Recurrent Fusion Genes in Gastric Cancer: CLDN18-ARHGAP26 Induces Loss of Epithelial Integrity

Graphical Abstract

In Brief

Yao et al. identify somatic structural variations (SVs) in gastric cancer (GC) that create five recurrent fusion genes. Comparisons between chromatin interaction and SV data suggest chromatin structure contributes to the emergence of SVs. Comprehensive functional analyses reveal that CLDN18-ARHGAP26 impairs epithelial integrity and wound healing.

Highlights

- Chromatin structure contributes to the shape of genome rearrangements in GC
- CLDN18-ARHGAP26 is a recurrent fusion gene in 3% of Asian GCs
- CLDN18-ARHGAP26 impairs epithelial barrier properties and wound healing
- CLDN18-ARHGAP26 contributes to GC by loss of CLDN18 and gain of ARHGAP26 functions

Accession Numbers

- GSE26954
- GSE30833
- SRP035443

Yao et al., 2015, Cell Reports 12, 272–285
July 14, 2015 ©2015 The Authors
http://dx.doi.org/10.1016/j.celrep.2015.06.020
Recurrent Fusion Genes in Gastric Cancer: CLDN18-ARHGAP26 Induces Loss of Epithelial Integrity

Fei Yao,1,2,20 Jaya P. Kausalya,3,20 Yee Yen Sia,1,2 Audrey S.M. Teo,1,2 Wah Heng Lee,4 Alicia G.M. Ong,3 Zhenshui Zhang,5 Joanna H.J. Tan,1 Guoliang Li,6 Denis Bertrand,7 Xingliang Liu,1 Huay Mei Poh,1 Peiying Guan,4,7 Feng Zhu,1,8 Thushangi Nadeera Pathiraja,1,2 Pramila N. Ariyaratne,4 Jie Jeepraj Rao,9 Xing Yi Woo,10 Shaojiang Cai,4 Fabianus H. Mulawadi,4 Wan Ting Poh,10 Lavanya Veeravalli,11 Chee Seng Chan,11 Seong Soo Lim,5 See Ting Leong,12 Say Chuan Neo,12 Poh Sum D. Choi,12 Elaine G.Y. Chew,1 Nirajan Nagarajan,4 Pierre-Étienne Jacques,13 Jimmy B.Y. So,2,14,15 Xiaoan Ruan,10,12 Khay Guan Yeoh,2,6,15 Patrick Tan,1,2,16,17 Wing-Kin Sung,4,7 Walter Hunziker,3,16,21,* Yijun Ruan,19,21,* and Axel M. Hillmer1,2,21,*

1Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
2The Singapore Gastric Cancer Consortium, National University of Singapore, Singapore 119228, Singapore
3Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 138673, Singapore
4Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
5Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore
6National Key Laboratory of Crop Genetic Improvement, Center for Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
7School of Computing, National University of Singapore, Singapore 117417, Singapore
8Department of Physiology, National University of Singapore, Singapore 117597, Singapore
9Department of Medical Oncology, Tan Tock Seng Hospital, Singapore 398433, Singapore
10Personal Genome Solutions, Genome Institute of Singapore, Singapore 138672, Singapore
11Research Computing, Genome Institute of Singapore, Singapore 138672, Singapore
12Genome Technology and Biology, Genome Institute of Singapore, Singapore 138672, Singapore
13Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
14Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
15National University Health System, Singapore 119228, Singapore
16Duke-NUS Graduate Medical School, Singapore 169857, Singapore
17Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
18Department of Physiology, National University of Singapore, Singapore 117597, Singapore
19The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
20Co-first author
21Co-senior author
*Correspondence: hunziker@imcb.a-star.edu.sg (W.H.), yijun.ruan@jax.org (Y.R.), hillmer@gis.a-star.edu.sg (A.M.H.)
http://dx.doi.org/10.1016/j.celrep.2015.06.020

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

SUMMARY

Genome rearrangements, a hallmark of cancer, can result in gene fusions with oncogenic properties. Using DNA paired-end-tag (DNA-PET) whole-genome sequencing, we analyzed 15 gastric cancers (GCs) from Southeast Asians. Rearrangements were enriched in open chromatin and shaped by chromatin structure. We identified seven rearrangement hot spots and 136 gene fusions. In three out of 100 GC cases, we found recurrent fusions between CLDN18, a tight junction gene, and ARHGAP26, a gene encoding a RHOA inhibitor. Epithelial cell lines expressing CLDN18-ARHGAP26 displayed a dramatic loss of epithelial phenotype and long protrusions indicative of epithelial-mesenchymal transition (EMT). Fusion-positive cell lines showed impaired barrier properties, reduced cell-cell and cell-extracellular matrix adhesion, retarded wound healing, and inhibition of RHOA. Gain of invasion was seen in cancer cell lines expressing the fusion. Thus, CLDN18-ARHGAP26 mediates epithelial disintegration, possibly leading to stomach H+ leakage, and the fusion might contribute to invasiveness once a cell is transformed.

