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a b s t r a c t

In this paper we show that the intuitionistic theory IDi
<ω(SP) for finitely many iterations

of strictly positive operators is a conservative extension of Heyting arithmetic. The proof
is inspired by the quick cut-elimination due to G. Mints. This technique is also applied to
fragments of Heyting arithmetic.
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1. Introduction

Let us consider in this paper the fixed point predicate I(x) for a positive formula Φ(X, x):

(FP)Φ
∀x[I(x) ↔ Φ(I, x)]. (1)

Buchholz [3] showed that an intuitionistic fixed point theory IDi
(M) is conservative over Heyting arithmetic HA with

respect to almost negative formulas, (in which ∨ does not occur and ∃ occurs in front of atomic formulas only). The theoryIDi
(M) has the axioms (1) (FP)Φ for fixed points formonotone formulasΦ(X, x), which are generated from arithmetic atomic

formulas and X(t) by means of (first order) monotonic connectives ∨, ∧, ∃, ∀. Namely neither → nor ¬ occur in monotone
formulas. The proof is based on a recursive realizability interpretation.

After seeing the result of Buchholz, we [1] showed that an intuitionistic fixed point (second order) theory is conservative
over HA for all arithmetic formulas. In the theory the operatorΦ for fixed points is generated from X(t) and any second order
formulas by means of first order monotonic connectives and second order existential quantifiers ∃f (∈ ω → ω). Moreover
the same holds for the finite iterations of these operations. The proof is based on Goodman’s theorem [5].

Next, Rüede and Strahm [8] extend significantly the results in [3] and [1]. They showed that the intuitionistic fixed point
theory IDi

<ω(SP) for finitely many iterations of strictly positive operators is conservative over HA with respect to negative
and Π0

2 -formulas.
In this paper we show a full result. Let L be a language obtained from the language LHA of HA by adding unary predicate

symbols P, . . . , and HAL, the Heyting arithmetic in the expanded language L. In other words, the induction axioms are
available for any L-formulas in HAL. IDi

(SPL) denotes the intuitionistic fixed point theory for strictly positive operators in the
language L.
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Theorem 1. IDi
(SPL) is a conservative extension of HAL.

Let IDi
n(SP) denote the intuitionistic fixed point theory for n-fold iterations of strictly positive operators. IDi

0(SP) is
another name for HA. Theorem 1 yields the following Corollary 2.

Corollary 2. For each n < ω, IDi
n+1(SP) is a conservative extension of IDi

n(SP), and IDi
<ω(SP) is a conservative extension of HA.

Our proof is based on a quick cut-elimination of strictly positive cuts with arbitrary antecedents, cf. Theorem 8. The proof
is inspired by G. Mints’ quick cut-elimination of monotone cuts in [7], and was found in an attempt to clarify ideas in [2].

Let us explain an idea of our proof more closely. The story is essentially the same as in [2]. First the finitary derivations
in IDi

(SPL) are embedded to infinitary derivations, and eliminate cuts partially. This results in an infinitary derivation of
depth less than ε0, in which there occur cut inferences with cut formulas IΦ(t) for fixed points only. Now the constraint on
operator Φ admits us to eliminate strictly positive cut formulas quickly. In this way we will get an infinitary derivation of a
depth less than ε0, in which there occur no fixed point formulas.

By formalizing the arguments we see that the end formula is true in HAL.
In Section 5we show thatmonotone cutswith negative antecedents can be eliminatedmore quickly. In the final Section 6

these techniques are applied to fragments of Heyting arithmetic.

2. An intuitionistic theory IDi
(SPL)

LHA denotes the language of Heyting arithmetic. Logical connectives are ∨, ∧, →, ∃, ∀. ¬A :≡ (A → ⊥). Let L be a
language obtained from the language LHA by adding unary predicate symbols P, . . .. Let I be a fresh unary predicate symbol
not in L, and let L(I) denote L ∪ {I}.

Let SPL be the class of L(I)-formulas such that A ∈ SPL iff I occurs only strictly positive in A. The class SPL is defined
inductively.

Definition 3. Define inductively a class of formulas SPL in L(I) as follows.

1. Any atomic formula in L belongs to SPL.
2. Any atomic formula I(t) belongs to the class SPL.
3. If R, S ∈ SPL , then R ∨ S, R ∧ S, ∃xR, ∀xR ∈ SPL.
4. If L ∈ L and R ∈ SPL , then L → R ∈ SPL.

