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ABSTRACT 

A new type of generalized inverse is defined which is a weakened form of the 
Drazin inverse. These new inverses are called (d)-inverses. Basic properties of 
(d)-inverses are developed. It is shown that (d)-inverses are often easier to compute 
than Drazin inverses and can frequently be used in place of the Drazin inverse when 
studying systems of differential equations with singular coefficients or when studying 
Markov chains. 

1. INTRODUCTION 

Many applications of the Moore-Penrose inverse A’ of an m x n matrix A 
have been developed over the last several years. However, in some applica- 
tions one can get by with a weaker type of inverse. For example, if one 
wishes to solve Ax = b, and the equation is consistent, then x= A-b is a 

solution for any (l)-inverse A-. There is a trade-off here. The Moore-Penrose 
inverse has many properties, such as being unique, that a (1)-inverse does not 
have. On the other hand, it is often easier to find a (1)-inverse than the 
Moore-Penrose inverse. 

The Drazin inverse has recently been shown to have applications in the 
theory of differential equations [5, 81, control theory [4, 91, numerical 
analysis [14], and Markov chains [13]. Many of its basic properties have been 
developed [3, 6, 8, 10, 11, 13, G-171, and the extension to infinite matrices 
has been begun [2]. It can, however, be difficult to compute the Drazin 
inverse. One way to lessen this latter problem is to look for a generalized 
inverse that would play much the same role for AD as the (1)-inverses play 
for A +. One would not expect such an inverse to be unique. It should, at 
least in some cases of interest, be easier to compute. Furthermore, it should 
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be usable as a replacement for A D in many of the applications as well as 
having additional applications of its own. 

We shall proceed as follows: First, a particular application will be used to 
motivate our definition of a “weak Drazin inverse”. Its basic properties will 
then be developed. An algorithm for computing weak Drazin inverses will be 
given, Finally, applications of our work will be presented. 

We assume the reader is familiar with the basic properties of the Drazin 
inverse [l, pp. 16%180]. J us as the Drazin inverse may be defined over an t 
arbitrary field, the inverses discussed in this paper may be defined for square 
matrices over an arbitrary field. 

The range and null space of a matrix A are denoted R (A) and N(A) 
respectively. C” Xn denotes the space of m X n matrices over the complex 
numbers, 

2. DEFINITIONS AND BASIC PROPERTIES 

Consider the difference equation 

&,,+l=q,,C,, m>O, AEC"~". (1) 

All solutions of (1) are of the form X, = (AD)“A DAq, q EC” [8]. As 
observed in [8], it is the fact that the Drazin inverse solves (1) that helps 
explain its applications to differential equations. We shall define an inverse 
so that it solves (1) when (1) is consistent. Note that in (l), we have 
~,,,=Arx,,,+~ for 1 > 0. Thus if our inverse is to always solve (1) it must send 
R (Ak), k=IndexA, onto itself and have its restriction to R (Ak) the same as 
the inverse of A restricted to R (A ‘). That is, it provides the unique solution 
toAx=b, XER(A~), when bER(Ak). 

DEFINITION 1. Suppose that A EC”’ * and k=IndexA. Then B is a 
weak Drazin inverse, denoted Ad, if 

(4 BA 
k+l,Ak. 

B is called a projective weak Drazin inverse of A if B satisfies (d) and 

(p) R(BA)=R(AAD). 

B is called a commuting weak Drazin inverse of A if B satisfies (d) and 

(c) AB=BA. 
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B is called a minimal rank weak Drazin inverse of A if B satisfies (d) and 

(m) Rank(B) = Rank(A “). 

DEFINITION 2. An (ii,..., Q-inverse of A is a matrix B satisfying the 
properties listed in the m-tuple. Here i, E { 1,2,3,4, d, m, c, p}. The integers 1, 
2, 3, 4 represent the usual defining relations of the Moore-Penrose inverse. 
Properties d, m, c, p are as in Definition 1. 

We shall only be concerned with properties { 1,2,m,d, c,p}. Note that 
they are all invariant under a simultaneous similarity transformation of A and 
B. Also note that one could define a right weak (d)-inverse by A k+lB = A k, 
and get a theory analogous to that developed here. 

