# A Generalization of a Theorem of Z. Janko and J. G. Thompson 

Surinder Sehgal<br>Department of Mathematics, Ohio State University, 231W 18th Ave., Columbus, Ohio 43210

Received June 14, 1971
Z. Janko and J. G. Thompson [6] have shown that if $G$ is a finite nonabelian simple group having a Sylow 2 subgroup $T$ which has no normal, elementary abelian subgroups of order 8 and whenever $t$ is an involution in $T$ satisfying [ $\left.T: C_{T}(t)\right] \leqslant 2$, then $C_{6}(t)$ is solvable, then the simple group $G$ is isomorphic to one of the following simple groups: $L_{2}(q), A_{7}, M_{11}, L_{3}(3)$, $U_{3}(3)$ or $U_{3}(4)$. In this paper, we replace the condition of solvability of $C_{G}(t)$ by that $C_{G}(t)$ is 2-constrained and show that the simple group $G$ is isomorphic to one of the simple groups $L_{2}(q), A_{7}, M_{11}, L_{3}(3), U_{3}(3), U_{3}(4)$ or to one of the Janko simple groups of order 604,800 or $50,232,960$.

We will use the following unpublished results besides the ones quoted in [6]. The terminology is the same as in [6].
J. G. Thompson. Let $G$ be a non abelian finite simple group, $T$ a Sylow 2 subgroup of $G$ and suppose that $T$ has no normal elementary abelian subgroups of order $\geqslant 8, Z(T)$ is noncyclic, and $N_{G}(T)=T . C_{G}(T)$, then $T \cong T_{1} \times T_{2}$ where $T_{i}$ is dihedral or semidihedral and $\left|T_{i}\right| \geqslant 16$ for $i=1,2$.

Lyons. Let $G$ be a finite, nonabelian simple group with a Sylow 2 subgroup which is isomorphic to a Sylow 2 subgroup of $U_{3}(4)$. Then $G$ is isomorphic to $U_{3}(4)$.

Throughout the paper, we assume that $G$ is a finite, nonabelian, simple group with a Sylow 2 subgroup $T$ which has no normal, elementary abelian subgroups of order 8 and whenever $t$ is an involution in $T$ satisfying $\left[T: C_{T}(t)\right] \leqslant 2$ then $C_{G}(t)$ is 2-constrained.

Lemma 1. Suppose $|Z|=2,|U(T)|=1$ and $i \nsim z$ then $C_{G}(i)=$ $C_{G}(W) \cdot O_{2^{\prime}}\left(C_{G}(i)\right)$.

Proof. Let $C=C_{G}(i), T_{0}=C_{T}(i)$. Since $i \nsim z$ it follows that $T_{0}$ is an $S_{2}$ subgroup of $C$ and $W=\Omega_{1}\left(Z\left(T_{0}\right)\right)$. Let $H_{0}=T_{0} \cap O_{2^{\prime}, 2}(C), C_{0}=N_{C}\left(H_{0}\right)$ and let $W^{*}$ be the normal closure of $W$ in $C_{0}$. Assume that $W^{*}=W$. Then
$W \triangleleft C_{0}$ and so $W \subseteq Z\left(C_{0}\right)$. Since $C=C_{0} \cdot O_{2^{\prime}}(C)$ we get $C=C(W) \cdot O_{2^{\prime}}(C)$ and the lemma is proved. Hence we may assume $W^{*} \supset W$. Let