Let IDi
(SPL) denote the following extension of HAL. Its language is obtained from L by adding a unary set constant I for a

Φ ≡ Φ(I, x) ∈ SPL, in which only a fixed variable x occurs freely. Its axioms are those of HAL in the expanded language (i.e.,
the induction axioms are available for any formulas in the expanded language L(I)) plus the axiom (FP)Φ .

3. Infinitary derivations

Given an IDi
(SPL)-derivation D0 of an L-sentence C0, let us first transfer it to an infinitary derivation in an infinitary

calculus IDi∞
(SPL).

Let N denote a number which is big enough so that any formula occurring in D0 has logical complexity (which is defined
by the number of occurrences of logical connectives) smaller than N . In what follows, any formula occurring in infinitary
derivations we are concerned with has logical complexity less than N .

The derived objects in the calculus IDi∞
(SPL) are sequents Γ ⇒ A, where A is a sentence (in the language of IDi

(SPL)) and
Γ denotes a finite set of sentences, where each closed term t is identified with its value n̄, the nth numeral.

⊥ stands ambiguously for false equations t = swith closed terms t, s having different values. ⊤ stands ambiguously for
true equations t = swith closed terms t, s having equal values.

The initial sequents are

Γ , P(t) ⇒ P(t); Γ , ⊥ ⇒ A; Γ ⇒ ⊤

for predicate symbols P ∈ (L(I) \ LHA).
The inference rules are (L∨), (R∨), (L∧), (R∧), (L →), (R →), (L∃), (R∃), (L∀), (R∀), (LI), (RI) and (cut). These are the

standard ones.

1.
Γ , I(t), Φ(I, t) ⇒ C

Γ , I(t) ⇒ C
(LI)

;

Γ ⇒ Φ(I, t)
Γ ⇒ I(t)

(RI)

2.
Γ , A0 ∨ A1, A0 ⇒ C Γ , A0 ∨ A1, A1 ⇒ C

Γ , A0 ∨ A1 ⇒ C
(L∨)

;

Γ ⇒ Ai

Γ ⇒ A0 ∨ A1
(R∨)

(i = 0, 1)
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3.
Γ , A0 ∧ A1, Ai ⇒ C
Γ , A0 ∧ A1 ⇒ C

(L∧)
(i = 0, 1) ;

Γ ⇒ A0 Γ ⇒ A1

Γ ⇒ A0 ∧ A1
(R∧)

4.
Γ , A → B ⇒ A Γ , A → B, B ⇒ C

Γ , A → B ⇒ C
(L →)

;

Γ , A ⇒ B
Γ ⇒ A → B

(R →)

5.
· · · Γ , ∃xB(x), B(n̄) ⇒ C · · · (n ∈ ω)

Γ , ∃xB(x) ⇒ C
(L∃)

;

Γ ⇒ B(n̄)
Γ ⇒ ∃xB(x)

(R∃)

6.
Γ , ∀xB(x), B(n̄) ⇒ C

Γ , ∀xB(x) ⇒ C
(L∀)

;

· · · Γ ⇒ B(n̄) · · · (n ∈ ω)

Γ ⇒ ∀xB(x)
(R∀)

7.
Γ ⇒ A Γ , A ⇒ C

Γ ⇒ C
(cut).

The depth of an infinitary derivation is defined to be the depth of the well founded tree.
As usual we see the following proposition. Recall that N is an upper bound of logical complexities of formulas occurring

in the given finite derivation D0 of L-sentence C0.

Proposition 4. 1. There exists an infinitary derivation D1 of C0 such that its depth is less than ω2 and the logical complexity of
any sentence, in particular cut formulas occurring in D1, is less than N.

2. By partial cut-elimination, there exists an infinitary derivation D2 of C0 and an ordinal α0 < ε0 such that the depth of the
derivation D2 is less than α0 and any cut formula occurring in D2 is an atomic formula I(t), (and the logical complexity of any
formula occurring in it is less than N).

Definition 5. The rank rk(A) of a sentence A is defined by

rk(A) :=

0 if A ∈ L
1 if A ∈ (SPL \ L)
2 otherwise.