THEOREM 1. Suppose that A E C” x “, k=IndexA. Suppose TEC”~” is 
a nonsingular matrix such that 

TAT-‘= c o 
[ 1 0 N' 

C nonsingular, N k = 0. (2) 

Then B is a (d)-inverse of A if and only if 

TBT-l= [ g-l :I, X, Yarbitrary. 

B is an (m,d)-inverse for A if and only if 

TBT-‘= [z-l t 1, X arbitrary. 

B is a ( p,d)-inverse of A if and only if 

TBT-‘= [t-l t 1, X arbitrary, YN=O. 

B is a (c,d)-inverse of A if and only if 

TBT-‘= [ o”-l “y ], YN=NY. 

(3) 

(4 

(6) 
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B is a (l,d)-inverse of A if and only if 

XN=O, N- a (1)-inverse of N. (7) 

B is a (2,d)-inverse of A if and only if 

TBT-‘= [ o”-’ ;], YNY= Y, XNY=O. 

Zf TAT-’ is nilpotent, then (3)-(8) are to be interpreted as the (2,2)-block in 
the matrix. Zf A is invertible, then all reduce to A-‘. 

Proof. Let A be written as in (2). That each of (3)-(8) is the required 
type of inverse is a straightforward verification. Suppose then that B is a 
(d)-inverse of A. The case when A is nilpotent or invertible is trivial, so 
assume that A is neither nilpotent nor invertible. Since B leaves R (Ak) 
invariant, we have 

TBT-‘= ’ ’ 
[ 1 0 Y (9) 

for some Z,X, Y. Substituting (9) into (d) gives only ZCk+‘= Ck. Hence 
Z = C -’ and (3) follows. Equation (4) is clear. Assume now that B satisfies 
(3). If B is an ( p,d)-inverse, then 

Thus (5) follows. If B is a (c,d)-inverse of A, then 

But then CkX= XNk=O and (6) follows. Similarly, (7) and (8) follow from (3) 
and the definition of properties { 1,2}. w 

Note that for any A .Cnx” there always exists a T so that (2) holds. Also 
note that any number 1) IndexA can be used in place of k in (d). 

Observe that, in general, A kA dA # A k and A k+ ‘A d # A k. Also A dA and 
AA d are not always projections. However, AAd and AdA are both the 
identity on R (A k). 
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COROLLARY 1. AD is the unique (p,c,d)-inverse of A. AD is also a 
(2,p,c,d)-inverse and is the unique (2,c,d)-inverse of A by definition. 

Proof. Suppose B is a ( p,c, d)-inverse of A. Then B has the form (3) 
withY=Oby(4)andX=Oby(6). n 

COROLLARY 2. Suppose that IndexA= 1. Then 

(i) B is a (l,d)-inverse of A if and only if B is a (d)-inverse, and 
(ii) B is a (2,d)-inverse of A if and only if B is an (m,d)-inverse. 

Note that the Scroggs-Ode11 inverse [17] is a (1,2,d)-inverse of A. 

COROLLARY 3. Suppose that IndexA > 2. Then there are no (1, c, d)-in- 
verses or (1, p, d)-inverses. 

Proof. Suppose that IndexA > 2 and B is a (l,c,d)-inverse of A. Then 
by (3), (6), (7) we have X =O, NYN= N, and NY = YN. But then Nk-’ =0 
which is a contradiction. If B is a (l,p, d)-inverse we have by (3), (5), (7) that 
X = 0, Y = 0, and NON = N, which is a contradiction. n 

Most of the (d)-inverses are not spectral in the sense of [13], since no 
assumptions have been placed on N(A), N (A d). However, 

COROLLARY 4. The operation of taking (m,d)-inverses has the spectral 
mapping property. That is, h is a nonzero eigenvalue for A if and only if l/h 
is a nonzero eigenvalue for the (m,d)-inverse B. Furthermore, the eigen- 
spaces for X and l/h are the same. Either both A and B have a zero 
eigenvalue or both are invertible. The zero eigenspaces need not be the same. 

Note that if h is a nonzero eigenvalue of A, then l/h is an eigenvalue of 
Ad. 

COROLLARY 5. If B1,..., B, are (d)-inverses of A, then BIB,. . * B, is a 
(d)-inverse of A’. In particular, (Ad)” is a (d)-inverse of A”. 

Corollary 5 is not true for (1)-inverses. For 

is a (1,2)-inverse of 

A= 1 o 
[ 1 0 0’ 
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but B2 = 0 and hence B 2 is not a (1)-inverse of A2 = A. This is not surprising, 
as (A ‘)’ may not be even a (l)-inverse of A2 [7]. 

