires a certain amount of new notation. It is 
natural to use G’ to denote those g E G satisfying the constrained DPE 
with parameter i. Then let 

G, 4 u (4 G”), (3.9) 
i. s q 

with the obvious product space topology on G,. 

THEOREM 3.5. For any q, G,, is compact. 

Proof: Since G, is a subspace of ([0, ~1 x G), it is already totally boun- 
ded, and we need only to show G, to be closed. To this end, let i,, -+ Ao, 
and assume gAfl --t go, with g”“E G*n. We must prove that goE G”O. 

In the first place, we have 

J$ + h”n = B%n(g"n) + P(g”n) @, (3.10) 

in which the right side is maximal for every component, Each term in 
(3.10) converges to the corresponding limit, that is, 

JAae + h = B”O(g”O) + P(g&) h. (3.11) 

4 Lemma 3.4 applies equally well to F, but its use in the subsequent portions of the paper 
are confined to G. 
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To move from (3.10) to (3.1 l), we first observe that J and P are continuous 
in their arguments, and B converges with the joint convergence of {An} and 
{g”“} convergence of both sequences. 

Next, let us look at the convergence of {bin}. We make use of the follow- 
ing fact: if the normed linear operators {A,} converge to A,, where A, has 
a bounded inverse, we have A, ’ + A; ’ Indeed, we use (2.12), together 
with the continuity of P and P*, and convergence of B. The result is that 
hifl converges to some h which, together with the other variates, satisfies 
(3.11). 

It only remains to show that the right side of (3.11) is maximal. Fix 
(any) x, and define for convenience 

An, a) A C(x, a) - &Ax, a) + c P,(a) Wy). (3.12) 
” E s 

Then the x coordinate on the right side of (3.11) reads lim, sup, f(n, a). 
However, f(n, a) converges uniformly in n with respect to A. We also see 
that f(n, .) is uniformly continuous, and note that {g,,(x)} converges. 
These facts enable us to conclude that 

lim ,szg f(n, a) = ;ttt lim ,f(n, a), (3.13) 
n n 

which shows that the right side of (3.11) is the supremum over A for each 
XES. 

IV. THE OPTIMAL POLICY 

The policy space U can consist only of policies incapable of meeting the 
constraint (1.6), or be composed solely of policies that do satisfy the con- 
straint. However, the case characterized by the greatest theoretical as well 
as applied interest for realistic problems is the one described by 

The simple policy that manifests the largest reward J given by 
(2.3) fails to satisfy the constraint condition, and 

There is at least one simple policy that meets the constraint with 
something to spare, that is, satisfies K(g) < LX. 

We defer the analysis of the other possible cases until the next section. At 
this time, we pursue the situation just described via the following more for- 
mal assumption: 

HYPOTHESIS 4.1. Let go be an unconstrained supremum, i.e., 

(4.1) 
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and assume that 

Kk”) > a (4.2) 

for every such go. Suppose further there exists a g E G such that 

K(g) < CL (4.3) 

Remark 4.2. An alternative assumption, which is somewhat weaker but 
leads to the same result, is 

o<y<co. (4.4) 

In the present section, we shall assume that Hypothesis 4.1 holds 
throughout; Section V is devoted to constrained optimizations when this 
hypothesis fails to hold. The rationale for Hypothesis 4.1 becomes more 
evident in light of the key optimization criterion, namely, 

THEOREM 4.3. Suppose that for some A 2 0 and some f E F we have 

K(f) = a and P(f) = p (4.5) 

for all x E S. Then f solves the constrained optimization problem (1.6) and 
(1.7). 

Proof. From the applicability of the DPE, it follows that J”(f) > J”,(u) 
for all u E U and all x E S. Therefore 

R(f) B R,(u) + J.[cr - K,(u)]. (4.6) 

But the term in brackets in non-negative, since u E U. requires that (1.7) is 
satisfied. Consequently, R(f) > R,(u) for each u E Uo, and each x E S. 

We now find an f E F meeting the conditions of the Theorem. It will be 
seen that this f is actually of even simpler form. In fact, the optimal con- 
strained policy belongs either to G or to the mixture policy set ,F. It is 
emphasized again that this policy in ,F is actually optimal over the class of 
all causal policies meeting the constraint, that is, attaining the suppremum 
in (1.7). 

THEOREM 4.4. Under Hypothesis 4.1, there exists a constrained optimal 
policy in ,F. 

Proof: We use Theorem 4.3 to verify the existence of an optimal policy 
as claimed. In the first place, if K’ = 01 for some 1, any corresponding g’ E G 
satisfies the conditions of that Theorem, and is therefore the optimal policy. 
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Suppose no such ,I as the above exists. Then, since KA: is non-increasing, 
and y E (0, co), we have 

and liIpdlo (4.7) 

in which 
a0 < a < ao. (4.8) 

Let (1,) be a sequence that increases to y, along which the corresponding 
g”” E G converges; this is possible because of the compactness of G. 
Another compactness property (see Theorem 3.5) assures that g E ey, 
where g 4 lim gin. Also, K(g) = z”, from Lemma 3.4. An entirely similar 
procedure, but for a decreasing sequence, yields 8~ GY, with K(g) = cco. 