Let us call a cut inference L-cut [SPL-cut] if its cut formula is of rank 0 [of rank 1], resp.
Let ⊢

α
r Γ ⇒ C mean that there exists an infinitary derivation of Γ ⇒ C such that its depth is at most α, and all its cut

formulas have rank less than r , (and the logical complexity of any formula occurring in it is less than N).
The following lemmas are seen as usual.

Lemma 6 (Weakening Lemma). If ⊢α
1 Γ ⇒ A and β ≥ α, then ⊢

β

1 ∆, Γ ⇒ A.

Lemma 7 (Inversion Lemma). Assume ⊢
α
1 Γ ⇒ A.

1. If A ≡ ⊥, then ⊢
α
1 Γ ⇒ C for any C.

2. ⊢
α
1 (Γ \ {⊤}) ⇒ A.

Let 32(β) := 33β
.

Theorem 8. Suppose that ⊢β

2 Γ ⇒ C. Then ⊢
32(β)

1 Γ ⇒ C.

Assuming Theorem 8, we can show Theorem 1 as follows. Suppose an L-sentence C0 is provable in IDi
(SPL). By

Proposition 4 we have ⊢
α0
2 ⇒ C0 for a big enough number N and an α0 < ε0. Then Theorem 8 yields ⊢

β0
1 ⇒ C0 for

β0 = 32(α0) < ε0.
Let TrN(x) denote a partial truth definition for formulas of logical complexity less than N . By transfinite induction up to

β0 we see TrN(C0). Note that any sentence occurring in the witnessing derivation for ⊢
β0
1 ⇒ C0 has logical complexity less

than N , and it is an L-sentence. Specifically there occurs no fixed point formula I(t) in it. Now since everything up to this
point is formalizable in HAL, we have TrN(C0), and hence C0 in HAL. This shows Theorem 1.

Additional information equipped with infinitary derivations together with the repetition rule (Rep)

Γ ⇒ C
Γ ⇒ C

(Rep)

is helpful when we formalize our proof as in [6]. In this paper let us suppress these.
A proof of Theorem 8 is given in the next section.
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4. Quick cut-elimination of strictly positive cuts with arbitrary antecedents

In this section we show that strictly positive cuts can be eliminated quickly even if antecedents of cut inferences and
endsequents are arbitrary formulas. The only constraint is that any cut formula has to be strictly positive.

Let α#β denote the natural sum or commutative sum, α#β = β#α, and α × β the natural product .
Theorem 8 follows from the following Lemma 9.
As in Lemma 3.2, [7] the elimination procedure is fairly standard, leaving the resulted cut inferences of rank 0, but it has

to perform in parallel.
A denotes a finite list Ak, . . . , A2, A1 (k ≥ 0) of SP-formulas, and α = αk, . . . , α2, α1 a list of ordinals. Then ⊢

α
1 Γ ⇒ A

designates that ⊢
αi
1 Γ ⇒ Ai for each i ∈ {1, . . . , k}.−

α := 1#α1# · · ·#αk.

A1 denotes the list Ak, . . . , A2, in which A1 is deleted. Likewise α1 denotes the list αk, . . . , α2.

Lemma 9. Suppose ⊢
α
1 Γ ⇒ A and ⊢

β

2 ∆,A ⇒ C with rk(Ai) ≤ 1 for i = 1, . . . , k. Then

⊢
(
∑

α)×32(β)

1 ∆, Γ ⇒ C (2)

Note that the case k = 0 in Lemma 9 is nothing but Theorem 8.
We prove Lemma 9 by the main induction on β with subsidiary induction on

∑
α + k, where k is the length of the list A.

1. The case when one of Γ ⇒ Ai, and ∆,A ⇒ C is an initial sequent.
First consider the case when ∆,A ⇒ C is an initial sequent.
If ∆,A ⇒ C is an initial sequent such that one of the cases C ≡ ⊤, ⊥ ∈ ∆ or C ∈ ∆ occurs, then ∆ ⇒ C , and hence

∆, Γ ⇒ C is still the same kind of initial sequent.
If ∆,A ⇒ C is an initial sequent with the principal formula A ∋ Ai ≡ C , then ⊢

(
∑

α)×32(β)

1 ∆, Γ ⇒ Ai(≡ C) follows
by weakening from the premise ⊢

αi
1 Γ ⇒ Ai and (

∑
α) × 32(β) ≥ αi.