$$
D=O_{2}\left(C_{0} \bmod C_{C_{0}}\left(W^{*}\right)\right)
$$

and so $D \cap T_{0}$ is an $S_{2}$ subgroup of $D$. This implies that

$$
D-\left(D \cap T_{0}\right) \cdot C_{C_{0}}\left(W^{*}\right)
$$

and so $W \subseteq Z(D)$. Thus $W^{*} \subseteq Z(D)$ and so we get $D=C_{C_{0}}\left(W^{*}\right)$ i.e. we have proved $O_{2}\left(A_{C_{0}}\left(W^{*}\right)\right)=1$. Since $C_{C_{0}}\left(W^{*}\right)$ does not contain an $S_{2}$ subgroup of $C_{0}$, we get $A_{C_{0}}\left(W^{*}\right)$ has even order. Now we will show that $A_{C_{0}}\left(W^{*}\right)$ is solvable and then the same proof as in Lemma 3.1 [6] goes through completing the proof of this lemma. Assume $A_{C_{0}}\left(W^{*}\right)$ is not solvable. By (1.1) of [6] we have either $\left|W^{*}\right|=8$ or $\left|W^{*}\right|=16$. Case (i) $\left|W^{*}\right|=8$. So $A_{C_{0}}\left(W^{*}\right)$ is isomorphic to a subgroup of $L_{2}(7)$. But since $A_{C_{0}}\left(W^{*}\right)$ is non solvable, so $A_{c_{0}}\left(W^{*}\right) \cong L_{2}(7)$. In this case the 7 element, which acts non trivially on $W^{*}$, conjugates $i$ to $z$ i.e. $i \sim z$ a contradiction. Hence we can assume $\left|W^{*}\right|=16$. So $A_{c_{a}}\left(W^{*}\right)$ is isomorphic to a subgroup of $G L(4,2)$. If $5 / \mid\left(A_{C_{0}}\left(W^{*}\right) \mid\right.$ then the 5 element say $\alpha$ acts non trivially on $W^{*}$. Consider the cycle decomposition of $\alpha$ acting on $W^{*}$. Since $\alpha$ fixes $i, \alpha$ is either a 5 cycle or the product of two 5 cycles. So $\alpha$ fixes either 6 or 11 elements of $W^{*}$, which can't happen as $C_{W^{*}}(\alpha)$ is a subgroup of $W^{*}$. Now $A_{C_{0}}\left(W^{*}\right)$ is isomorphic to a non solvable subgroup of $G L(4,2)$ and $\left|A_{C_{0}}\left(W^{*}\right)\right| \mid 2^{6} \cdot 3^{2} \cdot 7$. So $A_{C_{0}}\left(W^{*}\right) \cong L_{2}(7)$. Let $K=C_{C_{0}}\left(W^{*}\right)$ and $H=T_{0} \cap K$. Suppose $\alpha$, $\beta \in A_{C_{0}}\left(W^{*}\right)$ such that $|\alpha|=7,|\beta|=3$ and $\beta$ normalizers $\langle\alpha\rangle$. Under the action of $\alpha, W^{*}$ splits as $L \times\langle i\rangle$, where $\alpha$ permutes the involutions in $L$. Since $\beta$ normalizes $\langle\alpha\rangle, \beta$ normalizes $L$. Claim $L \triangleleft C_{\mathbf{0}}$. Suppose not, i.e. $1<\left[C_{0}: N_{C_{0}}(L)\right] \leqslant 8$. Since the Dihedral subgroup of order 21 is a maximal subgroup of $L_{2}(7)$ we get $\left[C_{0}: N_{C_{0}}(L)\right]=8$. Hence $\left[T_{0}: N_{T_{0}}(L)\right]=8$. So $\bigcap_{c \in C_{0}} L^{e}=\bigcap_{t \in T_{0}} L^{t}$. Since $\langle i, z\rangle \subseteq Z\left(T_{0}\right)$. We have $\left|\bigcap_{t \in T_{0}} L^{t}\right| \geqslant 2$. So $\left|\bigcap_{c \in C_{0}} L^{c}\right|=2$ or 4 but then $\alpha$ centralizes $\bigcap_{c \in C_{0}} L^{c}$ which cannot happen. Hence $L \triangleleft C_{0}$. Let $t \in T-T_{0}$ and let $W_{1}=W^{* t} \cdot W^{*} \cap W_{1} \triangleleft T$ and $W \subseteq W^{*} \cap W_{1} \Rightarrow W=W^{*} \cap W_{1}$. Now $W^{*} / W, W_{1} / W$ are normal subgroups fo $T_{0} / W$ so $W^{*} \cdot W_{1} / W$ is an elementary abelian group so $\phi\left(W^{*} \cdot W_{1}\right) \subseteq W=\langle i, z\rangle$ but $\phi\left(W^{*} \cdot W_{1}\right)$ can't be of order 2, for otherwise $W^{*} \cdot W_{1}$ is generated by 5 elements, contradicting the result of McWilliams [7]. Hence $\phi\left(W^{*} \cdot W_{1}\right)=\langle i, z\rangle$. Also $L \triangleleft T_{0}$, so $L \triangleleft W^{*} \cdot W_{1}$ but $i$ is a central involution in $T_{0}$. Therefore $W^{*} \cdot W_{1} / L$ is an elementary abelian group, so $\phi\left(W^{*} \cdot W_{1}\right) \subseteq L$ i.e. $\langle i, z\rangle=\phi\left(W^{*} \cdot W_{1}\right) \subseteq L$ i.e. $i \in L$, which is a contradiction. Hence $A_{C_{0}}\left(W^{*}\right)$ is solvable. Now the same proof as in [6] goes through.

