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2. Janko and J. G. Thompson [6] have shown that if G is a finite non- 
abelian simple group having a Sylow 2 subgroup T which has no normal, 
elementary abelian subgroups of order 8 and whenever t is an involution in T 
satisfying [T: CT(t)] < 2, then Cc(t) is solvable, then the simple group G is 
isomorphic to one of the following simple groups: L,(p), A, , M,, , L,(3), 
U,(3) or U,(4). In this paper, we replace the condition of solvability of Cc(t) 
by that C,(t) is 2-constrained and show that the simple group G is isomorphic 
to one of the simple groups L,(q), A, , M,, , L,(3), U,(3), U,(4) or to one of 
the Janko simple groups of order 604,800 or 50,232,960. 

We will use the following unpublished results besides the ones quoted in 
[6]. The terminology is the same as in [6]. 

J. G. Thompson. Let G be a non abelian finite simple group, T a Sylow 2 
subgroup of G and suppose that T has no normal elementary abelian subgroups 
of order 28, Z(T) is noncyclic, and Nc( T) = T. C,(T), then T g Tl x T, 
where Ti is dihedral or semidihedral and 1 Ti 1 2 16 for i = 1,2. 

Lyons. Let G be a finite, nonabelian simple group with a Sylow 2 sub- 
group which is isomorphic to a Sylow 2 subgroup of U,(4). Then G is 
isomorphic to U,(4). 

Throughout the paper, we assume that G is a finite, nonabelian, simple 
group with a Sylow 2 subgroup T which has no normal, elementary abelian 
subgroups of order 8 and whenever t is an involution in T satisfying 
[T: CT(t)] < 2 then Cc(t) is 2-constrained. 

LEMMA 1. Suppose / 2 1 = 2, ( U (T)( = 1 and i + z then C,(i) = 
G(W) . Of(W)). 

Proof. Let C = C,(i), T, = C,(i). S ince i + z it follows that To is an S, 
subgroup of C and W = Q,(Z(T,,)). Let Ha = T, n O,*,,(C), C, = N,(H,) 
and let W* be the normal closure of Win C,, . Assume that W* = W. Then 
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W Q C, and so WC Z(C,). Since C = C,, . O,(C) we get C = C(W) . O,,(C) 
and the lemma is proved. Hence we may assume W* 1 W. Let 

D = O,(C, mod Cc&W*)) 

and so D n To is an S, subgroup of D. This implies that 

D = (D n T,,) - C,( W*) 

and so WC Z(D). Thus W* c Z(D) and so we get D = Cc-(W*) i.e. we 
have proved 0,(&J W*)) = 1. Since Cc,(W*) does not contain an S’s 
subgroup of C, , we get Aco(W*) has even order. Now we will show that 
AcO( W*)is solvable and then the same proof as in Lemma 3.1 [6] goes through 
completing the proof of this lemma. Assume AcO( W*) is not solvable. By (1.1) 
of [6] we have either / W* 1 = 8 or / W* / = 16. Case (i) / W* / = 8. So 
Aco(W*) is isomorphic to a subgroup of L,(7). But since &(W*) is non 
solvable, so A,-JW*) e L,(7). In this case the 7 element, which acts non 
trivially on W*, conjugates i to z i.e. i N z a contradiction. Hence we can 
assume 1 W* 1 = 16. So Aco(W*) is isomorphic to a subgroup of GL(4,2). 
If 5/1(Aco(W*)l then the 5 element say 01 acts non trivially on W*. Consider 
the cycle decomposition of 01 acting on W *. Since 01 fixes i, (Y is either a 5 cycle 
or the product of two 5 cycles. So 01 fixes either 6 or 11 elements of W*, which 
can’t happen as C,(a) is a subgroup of W*. Now A,$W*) is isomorphic 
to a non solvable subgroup of GL(4, 2) and 1 A,-JW*)I 1 26 . 32 . 7. So 
A,o(W*) s L,(7). Let K = C,o(W*) and H = To n K. Suppose (Y, 
,8 E A,-J W*) such that j 01 j = 7, j /3 ) = 3 and /3 normalizers (a). Under the 
action of OL, W* splits as L x (i), where CL permutes the involutions in L. 
Since p normalizes (a), p normalizes L. Claim L (1 C, . Suppose not, i.e. 
1 < [C,,: N,kL)] < 8. Since the Dihedral subgroup of order 21 is a maximal 
subgroup of L,(7) we get [C,: N,JL)] = 8. Hence [T,,: NTo(L)] = 8. So 
nrsCoLc = ntsToLt. Since (i, z) C Z(T,,). We have 1 nteToLt / > 2. So 
1 ncsCo Lc / = 2 or 4 but then OL centralizes nceC, Lc which cannot happen. 
Hence L <I C, . Let t E T - To and let W, = W*t . W* n WI Q T and 
WC W* n W, 2 W = W* n W, . Now W*/W, WI/W are normal sub- 
groups fo To/W so W* . WJW is an elementary abelian group so 
+( W* IV,) C W = (i, Z) but +( W* . W,) can’t be of order 2, for otherwise 
W* . W, is generated by 5 elements, contradicting the result of McWilliams 
[7]. Hence +(W* * WI) = (i, z). Also L 4 T,, , so L ~3 W* . WI but i 
is a central involution in To . Therefore W* . WI/L is an elementary abelian 
group, so +(W* . WI) c L i.e. (i, Z) = $( W* . WI) CL i.e. i EL, which is a 
contradiction. Hence AcO( W*) is solvable. Now the same proof as in [6] goes 
through. 
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LEMMA 2. Suppose 12 1 = 2; 1 U(T)] = 1 and i +o x. if V is any 
subgroup of C(i) which contains W then V centralizes W. 