If Ai ≡ ⊥, then Inversion Lemma 7.1 with a weakening yields ⊢
αi
1 ∆, Γ ⇒ C .

Next assume Γ ⇒ Ai is an initial sequent for an i. This implies k > 0. For simplicity assume i = 1.
If A1 ∈ Γ , then by SIH (=Subsidiary Induction Hypothesis) we have ⊢

(
∑

α1)×32(β)

1 ∆, A1, Γ ⇒ C with A1 ∈ Γ and
(
∑

α1) × 32(β) ≤ (
∑

α) × 32(β).
If ⊥ ∈ Γ , then ∆, Γ ⇒ C is an initial sequent.
If A1 ≡ ⊤, then Inversion Lemma 7.2 yields ⊢

β

2 ∆,A1 ⇒ C , and by SIH ⊢
(
∑

α1)×32(β)

1 ∆, Γ ⇒ C .
In what follows assume that none of Γ ⇒ Ai, and ∆,A ⇒ C is an initial sequent.

2. Consider the case when ∆,A ⇒ C is a lowersequent of an SPL-cut. For a γ < β

⊢
α
1 Γ ⇒ A

⊢
γ

2 ∆,A ⇒ A0 ⊢
γ

2 ∆,A, A0 ⇒ C

⊢
β

2 ∆,A ⇒ C
(cut)

∆, Γ ⇒ C

with rk(A0) = 1.
MIH(=Main Induction Hypothesis) yields ⊢

(
∑

α)×32(γ )

1 ∆, Γ ⇒ A0, and once again by MIH and−
α#

−
α


× 32(γ )


× 32(γ ) ≤

−
α


× 32(β)

we conclude ⊢
(
∑

α)×32(β)

1 ∆, Γ ⇒ C .
We will depict a ‘derivation’ to illustrate the arguments.

⊢
α
1 Γ ⇒ A

⊢
α
1 Γ ⇒ A ⊢

γ

2 ∆,A ⇒ A0

⊢
(
∑

α)×32(γ )

1 ∆, Γ ⇒ A0

MIH
⊢

γ

2 ∆,A, A0 ⇒ C

⊢
(
∑

α)×32(β)

1 ∆, Γ ⇒ C
MIH.

In what follows assume that ∆,A ⇒ C is the lower sequent of an inference rule J other than an SPL-cut.
3. If the principal formula of J if any is not in A, then lift up the left upper part: for a γ < β

⊢
α
1 Γ ⇒ A

· · · ⊢
γ

2 ∆i,A ⇒ Ci · · ·

⊢
β

2 ∆,A ⇒ C
(J)

∆, Γ ⇒ C
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· · ·

⊢
α
1 Γ ⇒ A ⊢

γ

2 ∆i,A ⇒ Ci

⊢
(
∑

α)×32(γ )

1 ∆i, Γ ⇒ Ci

MIH
· · ·

⊢
(
∑

α)×32(β)

1 ∆, Γ ⇒ C
(J).

Note that (
∑

α) × 32(γ ) < (
∑

α) × 32(β), since by the definition (
∑

α) > 0.
4. Finally suppose that the principal formula of J is a cut formula Ai ∈ A with rk(Ai) ≤ 1. For simplicity suppose i = 1, and

let J ′ denote the last rule in ⊢
α1
1 Γ ⇒ A1.

(a) J ′ is a left rule or a cut.
i. The case when J ′ is an (L∃) with an ∃yD(y) ∈ Γ .

· · · ⊢
α0
1 Γ ,D(n̄) ⇒ A1 · · ·

⊢
α1
1 Γ ⇒ A1

(L∃).

Then α0 < α1, and hence
∑

α1#α0 <
∑

α1#α1 =
∑

α. Thus SIH yields

⊢
(
∑

α1#α0)×32(β)

1 ∆, Γ ,D(n̄) ⇒ C

for each n.

· · ·

⊢
α1
1 Γ ⇒ A1 ⊢

α0
1 Γ ,D(n̄) ⇒ A1 ⊢

β

2 ∆,A1, A1 ⇒ C

⊢
(
∑

α1#α0)×32(β)

1 ∆, Γ ,D(n̄) ⇒ C
SIH

· · · (n ∈ N)

⊢
(
∑

α)×32(β)

1 ∆, Γ ⇒ C
(L∃).

ii. The case when J ′ is an (L →) with a D → E ∈ Γ .