THEOREM 2. Suppose that A EC” x “, Index A = k. Then 

(i) {AD+Z(Z-ADA)]Z~CnX”} is the set ofall (d)-inverses ofA, 
(ii) {AD+ADAZ(Z-ADA)]Z EC”~“} is the set of all (m,d)-inuerses of A 

.:diii) {An+Z(Z-ADA)]ZA=AZ} is the set of all (c,d)-inverses of A, 

(iv) {AD+(Z-ADA)[A(Z-ADA)]-1(Z-ADA)[A(Z-ADA)]-A(Z-ADA) 

= 0} is the set of all (1, d)-inverses of A. 

Proof, (i)-(iv) f 11 o ow from Theorem 1. We have omitted the (p,d) and 

(2, d)-inverses, since they are about as unappealing as (iv). n 

Just as it is possible to calculate A’ given an A -, one may calculate A D 
from any A d. 

COROLLARY 6. Zf k=IndexA, then AD=(Ad)‘+lA1 for any Z> k. 

3. BLOCK TRIANGULAR MATRICES 

It is known [15] that if C, E are square, then 

X=(C”)” ‘.$’ (CD)“FE” (I-EED) 
n=O 

+(z- cDc) 
n=O 

Z = Index C, k = Index E. 

In this section we shall develop similar results for weak Drazin inverses. 
A useful special case of (10) is when C is invertible. 
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THEOREM 3, Suppose that 

AEC”~” and A= c w 
i 1 0 E’ 

Ad= c-' 

i 0 
(11) 

Ed any (~)-~n~eT~e of E, E’ an (~,~)-~nue~se of E, Z an a~bi~a~ matrix of 
the correct size. 

Proof. suppose 

with C invertible. Let k = XndexA = Index E. Then 

where 0 is some matrix. Now the range of 

and any A * agree on it. Thus 

is in R (A k). Hence AD 

Now suppose (12) is a (d)-inverse of A. Then AA *A k = A k. Hence 

I cx,+ wx, 
0 Ii I Ck 0 =i 

EX2 0 Ek 
Ck 0 
0 1 Ek ’ 
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@+(CX1+DX,)Ek=O, (14) 

EX,Ek=Ek. (15) 

If A ‘A k+ ’ = A k is to hold, one must have X2 a (d)-inverse of E. Let X, = Ed 
for some (d)-inverse of E. Then (15) holds. Now (14) becomes X,Ek = 
- C - ‘DEdE k, Let Ed be a (m, d)-inverse of E. Then EdE is a projection 
onto R(Ek). Hence X, must be of the form -C-‘DEd+Z(I-E’E), and 
(11) follows. To see that (11) defines a (d)-inverse of A is a direct computa- 
tion. n 

It should be pointed out that while BA k+ ’ = A k implies ABA k = A k, the 
two conditions are not equivalent. 

COROLLARY 7. Suppose there exists an invertible T such that 

TAT-‘= ’ ’ 
[ 1 0 N (16) 

with C invertible and N nilpotent. Then 

Ad=T-’ o”-l [ 1 iT 
is a (m,d)-inverse for A. 

If one wanted A LJ from (16) it would be given by the more complicated 
expression [ 151 

4. COMPUTATION OF WEAK DRAZIN INVERSES 

As observed in the preceeding section, if one has a block triangular 
matrix it is easier to compute a weak Drazin, than a Drazin inverse. 
However, in practice one frequently does not begin with a block triangular 



WEAK DRAZIN INVERSES 175 

matrix. We shall now give two results which have analogues for the Drazin 
inverse, but work out much simpler for computing a weak Drazin inverse. 

THEOREM 4. Suppose thatAECnX” and thatp(x)=x’(c,+--. +c,xr), 

c,#O, is the characteristic (or minimal) polynomial of A. Then 

A"=-~(c,Z+- +c,A’-‘) (17) 

is a (c,d)-inverse of A. Zf (17) is not invertible, then A d + (I - A dA) is an 
invertible (c, d )-inverse of A. 