INTRODUCTION

Worldwide, nearly one million new gastric cancer (GC) cases were diagnosed and more than 700,000 deaths occurred in 2008 (Jemal et al., 2011). More than 70% new GC cases and deaths came from developing countries, with the highest incidence in Eastern Asia (Jemal et al., 2011). Most GCs are diagnosed at an advanced stage, which limits the current treatment strategies with the overall 5-year survival rate for distant or metastatic disease of ~3% (Janjigian and Kelsen, 2013). On the molecular level, GC is heterogeneous and only the amplified...
ERBB2 is a therapeutic target (Janjigian and Kelsen, 2013). Therefore, identifying additional molecular biomarkers in GC genomes will potentially result in early diagnosis and new treatment strategies. Whereas recent whole-genome- and exome-sequencing studies have identified recurrently mutated genes (Kakiuchi et al., 2014; Nagarajan et al., 2012; Wang et al., 2011, 2014; Zang et al., 2012), genome rearrangements in GC have not been studied in great detail. Genomic rearrangements can have dramatic impact on gene function by amplification, deletion, or gene disruption and can create fusion gene proteins with new functions or locations. There is still a large gap in our understanding of the functional role of the recurrent fusion genes and the underlying mechanisms of genomic rearrangements that create them.

In the present study, we extended our earlier analyses by DNA paired-end-tag (DNA-PET) sequencing of 10-kb DNA fragments (Hillmer et al., 2011; Nagarajan et al., 2012) to characterize the genomic structural rearrangements of 15 GCs and their impact on genes and gene fusions. We identified CLDN18-ARHGAP26, CLEC16A-EMP2, SNX2-PRDM6, KMT2C (MLL3)-PRKAG2, and DUS2 (DUS2L)-PSKH1 as recurrent fusion genes with frequencies between 2% and 5% by an extended screen. Detailed functional evaluation suggests that CLDN18-ARHGAP26 negatively affects cell-cell and cell-matrix interactions and epithelial barrier function, thereby potentially contributing to gastritis, a known risk factor for GC.

RESULTS

SVs in GC Identified by Whole-Genome DNA-PET Sequencing

We sequenced genomic DNA from 14 primary gastric tumors including ten paired normal samples (clinical data in Table S1) and GC cell line TMK1 by DNA-PET (Hillmer et al., 2011; Yao et al., 2012). With approximately 2-fold bp coverage and 200-fold physical coverage of the genome (Table S2), we identified 1,945 somatic structural variations (SVs) (Figures 1A–1C and S1; Table S3; Supplemental Experimental Procedures and Supplemental Results) with significant differences in SV distributions between germline and somatic SVs (p = 2.2 x 10^{-16}; \chi^2 test).
Figure 2. Breakpoint Features of Somatic SVs Provide Mechanistic Insights

(A–C) Characterization of breakpoint locations of somatic SVs in GC. Compared to prostate cancer and more inversions than pancreatic cancer (Figure 1E), indicating that each cancer type bears its own rearrangement pattern.

Characteristics of Somatic SVs in GC Provide Insight into Rearrangement Mechanisms

Both germline and somatic breakpoints were enriched in repeat regions (p < 10^{-10}; Figure 2A) and open chromatin domains (p < 10^{-21}; \chi^2 test; Figure 2B) whereas only somatic breakpoints were enriched in genes (p < 10^{-15}; \chi^2 test) and germline breakpoints were depleted in genes (p < 10^{-15}; \chi^2 test; Figure 2C). This might reflect the negative selection for gene-disruptive rearrangements in germline and, in contrast, the pro-cancer potential for somatic rearrangements altering tandem duplications than prostate cancer and more inversions than pancreatic cancer (Figure 1E), indicating that each cancer type bears its own rearrangement pattern.
gene structures. These observations suggest that transcriptionally active parts of the genome are more prone for somatic rearrangements in GC (more details in the Supplemental Results).

We noticed in 2% of validated fusion points a characteristic pattern where the inserted sequence originated from a locus near the fusion point (Figure 2D; Supplemental Results). Three of these cases created fusion genes (ARHGAP26-CLDN18, LIFR-GATA4, and ML3-PRKAG2). Intriguingly, the same rearrangement characteristics have been described for a translocation with the same gene, ARHGAP26, in a patient with juvenile myelomonocytic leukemia creating a fusion with KMT2A (Borkhardt et al., 2000). The repeated observation of neighbor locus sequence insertions at rearrangement points suggests a specific mechanism, which might be transcription coupled.

We tested whether the rearrangement partner sites of somatic SVs tend to be in spatial proximity within the nucleus by searching for overlap between rearrangement points of SVs and chromatin interaction analysis by paired-end-tag (ChIA-PET) sequencing data (Li et al., 2012). We performed ChIA-PET sequencing for the GC cell line HGC27 and compared the derived chromatin interactions (n = 7,623) with the SVs of the 15 GCs (1,667 germline and 1,945 somatic SVs). We found six germline and two somatic SV overlaps, more than expected by chance (p < 0.001; permutation based; Figures 2E and 2F), suggesting that tissue-specific chromatin interactions overlap with some fusion genes, see Tables S4 and S5 and the Supplemental Results.