⊢
α0
1 Γ ⇒ D ⊢

α0
1 Γ , E ⇒ A1

⊢
α1
1 Γ ⇒ A1

(L →).

Then

⊢
α0
1 Γ ⇒ D

⊢
α1
1 Γ ⇒ A1 ⊢

α0
1 Γ , E ⇒ A1 ⊢

β

2 ∆,A1, A1 ⇒ C

⊢
(
∑

α1#α0)×32(β)

1 ∆, Γ , E ⇒ C
SIH

⊢
(
∑

α)×32(β)

1 ∆, Γ ⇒ C
(L →).

iii. The case when J ′ is an L-cut with cut formula D.

⊢
α0
1 Γ ⇒ D ⊢

α0
1 Γ ,D ⇒ A1

⊢
α1
1 Γ ⇒ A1

(L-cut).

⊢
α0
1 Γ ⇒ D

⊢
α1
1 Γ ⇒ A1 ⊢

α0
1 Γ ,D ⇒ A1 ⊢

β

2 ∆,A1, A1 ⇒ C

⊢
(
∑

α1#α0)×32(β)

1 ∆, Γ ,D ⇒ C
SIH.

⊢
(
∑

α)×32(β)

1 ∆, Γ ⇒ C
(L-cut)

iv. Other cases are seen similarly.
(b) J ′ is a right rule.

i. In the case when A1 ≡ ∃xB(x) we have for an α0 < α1 and a γ < β

⊢
α0
1 Γ ⇒ B(n̄)

⊢
α1
1 Γ ⇒ ∃xB(x)

(R∃)
and

· · · ⊢
γ

2 ∆,A, B(n̄) ⇒ C · · ·

⊢
β

2 ∆,A ⇒ C
(L∃).

Then

⊢
α Γ ⇒ A ⊢

α0
1 Γ ⇒ B(n̄) ⊢

γ

2 ∆,A, B(n̄) ⇒ C

⊢
((

∑
α)#α0)×32(γ )

1 ∆, Γ ⇒ C
MIH

and −
α


#α0


× 32(γ ) <

−
α


× 32(β). (3)
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ii. The case when A1 ≡ H → A0 with an H ∈ L and an A0 ∈ SPL. We have for an α0 < α1 and a γ < β

⊢
α0
1 Γ ,H ⇒ A0

⊢
α1
1 Γ ⇒ A1

(R →)
and

⊢
γ

2 ∆,A ⇒ H ⊢
γ

2 ∆,A, A0 ⇒ C

⊢
β

2 ∆,A ⇒ C
(L →).

Then by (3)

⊢
α
1 Γ ⇒ A ⊢

γ

2 ∆,A ⇒ H

⊢
(
∑

α)×32(γ )

1 ∆, Γ ⇒ H
MIH

⊢
α
1 Γ ⇒ A ⊢

α0
0 Γ ,H ⇒ A0 ⊢

γ

2 ∆,A, A0 ⇒ C

⊢
((

∑
α)#α0)×32(γ )

1 ∆, Γ ,H ⇒ C
MIH.

⊢
(
∑

α)×32(β)

1 ∆, Γ ⇒ C
(L-cut)

iii. In the case when Ai ≡ ∀xB(x) we have for an α0 < α1 and a γ < β

· · · ⊢
α0
1 Γ ⇒ B(n̄) · · · (n ∈ N)

⊢
α1
1 Γ ⇒ A1

(R∀)
and

⊢
γ

2 ∆,A, B(n̄) ⇒ C

⊢
β

2 ∆,A ⇒ C
(L∀).

Then by (3)

⊢
α
1 Γ ⇒ A ⊢

α0
1 Γ ⇒ B(n̄) ⊢

γ

2 ∆,A, B(n̄) ⇒ C

⊢
(
∑

α)×32(β)

1 Γ , ∆ ⇒ C
MIH.

iv. In the case when Ai ≡ I(t) we have for an α0 < α1 and a γ < β

⊢
α0
1 Γ ⇒ Φ(I, t)

⊢
α1
1 Γ ⇒ A1

(RI)
and

⊢
γ

2 ∆,A, Φ(I, t) ⇒ C

⊢
β

2 ∆,A ⇒ C
(LI).