Take 

f, 4 qg+(l -q)& (4.9) 

Clearly, f,E ,F, so that it remains to demonstrate that there exists a 
y E [0, l] such that 

J? = Jyf,) and K(f,) = a. (4.10) 

For the first part of (4.10), we turn to the DPE in the vector form. By 
Lemma 3.4, s/ = J)‘(g) = J(g). Next, II’ = q@‘(g) + (1 -q)&(g)(g), by 
an argument analogous to (1.3). The same reasoning applies to P(f,) = 
qP(g) + (1 - q) P(g). Finally, Lemma 2.6 states that h’ is the same for g and 
g. 1; other words, we have for g 

Pe + h” = B’(g) + P(g) h’ (4.11) 

together with a similar equation for g. The algebraic sum of these two vec- 
tor equalities yields 

SJe + hY = B’(f,) + P(f,) h7. (4.12) 

If both sides are premultiplied by P*(f,), we obtain for arbitrary ‘/ the 
equality s/ = JY(fq) as required by (4.10). 

To verify the second part of (4.10), observe the continuity in q off,. This 
in turn leads to the continuity of D(f,) = qD(g) + (1 -4) D(g) and (by 
Lemma 2.4) also that of P(f,) and P*(f,).5 But 

KG,) e = P*(f,) Wf,), (4.13) 

5 It is tempting-but erroneous-to conclude that P*(f,) = qP*(g) + (1 -4) P*(g). Further, 
a related example demonstrates that J(gl) = J(g,) = J is consistent 44th J(qg, + (1 - q) gz) <I J 
unless g, and g, both satisfy the DPE. 
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which is now continuous in q by the continuity of each of its constituents. 
Further, K(f,) = ctO < tl for q = 0 and K(f,) = c1’> a for q = 1. Therefore, 
there exists a q E (0, 1) such that the second half of (4.10) is satisfied. 

Thus we have demonstrated that the optimal constrained policy may 
belong to G, and is in no case more complex than a convex combination of 
two policies in G, with a selection to be made between the two policies by 
the throw of a (biased) coin whose faces have probabilities q and 1 -9. 
However, it may well be that Hypothesis 4.1 is not valid, in which case 
neither the methodologies nor the conclusions of this section necessarily 
hold. Section V will contain a systematic exposition of these cases and the 
resultant policies. 

V. OTHER CONSTRAINT HYPOTHESES 

When Hypothesis 4.1 fails to apply, there are a number of other 
possibilities, most of which are not as interesting. Nevertheless, we shall 
briefly summarize the various situations that may occur. At the same time, 
we shall attempt to respond to the Questions posed at the end of Section I. 
We shall be able to provide answers in all except one case, where the 
nature of the optimal policy is not completely understood. 

Let us assume there is an unconstrained solution of DPE that meets the . 
constraint (1.6) that is, g E G solves the DPE, while at the same time 
K(g) Q CC This case can be identified directly; it is also evidenced by y = 0, 
or equivalently PI,, = o 2 --cI. It follows from Theorem 2.1 that no u E U 
exhibits a greater average reward than the g that solves (2.1). 

Another possibility is that no g E G satisfies the constraint K(g) Q a. In 
that case, K’> CI, and it is necessary (but not sufficient) that y = co. We 
again apply the DPE, this time to find inf,.o K(g). The resulting infimum 
will, of course, exceed CI, as expected. However, it is more important to 
note in this instance that no policy in U can operate at a lower average 
cost than the simple policy in G that attains the i&mum. 

The discussion of the last paragraph answers Question 1.1: U, is non- 
empty iff one of the conditions on G mentioned in the preceding paragraph 
is met. Further, when y < co, the optimal policy is well defined, and must 
belong to either G or ,F, depending on the character of J” in the vicinity 
of y. The solutions for y < co can always be implemented by solving 
parametrized versions of the DPE. 

Finally, there is the case 
inf K(g) = a. (5.1) 

6YeG 

If y < cc (equivalently, J’= c( from some finite 2 on), Theorem 4.3 
prescribes the solution. It is possible, however, to exhibit examples where 
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y = co. This means that the Lagrangian formulation is incapable of treating 
the problem. Although the infimum in (5.1) can be attained by some g (as 
is seen by using the usual compactness arguments), it seems unclear how 
one ought to proceed to find such a g explicitly, or to optimize relative to 
the average reward. Nor is it clear whether there is some II E U, that reaps 
a larger reward than the best g. 

Note added in proof The authors have recently shown that Theorem4.4 can be 
strengthened to assert the existence of an optimal constrained policy that is randomized 
between two actions at no more than one state, and is nonrandom on all the other states of S. 
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