Recurrent Fusion Genes in GC

Using the somatic SVs of the 15 GCs, we were able to predict 136 fusion genes (Tables S3 and S6), validated 97 of them by genomic PCR and Sanger sequencing, and confirmed the expression of 44 by RT-PCR in the respective tumors (Table S6). Fifteen expressed fusion genes were in frame. Because constitutively oncogenic fusion genes are usually in-frame fusions, we focused on this category to screen an additional set of 85 GC tumor/normal pairs by RT-PCR and found SNX2-PRDM6 in one additional tumor, CLDN18-ARHGAP26 and DUS2L-PSKH1 in two additional tumors, ML3-PRKAG2 in three additional tumors, and CLEC16A-EMP2 in four additional tumors, giving overall frequencies of 2%–5% (Figures 3A and S2; Table S6). We performed statistical simulations to assess the significance of such rates of recurrence (Experimental Procedures) and found that they were not expected by chance (p = 0.00472), with higher levels of significance for two rediscoveries (p = 9.98 × 10⁻³) and three rediscoveries (p = 1.11 × 10⁻³). This suggests that these fusion genes are not randomly created but most likely by targeted rearrangement mechanisms and/or that the resulting fusion genes provide selective advantages.

To explore whether the fusion genes provided selective advantages, we used a network fusion centrality analysis (Wu et al., 2013) to predict driver fusion genes. Among the 136 fusion genes of our study, 38 were classified as potential driver fusion genes, including CLDN18-ARHGAP26, SNX2-PRDM6, and ML3-PRKAG2 (Table S7).

Further, we investigated the ratio of the discordant PETs (dPETs) that connect the fusion gene creating rearrangement points versus concordant paired-end tags (cPETs) that cover the fusion gene regions in the wild-type configuration. If the fusion gene rearrangements are early rearrangements, it is expected that such rearrangements can be observed from more cells and a relatively high dPET/cPET ratio from these rearrangements should be found. We compared the dPET/cPET ratio of the fusion gene rearrangements with all other somatic rearrangements. The fusion gene rearrangement point of CLDN18-ARHGAP26, ML3-PRKAG2, and SNX2-PRDM6 had higher dPET/cPET ratios than the median of the ratios for the somatic rearrangements of the samples in which they were discovered (tumor 136, TMK1, and tumor 125, respectively; data not shown), suggesting that the fusion genes are created by relatively early rearrangements.

We tested for the impact of the recurrent fusion genes on proliferation by knocking down ML3-PRKAG2 and DUS2L-PSKH1 in TMK1 and establishing stable cell lines expressing CLDN18-ARHGAP26, CLEC16A-EMP2, and SNX2-PRDM6. We found evidence for proliferative supporting function for ML3-PRKAG2 and CLEC16A-EMP2 (Figure 3S; Supplemental Results; see below). For rearrangement hot spots and global impact of somatic SVs on genes, see Tables S4 and S5 and the Supplemental Results.

Phenotypic Changes by CLDN18-ARHGAP26 Are Not a Result of Classical Epithelial-Mesenchymal Transition

Because CLDN18 is an essential tight junction (TJ) component in the stomach with its deficiency causing paracellular H⁺ leakage (Hayashi et al., 2012) and ARHGAP26 likely affects adhesion of cells to the extracellular matrix (ECM) through its regulation of RHOA, a gene recently shown to be mutated in GC (Kakuchi et al., 2014; Wang et al., 2014), we performed a deeper analysis of CLDN18-ARHGAP26. On the genomic level, we validated the CLDN18-ARHGAP26 rearrangement in tumors 136 and 07K611 by fluorescence in situ hybridization (FISH) (Figures 3B and S2K) and PCR/Sanger sequencing (Figure 3C). Using custom capture sequencing, we verified the genomic fusion point on chromosome 3 in tumor 07K611 to be 2,342 bp downstream of CLDN18 (Figures 3A and S2A). Array expression analysis of tumor 136 suggested that it belongs to the microsatellite stable/TP53 expression profile class defined recently (Cristescu et al., 2015; data not shown).

In all three tumors with CLDN18-ARHGAP26 fusions, the transcripts were joined by a cryptic splice site within the coding region of exon 5 of CLDN18 and the regular splice site of exon 12 of ARHGAP26 (Figures 3D and 3F). CLDN18-ARHGAP26 encodes a 75.6-kDa fusion protein containing all four transmembrane domains of CLDN18 and the RhoGAP domain of ARHGAP26 (Figure 3E) but lacking the C-terminal PDZ-binding motif of CLDN18 that mediates interactions with TJ proteins (TJP1,
TJP2, and TJP3). ARHGAP26 (GRAF1) binds to focal adhesion kinase (FAK or PTK2), which modulates cell growth, proliferation, survival, adhesion, and migration (Doherty and Lundmark, 2009). ARHGAP26 can also negatively regulate the small GTP-binding protein RHOA, which is well known for its growth-promoting effect in RAS-mediated malignant transformation (Hildebrand et al., 1996; Qian et al., 2010).