Then by (3)

⊢
α
1 Γ ⇒ A ⊢

α0
1 Γ ⇒ Φ(I, t) ⊢

γ

2 ∆,A, Φ(I, t) ⇒ C

⊢
(
∑

α)×32(β)

1 Γ , ∆ ⇒ C
MIH.

v. Other cases A1 ≡ B0 ∨ B1, B0 ∧ B1 are seen similarly.

This completes a proof of (2), and hence of Lemma 9.

5. Quick cut-elimination of monotone cuts with negative antecedents

We show that monotone cuts with negative antecedents can be eliminated more quickly. In this section we consider
Heyting arithmetic HA and its infinitary counterpart HA∞. First let us introduce a class N M of LHA-formulas.

Definition 10. N denotes the class of negative formulas, i.e., formulas in which no disjunction and no existential quantifier
occurs.

Define inductively a class of formulas N M in LHA as follows.

1. Any atomic formula s = t belongs to N M.
2. If R, S ∈ N M, then R ∨ S, R ∧ S, ∃xR, ∀xR ∈ N M.
3. If L ∈ N and R ∈ N M, then L → R ∈ N M.

It is easy to see that N ⊂ N M.
Note that by the equivalence

[∃x A(x) → B] ↔ ∀x[A(x) → B] (4)

∃x A(x) → B for A ∈ N , B ∈ N M is equivalent to the N M-formula ∀x[A(x) → B].
The rank rk(A) of sentences A is redefined as follows.

Definition 11. The rank rk(A) of a sentence A is defined by

rk(A) :=

0 if A ∈ N
1 if A ∈ (N M \ N )
2 otherwise.

Let HA∞ denote the infinitary system in the language LHA, whose initial sequents and inference rules are obtained from
those of IDi∞

(SPL) by deleting the initial sequents Γ , P(t) ⇒ P(t) for P ∈ (L(I) \ LHA) and inference rules (LI), (RI).
By restricting antecedents to negative (or Harrop) formulas we have a stronger inversion.
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Lemma 12 (Inversion Lemma with Negative Antecedents). Assume ⊢
α
1 Γ ⇒ A.

1. If A ≡ B0 ∧ B1, then ⊢
α
1 Γ ⇒ Bi for any i ∈ {0, 1}.

2. If A ≡ ∀xB(x), then ⊢
α
1 Γ ⇒ B(n̄) for any n ∈ ω.

3. If A ≡ B0 → B1, then ⊢
α
1 Γ , B0 ⇒ B1.

4. If Γ ⊆ N and A ≡ B0 ∨ B1, then ⊢
α
1 Γ ⇒ Bi for an i ∈ {0, 1}.

5. If Γ ⊆ N and A ≡ ∃xB(x), then ⊢
α
1 Γ ⇒ B(n̄) for an n ∈ ω.

Theorem 13. Let C0 denote anN M-sentence, andΓ0 a finite set ofN -sentences. Suppose that⊢β

2 Γ0 ⇒ C0. Then⊢
2β

1 Γ0 ⇒ C0.

Again Theorem 13 follows from the following Lemma 14 for quick cut-elimination in parallel.
A denotes a finite list Ak, . . . , A2, A1 (k ≥ 0) of N M-formulas, and α an ordinal. Then ⊢

α
1 Γ ⇒ A designates that

⊢
α
1 Γ ⇒ Ai for any i ∈ {1, . . . , k}. Note here that the depth α of the derivations of Γ ⇒ Ai is independent from i.

Lemma 14. Suppose Γ ∪ ∆ ⊂ N and A ∪ {C} ⊂ N M. If

⊢
α
1 Γ ⇒ A and ⊢

β

2 ∆,A ⇒ C

then

⊢
α+2β

1 ∆, Γ ⇒ C .

We can prove Lemma 14 by induction on β as Lemma 9. Case (1) is when ∆,A ⇒ C is an initial sequent, i.e., we don’t
need to examine the left upper parts ⊢

α
1 Γ ⇒ A. In Case (5) the Inversion lemma on the succedent is always available since

the antecedent Γ consists solely of negative formulas. Note that in Case (ii) the remaining cut formula H ∈ N is in the class
N M.