Lemma 2. Suppose $|Z|=2 ;|U(T)|=1$ and $i \not \chi_{G} z$. If $V$ is any subgroup of $C(i)$ which contains $W$ then $V$ centralizes $W$.

Proof. Same as in [6].
Lemma 3. Suppose $|Z|=2,|U(T)|=1$ and $\bar{W} \nleftarrow \bar{N}$ then $G$ is isomorphic to $U_{3}(3)$ or to one of the Janko simple groups of order 604,800 or $50,232,960$.

Proof. Since $W \in U(T)$ and $N$ is 2 constrained then $W \subseteq H$. Now the same argument as in [6] gives that $H$ is of symplectic type. Since $N$ is 2 constrained, $\bar{N} / \bar{H}$ acts faithfully on $\bar{H}$.

By [5] either $\bar{H}$ is 2-group of maximal class of $\bar{H}=H_{1} * H_{2}$ where $H_{1}$ is extra special 2 group of order $2^{2 m+1} / m \geqslant 1$ and $H_{2}$ is cyclic or of maximal class. Since the automorphism group of a 2-group of maximal class is solvable, then by [6] we can assume $\bar{H}$ is of the kind $H_{1}{ }^{*} H_{2}$. If $m \geqslant 3$ then $|\bar{H} / \phi(\bar{H})| \geqslant 2^{6}$ contradicting MacWilliams [7]. So $m \leqslant 2$. If $m=1$ then $\bar{N} / \bar{H}$ is solvable and the same proof as in [6] goes through. Furthermore if $m=2$ and $\left|H_{2}\right|>2$ then $|\bar{H} / \phi(\bar{H})| \geqslant 2^{5}$ contradicting McWilliams [7]. Hence $\bar{H}=H_{1}$ is extra special 2-group. By [7] we have $|\bar{H}|=32$. So $\bar{H} \cong Q_{8}{ }^{*} Q_{8}$ or $Q_{8}{ }^{*} D_{8}$. In case $\bar{H}=Q_{8}{ }^{*} Q_{8}, \bar{N} / \bar{H}$ is solvable and the same proof as in [6] goes through. Now we have $\bar{H} \cong Q_{8}{ }^{*} D_{8}$. By Huppert [5], $\bar{N} / \bar{H}$ is isomorphic to a subgroup of $\mathscr{L}_{5}$ the symmetric group on 5 letters. If $\bar{N} / \bar{H}$ is non solvable then $\bar{N} / \bar{H} \cong O t_{5}$ or $\mathscr{L}_{5}$. If $\bar{N} / \bar{H} \cong O t_{5}$ then a Sylow 2 subgroup of $\bar{N}$ is isomorphic to a Sylow 2 subgroup of the Janko simple group of order 604,800, see Lemma 2.6[3]. But by Gorenstein and Harada [1]; $G$ is isomorphic to one of the Janko simple groups of order 604,800 or $50,232,960$. In the other case $\bar{N} / \bar{H} \cong \mathscr{L}_{5}$. By the Gorenstein and Harada Lemma 5.6, [3], there are no simple groups $G$ with this property. Hence the result is proved by [6].