CLDN18 protein was observed in the plasma membrane of epithelial cells lining the gastric pit region and at the base of the gastric glands as previously reported in normal human stomach specimens (Sahin et al., 2008; Figure 4A). ARHGAP26 was previously detected on pleiomorphic tubular and punctate membrane structures in HeLa cells (Lundmark et al., 2008). We observed ARHGAP26 in normal stomach on vesicular structures restricted to parietal cells that specifically express the H+/K+ ATPase or "proton pump" (Figures 4B and S4A). Stomach tumor specimens of patient 136, with a cancer stage of 4 and one metastasis, expressing CLDN18-ARHGAP26, showed a diffused structure, characteristic for late-stage tumors, with some regions lacking E-cadherin (CDH1) staining (Figures 4A and 4B). CLDN18-ARHGAP26 was present in both CDH1-positive and negative cells; with the CDH1-negative cells showing mesenchymal features such as elongated and spindled morphology (Figures 4A and 4B).

To understand the effect of the fusion protein to changes on epithelial integrity, we stably expressed CLDN18, ARHGAP26, or CLDN18-ARHGAP26 in the non-transformed epithelial cell lines MCF10A (human breast; Figures 3G and S4B) and MDCK (canine kidney) and in the transformed cancer cell lines HGC27 (gastric) and HeLa (cervical cancer). Viewed by phase contrast, control and CLDN18 in MCF10A and MDCK cell cultures, respectively, showed the characteristic epithelial morphology (Figures 4A and 4B). CLDN18-ARHGAP26 expression in MCF10A and MDCK cells were more spindle shaped and had short protrusions as previously reported (Taylor et al., 2010).
Figure 4. **CLDN18-ARHGAP26-Fusion-Expressing Patient Specimen and MCF10A Cells Exhibit Loss of Epithelial Phenotype**

(A and B) CLDN18 (A) and ARHGAP26 (B) expression in normal and gastric tumor patient specimens. Human normal (top) and tumor (bottom) stomach sections were stained with DAPI and antibodies to CDH1 as well as CLDN18 and ARHGAP26, respectively, for immunofluorescence analysis.

(C) CLDN18-ARHGAP26-fusion-expressing MCF10A cells display fusiform and protrusive morphology. Phase contrast images of non-transfected (NT) and stable lines expressing CLDN18, ARHGAP26, and CLDN18-ARHGAP26 in MCF10A cells obtained at sub-confluent levels.

(D) qPCR of EMT markers in MCF10A cells stably expressing CLDN18, ARHGAP26, and CLDN18-ARHGAP26, respectively.

(E) Western blot analysis of NT HGC27 and HeLa cells and stables expressing CLDN18, ARHGAP26, and CLDN18-ARHGAP26 gene by immunoblotting for indicated proteins. GAPDH is used as loading control.

(F) Cell aggregation assay. MCF10A NT and stable lines expressing CLDN18, ARHGAP26, and CLDN18-ARHGAP26 were plated as hanging drops, and phase contrast images were obtained the next day.

Data are presented as mean ± SD (D). The scale bars in (A) and (B) represent 30 μm.
Figure 5. CLDN18-ARHGAP26 Expression Results in Reduced Cell-ECM Adhesion

(A) (Top) Cell-ECM adhesion assay. MCF10A stable lines expressing CLDN18, ARHGAP26, and CLDN18-ARHGAP26 were seeded on untreated plates, and phase contrast images were obtained 2 hr after seeding. MCF10A NT cells were used as control. (Bottom) Quantification of cells that adhered to untreated collagen type I and fibronectin-treated surfaces is shown. The proportion of cells that adhered was quantified relative to NT MCF10A cells (100%).

(B) MCF10A stable lines expressing CLDN18, ARHGAP26, and CLDN18-ARHGAP26 were fixed and immunostained with antibodies to activated PTK2 and HA or GFP.

(C) Absence of PXN in free edges in CLDN18-ARHGAP26-expressing MCF10A cells. MCF10A stable lines expressing CLDN18, ARHGAP26, and CLDN18-ARHGAP26 were fixed and immunostained with antibodies to PXN and HA or GFP.

(legend continued on next page)
CLDN18-ARHGAP26 expression in both cell lines displayed a dramatic loss of epithelial phenotype and long protrusions, suggestive of epithelial-mesenchymal transition (EMT) (Figures 4C and S4C). Cell protrusion phenotype was also observed in transformed HGC27 and HeLa cells (Figures S4D and S4E).

To evaluate whether the phenotypic changes induced by CLDN18-ARHGAP26 reflected a classical EMT, we investigated the expression of various EMT markers using qPCR. Whereas CDH1 mRNA levels were reduced for CLDN18-ARHGAP26-expressing MCF10A cells, other EMT markers were unchanged or reduced, indicating that the morphological changes were not based on classical EMT (Figure 4D). In MDCK cells, CDH1 levels were unchanged and mRNA of the master EMT regulators SNAI1 and SNAI2 (SLUG) were decreased (Figure S4F). MDCK-CLDN18-ARHGAP26 showed a 5.2-fold increase in matrix metalloproteinase 2 (MMP2) mRNA levels relative to control MDCK cells (Figure S4F), suggesting changes in ECM adhesion induced by the fusion gene (Sahin et al., 2008).