This completes a proof of Lemma 14, and of Theorem 13.
Note that the procedure leaves cuts with negative cut formulas H in Case (ii). If we are restrict to eliminating monotone

cuts, then cuts are eliminated quickly and completely.

Theorem 15. Let C0 denote an N M-sentence, and Γ0 a finite set of N -sentences. Suppose that there exists a derivation of
Γ0 ⇒ C0 in which any cut formula is a monotone formula, and whose depth is at most β . Then there exists a cut-free derivation
of Γ0 ⇒ C0 with depth 2β .

Let us iterate this procedure for monotone cuts.
In what follows, Φ denotes a class of arithmetic formulas such that any atomic formula is in Φ , and Φ is closed under
substitution of terms for variables and renaming of bound variables.

Given such a class Φ of formulas, introduce a hierarchy {Mn(Φ)}n of arithmetic formulas.

Definition 16. First set M1(Φ) = Φ .
Define inductively classes of formulas Mn+1(Φ) (n ≥ 1) in LHA as follows.

1. Mn(Φ) ⊂ Mn+1(Φ).
2. If R, S ∈ Mn+1(Φ), then R ∨ S, R ∧ S, ∃xR, ∀xR ∈ Mn+1(Φ).
3. If L ∈ Mn(Φ) and R ∈ Mn+1(Φ), then L → R ∈ Mn+1(Φ).

We have


n<ω Mn(Φ) = LHA.
For Φ = Σ1, Mn(Σ1) coincides with the class Θn introduced byW. Burr [4]. Note that by (4) for any n ≥ 2, each formula

in Mn(Σ1) = Θn is equivalent to a formula in Mn(∆0), where ∆0 is the class of all atomic formulas. Also each formula in
Θ2 is equivalent to a monotone formula in M.

The rank rk(A; Φ) of sentences A relative to the class Φ is defined.

Definition 17. The rank rk(A; Φ) of a sentence A is defined by

rk(A; Φ) := min{n − 1 : A ∈ Mn(Φ)}.

Let ⊢
α
r Γ ⇒ C designate that there exists an infinitary derivation of Γ ⇒ C such that the depth of the derivation tree is

bounded by α and any cut formula occurring in it has rank less than r . ⊢α
2 Γ ⇒ C means that in the witnessing derivation

of depth α any cut formula is in the class M2(Φ).

Theorem 18. Suppose that ⊢β

r+1 Γ0 ⇒ C0 and r ≥ 1. Then ⊢
32(β)
r Γ0 ⇒ C0.

Proof. This is seen as in the proof of Theorem 8, but leave the cut inference of cut formula H with rk(H; Φ) < r in
Case (ii). �
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6. Applications to fragments of Heyting arithmetic

Finally let us treat an application of quick cut-elimination to fragments of Heyting arithmetic.

Definition 19. Let Φ be a class of arithmetic formulas such that any atomic formula is in Φ , and Φ is closed under
substitution of terms for variables and renaming of bound variables.

iΦ denotes the fragment of HA in which induction axioms are restricted to formulas in Φ .

A(0) ∧ ∀x[A(x) → A(x + 1)] → ∀x A(x) (A ∈ Φ).

For a class of formulas Ψ , RFNΨ (iΦ) denotes the Ψ -(uniform) reflection principle for iΦ:

RFNΨ (iΦ) = {PriΦ(⌈ϕ(ẋ)⌉) → ϕ(x) : ϕ ∈ Ψ }

where PriΦ denotes a standard provability predicate for iΦ and ẋ is the x-th formalized numeral.
When Ψ = LHA the subscript Ψ in RFNΨ (iΦ) is dropped.

By the result of Buchholz [3] we see that HA proves the consistency of the intuitionistic arithmetic iM for the class M

of monotone formulas since IDi
(M) can define the truth of monotone formulas, and the consistency statement CON(iM)

is an almost negative formula. Observe that any prenex Π0
k -formula is a monotone formula, and any monotone formula is

equivalent to a prenex formula.
Moreover using a truth definition for Θn-formulas (Θn = Mn(Σ1)) and a partial truth definition we see that for each

n ≥ 2 IDi
n−1(M) proves the soundness RFN(iΘn) of iΘn. Hence HA ⊢ RFN(iΘn) by the full conservativity of IDi

n(M) over HA
in [1].