Proof. Same as in [6]. 

LEMMA 3. suppose / 2 1 = 2, / U(T)1 = 1 and W + N then G is iso- 
morphic to U,(3) or to one of the Janko simple groups of order 604,800 or 
50,232,960. 

Proof. Since WE U(T) and N is 2 constrained then WC H. Now the 
same argument as in [6] gives that H is of symplectic type. Since N is 2 

-- 
constrained, N/H acts faithfully on f7. 

By [5] either f7 is 2-group of maximal class of R = H,*H, where HI is 
extra special 2 group of order 22m+1 /m > 1 and H, is cyclic or of maximal 
class. Since the automorphism group of a 2-group of maximal class is solvable, 
then by [6] we can assume A is of the kind H,*H, . I f  m > 3 then 
1 g/+(E)/ 3 26 contradicting MacWilliams [7]. So m < 2. If  m = 1 then 
N/H is solvable and the same proof as in [6] goes through. Furthermore if 

m = 2 and 1 H, 1 > 2 then / n/#(i7)I 2 25 contradicting McWilliams [7]. 
Hence g = HI is extra special 2-group. By [7] we have ] H 1 = 32. So 

n g Qs*Qs or Qs* D, . In case A = Qs*Qs , N/E? is solvable and the same 
proof as in [6] goes through. Now we have T-f g Qs* De . By Huppert [5], 
N/H 1s isomorphic to a subgroup of 2s the symmetric group on 5 letters. I f  -- -- 
N/H 1s non solvable then N/H s G& or 9s. If  N/H E 6& then a Sylow 2 
subgroup of N is isomorphic to a Sylow 2 subgroup of the Janko simple 
group of order 604,800, see Lemma 2.6[3]. But by Gorenstein and Harada [l]; 
G is isomorphic to one of the Janko simple groups of order 604,800 or 
50,232,960. In the other case N/Hz 2s. By the Gorenstein and Harada 
Lemma 5.6, [3], there are no simple groups G with this property. Hence the 
result is proved by [6]. 

LEMMA 4. Assume / T’ I # 1 and 1 Z / = 4, then there is precisely one 
class of involutions in G and sfx is an involution in G then C,(z)/O,,(Co(z)) is 
isomorphic to the centralizer of an involution in U,(4). 

Proof. I f  Nc( T) # T . C,(T), then same proof as in [6] proves the result. 
So we can assume N,(T) = T . Co(T). We will show in this case that there 
are no simple groups with these properties. We will show that C,(z) is 
solvable for every involution z E 2. Then the same proof as in [6] completes 
the proof. Let C = C,(z). Let H be a sylow 2 subgroup of C. Then 
C,(H) C H. By Thompson’s result stated before T s TI x T, where Ti is 
dihedral or semidihedral and I Tc I > 16. Hence [T: H] < 4. Assume C is not 
solvable since C/O,,,,(C) acts faithfully on H/$(H). and / H/+(H)1 < 24, 
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therefore C/O,,,,(C) is isomorphic to a subgroup of GL(4,2) and so 
C/O,,,(C) E 0& . But N(T) # T . C,(T) in a5 , a contradiction. Hence C is 

solvable. 

~VAIN THEOREM. Let G be a nonabelian, jinite simple group and T a sylow 2 
subgroup of G. We assume that T has no normal elementary subgroups of order 
8 and whenever t is an involution in T such that [T: C,(t)] < 2 then C,(t) is 

2-constrained. Then G is isomorphic to one of the simple groups L,(q), 0Z7 
MI, , L,(3), U,(3), U,(4) or to one of the ]anko simplegroups of order 604,800 or 
50,232,960. 

Proof. The same argument as in [6] shows that either G is isomorphic 
to one of the groups named in the theorem or T is isomorphic to a sylow 
2 subgroup of dl,. In the latter case by Gorenstein and Harada [2], 
C,(z) g G& which is not 2-constrained which can not happen and proves 
the result. 
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