Interestingly, expression of CLDN18, but not the fusion protein, downregulated N-cadherin (CDH2) and β-catenin (CTNNB1) expression in transformed HGC27 and HeLa cells (Figure 4E), suggesting that CLDN18 can reverse the switch from an epithelial to a mesenchymal cadherin observed during EMT and suppress Wnt signaling, respectively. Wnt signaling is hyperactivated in many cancers, and CDH2 expression activates AKT signaling (Tran et al., 2002), which is hyperactivated in many tumors. Although CTNNB1 and CDH2 were reduced in both cancer cell lines, pAKT1 protein levels, as well as those of the downstream effector p21-activated kinase (PAK1), were predominantly reduced in HeLa cells overexpressing CLDN18 as compared to controls (Figure 4E). This might suggest a role for CLDN18 as a tumor suppressor by dampening AKT1 and Wnt signaling.

CLDN18-ARHGAP26 Reduces Cell-ECM Adhesion

ARHGAP26 likely affects adhesion of cells to the ECM through its interaction with PTK2 (FAK) and its regulation of RHOA, which in turn regulates focal adhesions (Taylor et al., 1999). Cell aggregation assays indicated poor aggregation for MCF10A-CLDN18-ARHGAP26 cells (Figure 4F), suggesting that indeed the fusion gene causes epithelial changes that affect cell-cell interaction. Similar results were obtained with MDCK, HGC27, and HeLa cells (Figures S4H–S4J). Adhesion assays showed that control and MCF10A-CLDN18 cells attached and spread on either untreated or ECM-coated surfaces. Not only did ARHGAP26-and, even more so, CLDN18-ARHGAP26-expressing cells attach less efficiently to the surfaces (Figure 5A), but the cells that did attach were still rounded up 2 hr after seeding (Figure 5A), showing that the fusion gene potentiates the effect of ARHGAP26 and strongly affects cell-ECM adhesive properties. Similar results were obtained in MDCK, HGC27, and HeLa cells (Figures S5A–S5F).

The SH3 domain of ARHGAP26, present in the fusion protein, binds to the focal adhesion molecules, PTK2 and PXN (paxillin) (Doherty et al., 2011). We therefore examined the effect of CLDN18-ARHGAP26 expression on focal adhesion proteins. pPTK2 and PXN were detected at the free edge of MCF10A-CLDN18. These molecules were reduced in MCF10A-ARHGAP26 but were absent from this location in MCF10A-CLDN18-ARHGAP26 cells (Figures 5B and 5C). Western blot analysis for adhesion molecules associated with ARHGAP26 or focal adhesion complex proteins showed reduced levels for integrin-linked kinase (ILK), Talin 1 (TLN1), and PXN in MCF10A-ARHGAP26 and more pronounced so in MCF10A-CLDN18-ARHGAP26 cells (Figure 5D). Significant decrease in levels of ILK and Talin 2 (TLN2) transcripts was observed in MCF10A-ARHGAP26 and MCF10A-CLDN18-ARHGAP26 cells by qPCR (Figure 5E). Changes in localization of focal adhesion molecules at free edges (pPTK2 and PXN) and protein expression patterns of focal adhesion components were also observed in MDCK, HGC27, and HeLa cells, indicating poor ECM adhesion of CLDN18-ARHGAP26-expressing cells (Figures S5G–S5I).

In addition to the cytoplasmic components of focal adhesions, we analyzed mRNA levels of integrin family members, which directly interact with the ECM components (Caldenwood, 2004). Consistent with the poor attachment of MCF10A-CLDN18-ARHGAP26 cells on collagen-coated surfaces (Figure 5A), these cells expressed reduced levels of integrin β3 (ITGB3), integrin β8 (ITGB8), and integrin αV (ITGAV) (Figure 5F). A decrease in transcript levels of integrin subunits, in particular integrin β1 (ITGB1), integrin α3 (ITGAV), and integrin α5 (ITGAV), was observed in MDCK-CLDN18-ARHGAP26 cells (Figure 5J). In summary, overexpression of ARHGAP26 and even more pronounced of the fusion gene disrupt ECM adhesion.

The Epithelial Barrier Promoted by CLDN18 Is Compromised by CLDN18-ARHGAP26

Claudins are critical components of the paracellular epithelial barrier, including the protection of the gastric tissue from the acidic milieu in the lumen (Davenport, 1972a, 1972b, 1975). Alterations of this barrier function might cause chronic inflammation (Jovov et al., 2007; Sanders et al., 1985), a risk factor for the development of gastric cancer.
of GC (Vannella et al., 2012), prompting us to explore the role of CLDN18 and the fusion protein in barrier formation. Overexpression of CLDN18, which is not endogenously expressed in MDCK cells, resulted in a dramatic increase in the transepithelial electrical resistance (TER) of MDCK-CLDN18 monolayers. Whereas ARHGAP26 had no significant effect on the TER, CLDN18-ARHGAP26 completely abolished the TER (Figure 5G). This effect did not simply reflect the lack of the C-terminal PDZ-binding motif, because a CLDN18 construct where this C-terminal PDZ-binding motif was inactivated (CLDN18Dp) still increased the baseline TER of MDCK cells. Phase contrast images of confluent CLDN18-ARHGAP26-fusion-expressing MDCK cells showed that these cells failed to form tight monolayers, explaining the loss of TER (Figure 5H). Whereas expression levels and subcellular localization of TJP1, a scaffold protein that directly links claudins to the actin cytoskeleton, were not altered in MDCK cells expressing the fusion protein (Figure S5K), the expression of several other TJ components was upregulated in MDCK-CLDN18-ARHGAP26, possibly reflecting a compensatory mechanism (Figure S5L).