Proof. Since p(A) = 0, we have (c,Z + . . . + c,A ‘)A ’ = 0. Hence 
(c,Z+... +c,.A’-‘)A’+‘=- caA1. Since IndexA < 1, we have that (17) is a 
(d)-inverse. It is commuting, since it is a polynomial in A. Now let A be as in 
(2). Then since A d is a (c,d)-inverse, it is in the form (6). But then 
Y= -(l/c,)(c,Z+c,N+*.. +c,N’-’ ). If ci #O, then Y is invertible, since 
N is nilpotent, and we are done. Suppose that ci = 0. Then 

Ad+(Z-AdA)= 0 1 I-YN+Y ’ 
and I - YN + Y is invertible, since Y - YN is nilpotent. That A d + (I - A dA) 
is a (c, d)-inverse follows from the fact that Ad is a (c, d)-inverse. n 

Note that Theorem 4 requires no information on eigenvalues or their 
multiplicities to calculate a (c, d)-inverse. If A had rational entries, (17) 
would provide an exact answer if exact arithmetic were used. 

Theorem 4 suggests that a variant of the Souriau-Frame algorithm could 
be used to compute (c,d)-inverses. In fact, the algorithm goes through 
almost unaltered. 

THEOREM 5. Sup-pose that AEC”~“. Let B,=Z. For i=1,2 ,..,, n, let 
pf=(l/i)Trace(ABj_,) and Z$=AB,._,-piI. Zf p,#O, but ps+l=p,+z 
= . . . = p, = 0, then 

is a (c, d)-inverse. In fact, (17) and (18) are the same matrix. 
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Proof. Let k=IndexA.Observe that B,=Ai-piAi-‘-pzAi-2-. . . - 
piI. If r is the smallest integer such that B, =O, and s is the largest integer 
such that p3 #O, then Index A = r - s [16]. Since B, = 0, we have A’= p,A ‘-l 
- . . . -p,_,A’-S+‘-p,A’-S=O. Hence, 

A’-“=~(A’-plA’-l_. . . -ps_lA’-S+l) 

P, 

= $(As’plAs-2-. . . _ps_lZ)A’-S+‘. 

s 

That is, 

as desired. 

5. APPLICATIONS 

LEMMA 1. Suppose A, B E CnXn and AB= BA. Let Ad be any (d)-in- 

verse of A. Then A dBAA D=BAdAAD=BADAAD=ADBAAD. 

Proof. If AB = BA, then A DB = BAD. Also if A is given by (2), then 

TBT-‘= ;’ ’ 
[ 1 B2 ' 

with B,C= CB,. Lemma 1 now follows from Theorem 1. H 

As an immediate consequence of Lemma 1, one may use a (d)-inverse in 
[4], [8] provided the appropriate projection is on the right. For example, we 
have 

THEOREM 6. Suppose that A, B E Cnx”. Suppose that Ai - Br = 0 has 

unique solutions for consistent initial_conditions, that is, there is a scalar c 
such that ,cA + B is invertible. Let A = (CA + B)-‘A, B= (CA + B)-‘B. Let 
k=IndexA. Zf Ai-- Bx=O, x(O) = q, is_consistent, then the solution is 
x=eidBtq. Zf id is an (m,d)-inverse of A, then all solutions of Ax-Bx=O 

are of the form x = e Kd’tAaA^dq, q EC”, and the space of consistent initial 

conditions is R (Gd) = R (idi)). 
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Note in Theorem 6 that Gd need not equal kdA^ even if id is an 

(m, d)-inverse of A. 

THEOREM 7. Let A, B,K,B^, be as in Theorem 6. Zf 

&,,+~=%,,, m > 0, (19) 

^d 
is consistent for x0 = q, thtn the solution is x,,, = (idi)“’ = (kd)“‘i’“q. Zf A 
is an (m,d)-inverse of A, then all solutions of (19) are given by x,,,= 

(~dB^)m~d~q, and the space of consistent initial conditions is R(Adk). 

Weak Drazin inverses can also be used in the theory of Markov chains. 
For example, we have 

THEOREM 8. Zf T is the transition matrix of an m-state ergodic chain 
and if A = Z - T, then the rows of Z - A dA are all equal to the unique fixed 
probability vector w* of T for any (d)-inverse of A. 

Proof. The rows of I- AAD are all equal to w* [13, Theorem 2.31. 
From (3) we have AAD = A dA = A #A, since Index A = 1 [13, Theorem 2.11. 
Here # denotes the group inverse of A. n 

The authors wish to thank Michael Stadelmuier for pointing out Theorem 
4 to them. 
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