Lemma 4. Assume $\left|T^{\prime}\right| \neq 1$ and $|Z|=4$, then there is precisely one class of involutions in $G$ and if $z$ is an involution in $G$ then $C_{G}(z) / O_{2^{\prime}}\left(C_{G}(z)\right)$ is isomorphic to the centralizer of an involution in $U_{3}(4)$.

Proof. If $N_{G}(T) \neq T \cdot C_{G}(T)$, then same proof as in [6] proves the result. So we can assume $N_{G}(T)=T \cdot C_{G}(T)$. We will show in this case that there are no simple groups with these properties. We will show that $C_{G}(z)$ is solvable for every involution $z \in Z$. Then the same proof as in [6] completes the proof. Let $C=C_{G}(z)$. Let $H$ be a sylow 2 subgroup of $C$. Then $C_{T}(H) \subseteq H$. By 'Thompson's result stated before $T \cong T_{1} \times T_{2}$ where $T_{i}$ is dihedral or semidihedral and $\left|T_{i}\right| \geqslant 16$. Hence $[T: H] \leqslant 4$. Assume $C$ is not solvable since $C / O_{2^{\prime} .2}(C)$ acts faithfully on $H / \phi(H)$ and $|H / \phi(H)| \leqslant 2^{4}$,
therefore $C / O_{2^{\prime}, 2}(C)$ is isomorphic to a subgroup of $G L(4,2)$ and so $C / O_{2^{\prime} 2}(C) \simeq C_{5}$. But $N(T) \neq T \cdot C_{G}(T)$ in $C l_{5}$, a contradiction. Hence $C$ is solvable.

Main Theorem. Let $G$ be a nonabelian, finite simple group and $T$ a sylozv 2 subgroup of $G$, We assume that $T$ has no normal elementary subgroups of order 8 and whenever $t$ is an involution in $T$ such that $\left[T: C_{T}(t)\right] \leqslant 2$ then $C_{G}(t)$ is 2 -constrained. Then $G$ is isomorphic to one of the simple groups $L_{2}(q), O t_{7}$ $M_{11}, L_{3}(3), U_{3}(3), U_{3}(4)$ or to one of the Janko simple groups of order 604,800 or 50,232,960.

Proof. The same argument as in [6] shows that either $G$ is isomorphic to one of the groups named in the theorem or $T$ is isomorphic to a sylow 2 subgroup of $\overbrace{11}$. In the latter case by Gorenstein and Harada [2], $C_{G}(z) \cong \hat{\mathscr{O}}_{11}$ which is not 2-constrained which can not happen and proves the result.

## Acknowledgments

The author wishes to express his gratitude to Professor Z. Janko for suggesting this problem and for his help and encouragement and Professor S. K. Wong for helpful discussions in the preparation of this paper.

## References

1. D. Gorenstein and K. Harada, A characterization of Janko's 2 simple groups, Journal of Faculty of Science University of Tokyo 16 (1970), 331-406.
2. D. Gorenstein and K. Harada, On finite groups with Sylow 2-subgroups of type $O_{n} ; n-8,9,10$ and 11, J. Alg. 19 (1971), 185-227.
3. D. Gorenstein and K. Harada, Finite groups of sectional 2-rank at most 4, II (to appear).
4. M. Hall, Jr., "The Theory of Groups," MacMillan, New York, 1959.
5. B. Huppert, "Endliche Gruppen I," Springer, Berlin-Heidelberg-New York, 1967.
6. Z. Janko and J. G. Thompson, On finite simple groups whose Sylow-2 subgroups have no normal elementary subgroups of order 8, Math. Zeit. 113 (1970), 385-397.
7. A. MacWilliams, On 2-groups with no normal abelian subgroups of rank 3, and their occurrence as Sylow 2 -subgroups of finite simple groups, Trans. Amer. Math. Soc. 150 (1970), 345-408.
8. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383-437.