CLDN18-ARHGAP26 Exerts Cell-Context-Specific Effects on Cell Proliferation, Invasion, and Migration

CLDN18-ARHGAP26 reduced cell proliferation in transfected MDCK, HGC27, and HeLa cells compared to controls (Figure S6A). In MCF10A, CLDN18-ARHGAP26 cells had lower cell proliferation compared to non-transfected and ARHGAP26 but a higher proliferation rate than MCF10A-CLDN18 cells (Figure 6A), suggesting cell-context-specific differences. Interestingly, CLDN18-ARHGAP26 expression in the four analyzed cell lines delayed wound closure (Figures 6B and S6B). Expression of CLDN18-ARHGAP26 in MCF10A and MDCK cells had no effect on invasion and anchorage-independent growth (Figures S6C and S6D), which are features of cancer progression and metastasis. The fusion therefore might not be considered a classical oncogetic driver and, as expected, we found independent driver mutations in the CLDN18-ARHGAP26-positive tumors (Supplemental Results). We tested whether invasion and anchorage-independent growth were altered in cancer cell lines HGC27 and HeLa. Two independent HGC27 and HeLa cell lines stably expressing CLDN18-ARHGAP26 showed 300- to 600-fold and 3- to 4-fold increase in cell invasion (Figures 6C and S6F). However,
CLDN18-ARHGAP26 in these transformed cells appeared to be less efficient in soft agar growth assays compared to controls (Figures 6D and S6G). These findings highlight different effects of the fusion protein on proliferation, invasion, and anchorage-independent growth in non-transformed and transformed cells and might suggest a role of the fusion protein driving late cancer events such as invasion.

Both ARHGAP26 and CLDN18-ARHGAP26 Inhibit RHOA and Stress Fiber Formation

RHOA regulates many actin events like actin polymerization, contraction, and stress fiber formation upon growth factor receptor or integrin binding to their respective ligands (Nobes and Hall, 1995). ARHGAP26 stimulates, via its GAP domain, the GTPase activities of CDC42 and RHOA, resulting in their inactivation (Taylor et al., 1999). Given that the CLDN18-ARHGAP26 fusion protein retains the GAP domain of ARHGAP26, it may still be able to inactivate RHOA. To test this, we analyzed the effect of CLDN18-ARHGAP26 expression on stress fiber formation and the presence and subcellular localization of active RHOA. In MCF10A, MDCK, HGC27, and HeLa cells, stable overexpression of ARHGAP26 or CLDN18-ARHGAP26 induced cytoskeletal changes, notably a reduction in stress fibers indicative of RHOA inactivation (Figures 7A and S7A–S7C). Labeling of stable MCF10A cell lines with an antibody that specifically recognizes activated RHOA showed reduced labeling in ARHGAP26 and even more so in CLDN18-ARHGAP26-fusion-protein-expressing cells (Figure 7B), whereas total RHOA levels remained unchanged in ARHGAP26-expressing cells and were reduced in fusion-expressing cells (Figures 7C and S7D). G-LISA assay measuring levels of active RHOA further confirmed these results (Figure 7D). These findings were also observed in MDCK cells (Figures S7E–S7G) and suggest that the GAP domain in the CLDN18-ARHGAP26 fusion protein retains its inhibitory activity on RHOA and lower total RHOA levels contribute to reduced RHOA function.

CLDN18-ARHGAP26 Fusion Protein Suppresses Clathrin-Independent Endocytosis

ARHGAP26 has been shown to regulate, through its BAR and PH domains, clathrin-independent endocytosis. Changes in endocytosis can affect cell surface residence time and/or degradation of cell-ECM and cell-cell adhesion proteins as well as receptor tyrosine kinases, thereby altering cell adhesion, migration, and receptor tyrosine kinase signaling, which can drive carcinogenesis (Mellman and Yarden, 2013). MCF10A, MDCK, HGC27, and HeLa cells expressing the CLDN18-ARHGAP26 fusion protein showed a significant reduction of endocytosis (Figures 7E and S7H–S7J; Supplemental Results), consistent with the absence of the BAR and PH domains, which are essential for the role of ARHGAP26 in this process (Doherty et al., 2011), from the fusion protein. A summary of the effects of CLDN18-ARHGAP26 on the four analyzed cell lines is provided in Figure 7F.