However this does not show that {iMn(Φ)}n forms a proper hierarchy. Burr [4], Corollary 2.25 shows that IΠ0
n and

iΘn prove the same Π0
2 -sentences for the fragments IΠ0

n of Peano Arithmetic PA. Since IΠ0
n+1 proves the 2-consistency

RFNΠ0
2
(IΠ0

n ) of IΠ0
n and hence of iΘn, by the result of Burr we see that iΘn+1 proves the 2-consistency of iΘn. Thus {iΘn}n

forms a proper hierarchy.
Let us show that iΘ3 proves the soundness of iΘ2 with respect to Θ2, RFNΘ2(iΘ2). Recall that formulas in Θ2, monotone
formulas and formulas in prenex formulas are equivalent to each other.

Let < denote a standard ε0-well ordering. Let

Prg[A] :⇔ ∀x[∀y < x A(y) → A(x)]

and for a class Φ of formulas, TI(< α, Φ) denote the transfinite induction schema

Prg[A] → ∀x < β A(x)

for each β < α and A ∈ Φ .
Also let ω1 := ω and ωm+1 := ωωm .

Proposition 20. If m + k ≤ n + 2, then

iMn(Φ) ⊢ TI(< ωm, Mk(Φ)).

Proof. Let

j[A](α) :⇔ ∀β[∀γ < βA(γ ) → ∀γ < β + ωαA(γ )].

Then for A ∈ Mn(Φ) we have j[A] ∈ Mn+1(Φ)

iMn(Φ) ⊢ Prg[A] → Prg[j[A]]

and iMn(Φ) ⊢ TI(< ω1, Mn+1(Φ)). The proposition follows from these. �

Corollary 21. 1. For n ≥ 2

iΘ2n−1 ⊢ RFNΘ2(iΘn).

For example iΘ3 proves the soundness of prenex induction with prenex consequences.
2. For any m, k, n ≥ 1

iM2m+k(Π
0
n ) ⊢ RFNMk(Π

0
n )(iMm(Π0

n )).
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Proof. 21. 1 follows from Theorems 18, 15 and Proposition 20. Namely transform a finitary derivation of a monotone
sentence C in iMn(∆0) to an infinitary one. Apply first Theorem 18 (n − 2)-times, to get a derivation of C such that any
cut formula occurring in it is a monotone formula and its depth is bounded by 32n−4(ω

2) = ω2n−3. Then apply Theorem 15
to get a cut-free derivation of C in depth 2ω2n−3 = ω2n−2. By Proposition 20 TI(< ω2n−1, Θ2) is provable in iΘ2n−1. Since any
formula occurring in the cut-free derivation is a subformula of themonotone C ∈ Θ2, by aΘ2-truth definition of subformulas
of C we know that C is true in iΘ2n−1.
21. 2 follows from Theorem 18, quick cut-elimination of monotone cuts with arbitrary antecedents and Proposition 20.
Namely transform a finitary derivation of a sentence C0 ∈ Mk(Π

0
n ) in iMm(Π0

n ) to an infinitary one. Eliminate cuts by
applying Theorem 18m-times, and get a derivation of C0 of depth 32m(ω2) = ω2m+1, in which any cut formula is in Π0

n . Any
formula occurring in the derivation is either a subformula of C0 ∈ Mk(Π

0
n ) or a Π0

n -formula. Therefore using Mk(Π
0
n )-truth

definition of sequents occurring in the derivation and TI(< ω2m+2, Mk(Π
0
n ))we conclude that C0 is true in iM2m+k(Π

0
n ). �

Next consider conservations.
The following Corollary 22 shows, for example that iΘ2 isΠ0

k -conservative over iΠ
0
k for any k, and generalizes a theorem

by Visser and Wehmeier (cf. Theorem 3 in [9] and Corollary 2.28 in [4]) stating that iΘ2 is Π0
2 -conservative over iΠ0

2 .

Corollary 22. For any Φ ⊂ Θ2, iΘ2 is Φ-conservative over iΦ .

Proof. Transform a finitary derivation of a monotone sentence C in iM2(∆0) to an infinitary one. Apply Theorem 15 to get
a cut-free derivation of C of depth less than ω2. �
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