DISCUSSION

In our study, we observed recurrent somatic SVs and recurrent fusion genes in GC. Our simulations show that the rate of recurrent fusion genes could not be explained by chance, indicating that specific rearrangements are more likely to occur than others and/or that selective processes enrich for such rearrangements. By comparing the somatic SVs with a genome-wide view of chromatin interactions, we found significantly more overlaps of rearrangement sites with chromatin interactions than expected by chance, suggesting that the chromatin structure contributes to recurrent fusions of distant loci in GC.

We validated 136 fusion genes, evaluated their expression and reading frame characteristics, and identified five of these fusion genes as recurrent by an extended screen. Our detailed analysis of CLDN18-ARHGAP26 showed its functional properties by promoting both early cancer development and late disease progression. CLDN18 and ARHGAP26 are expressed in the gastric mucosa epithelium, where CLDN18 localizes to TJs and ARHGAP26 to punctate tubular vesicular structures of parietal epithelial cells. In normal gastric epithelia, we observed ARHGAP26 expression to be specific to parietal cells. The CLDN18-ARHGAP26 fusion gene under the influence of CLDN18 promoter is probably expressed in all gastric epithelial cells and not just parietal cells, introducing the functions of ARHGAP26, in particular its RHOA GAP activity, to cell types normally not expressing this protein. Moreover, the CLDN18-ARHGAP26 fusion gene links functional protein domains of a regulator of RHOA to a TJ protein, resulting in altered properties. These, as well as the aberrant localization of the GAP activity to the plasma membrane via the four transmembrane domains of CLDN18 possibly result in changes to cellular functions that are associated with GC.

Integrins and associated cytoplasmic focal adhesion complexes play central roles in ECM adhesion, epithelial differentiation, cell spreading, and cell migration (Lee and Gotlieb, 1999). ARHGAP26 interacts via its SH3 domain with the focal adhesion components PTK2 and PXN (Doherty et al., 2011). CLDN18-ARHGAP26 cells showed reduced levels of integrin-focal adhesion complex constituents, which is generally associated with decreased cell-cell and cell-ECM adhesion, and changes to ECM integrin cytoskeletal dynamics (Priddle et al., 1998; Zhang et al., 2008; Zheng et al., 2012) in MCF10A and MDCK cells.

ARHGAP26 negatively regulates RHOA activity via the GAP domain (Taylor et al., 1999), which is retained in the fusion protein. RHOA regulates many cellular processes, including cell-ECM and cell-cell adhesion, cytoskeletal dynamics, and vesicular trafficking, among others. Recently, recurrent mutations of RHOA have been identified in GC, resulting in proliferation gain and reduced anoikis (Kakiuchi et al., 2014; Wang et al., 2014). In our study, we identified another mechanism of altering RHOA function in GC. We observed lower levels of activated RHOA (e.g., GTP-RHOA) in both ARHGAP26- and CLDN18-ARHGAP26-expressing cells as compared to CLDN18-expressing MCF10A and MDCK cells. Stress fibers were no longer observed in four cell lines expressing either ARHGAP26 or the fusion protein, suggesting that the GAP domain of ARHGAP26, despite being tethered to the plasma membrane domain, can still inactivate RHOA involved in this process, although it remains possible that this is due to the observed reduction of total RHOA. Whereas ARHGAP26 and the fusion protein showed a similar effect on stress fibers, it is conceivable that the two proteins show different effects in epithelial cells, where the fusion
Figure 7. CLDN18 and ARHGAP26 Modulate Epithelial Phenotypes

(A) Actin cytoskeletal staining of MCF10A cells expressing CLDN18, ARHGAP26, and CLDN18-ARHGAP26. Cells were immunostained with HA for CLDN18- and CLDN18-ARHGAP26-expressing cells and phalloidin conjugated with Alexa Fluor 594 fluorescence.

(B) Active RHOA immunofluorescence analysis in MCF10A NT cells and stables expressing ARHGAP26 and CLDN18-ARHGAP26. Cells were stained with an antibody to active RHOA and DAPI.

(C) Western blot analysis of total RHOA in NT MCF10A and cells expressing CLDN18, ARHGAP26, and CLDN18-ARHGAP26. Cells were immunostained with RHOA antibody and GAPDH.

(D) Reduced GAP activity in MCF10A stables expressing ARHGAP26 and CLDN18-ARHGAP26. The GAP activity was analyzed in a pull-down assay (G-LISA; Cytoskeleton). The amount of endogenous active GTP-bound RHOA was determined in a 96-well plate coated with RDB domain of Rho-family effector proteins. The GTP form of RHO from cell lysates of the different stable lines bound to the plate was determined with RHOA primary antibody and secondary antibody conjugated to HRP. Luminescence values were calculated relative to NT MCF10A cells.

(E) Live MCF10A cells expressing CLDN18, ARHGAP26, and CLDN18-ARHGAP26 were incubated with Alexa-Fluor-594-conjugated CTxB for 15 min at 37°C followed by washing and fixation. Cells were immunostained with HA or GFP antibody and DAPI.

(F) Summary of the functional effects of CLDN18-ARHGAP26 in MCF10A, MDCK, HGC27, and HeLa. Data are presented as mean ± SD (D). Scale bars in (A), (B), and (E) represent 10 μm.
protein may mediate a localized inactivation of RHOA at junctional adhesion complexes and thereby affect the cortical actin cytoskeleton and cell-cell adhesion. Indeed, the epithelial morphology of ARHGAP26-expressing cells is less compromised than that of cells expressing the fusion. Another difference between ARHGAP26 and the fusion may result from the observation that GAP activity of oligophrenin-1 (OPHN1), like ARHGAP26, a member of the GRAF family, may be regulated by intramolecular interactions involving the N-terminal BAR and PH domains (Elvers et al., 2012). Because these domains are missing from the fusion protein, the GAP activity may no longer be regulated in the fusion protein. The BAR and PH domains are also required for the role of ARHGAP26 in clathrin-independent endocytosis (Doherty et al., 2011). Receptor tyrosine kinases can be endocytosed by both clathrin-dependent and independent pathways. Hence, disturbances in endocytic trafficking, as observed in cells overexpressing the fusion, could influence receptor tyrosine kinase signaling.

Isoform 2 of CLDN18 is stomach specific and a component of the paracellular barrier to hydrochloric acid (Hayashi et al., 2012). Cldn18−/− mice present with paracellular leakage of luminal H+, accompanied by inflammation and atrophic gastritis (Hayashi et al., 2012). Although MDCK-ARHGAP26 showed a similar TER as control cells, barrier function was abolished in cells expressing the fusion. In addition, the GAP domain linked to CLDN18 could lead to a localized junctional inactivation of RHOA, affecting the cortical actin at epithelial junctions.

Whether CLDN18-ARHGAP26 directly affects the tightness of the paracellular barrier by interfering with the function of CLDN18 or the localized inactivation of RHOA at junctions or indirectly by weakening cell-ECM, cell-cell adhesion (Arnold et al., 2013; Ma et al., 2013), or cytoskeletal alterations, the scenario results in an increased chronic paracellular H+ permeability, which is associated with acute and atrophic gastritis, a risk factor for GC. Coupled with poor wound healing, damaged epithelial cells may not be actively replaced, resulting in gaps that enhance tissue damage, eventually leading to GC. Once the CLDN18-ARHGAP26-expressing cells become cancerous, they develop an invasive tendency, which is crucial to cancer progression.

EXPERIMENTAL PROCEDURES

Clinical Tumor Samples

Patient samples and clinical information were obtained from patients who had undergone surgery for GC at the National University Hospital, Singapore, and Tan Tock Seng Hospital, Singapore. Informed consent was obtained from all subjects, and the study was approved by the Institutional Review Board of the National University of Singapore (reference code 05-145) as well as the National Healthcare Group Domain Specific Review Board (reference code 2005/00440).

DNA/RNA Extraction from Samples

Genomic DNA and total RNA extraction from tissue samples was performed using Allprep DNA/RNA Mini Kit (QIAGEN). Genomic DNA was extracted from blood samples with Blood & Cell Culture DNA kit (QIAGEN).

Antibodies and Reagents

Primary and secondary commercial antibodies and reagents are described in the Supplemental Experimental Procedures.

Cell Culture Conditions and Transfections

MCF10A, MDCK, HeLa, HGC27, and TMK1 cell lines were cultured according to standard conditions. Transient and stable transfection experiments of MDCK, HGC27, and HeLa were carried out using JetPrimePolyPlus transfection kit according to manufacturer’s instructions. Stable transfectants were generated with G418 selection as outlined in previous protocol (Kausalya et al., 2001).

DNA-PET Libraries Construction, Sequencing, Mapping, and Data Analysis

DNA-PET library construction of 10-kb fragments of genomic DNA, sequencing, mapping, and data analysis were performed as described in Hillmer et al. (2011) with refined bioinformatics filtering as described in Nagarajan et al. (2012). The short reads were aligned to the NCBI human reference genome build 36.3 (hg18) using Bioscope (Life Technologies). DNA-PET data of TMK1 and tumors 17, 26, 28, and 38 have been described previously (Hillmer et al., 2011; GEO:GSE28954) and of tumors 82 and 92 (Nagarajan et al., 2012; NCBI GEO: GSE30833). The SOLID sequencing data of the eight additional tumor/normal pairs, the CHIA-PET-sequencing data of HGC27, and the exome sequencing data of tumors 136, 07K511, and 050304 can be accessed at NCBI’s Sequence Read Archive (SRA): SRP035443. Procedures for the identification of recurrent genomic breakpoints of CLDN18-ARHGAP26, filtering of germline SVs in cancer genomes, and breakpoint distribution analyses are described in the Supplemental Experimental Procedures.

HGC27/MCF-7 RNA Polymerase II ChIA-PET and GC DNA-PET Comparison

To investigate whether the two partner sites of germline and somatic SVs of our study were enriched for loci that are in proximity of each other in the nucleus, we tested for overlap of SVs with genome-wide chromatin interaction data sets derived from ChIA-PET sequencing of HGC27 and further of the breast cancer cell line MCF-7 with the rationale that some chromatin interactions might be conserved across different cell types. For HGC27 ChIA-PET description and further details, see the Supplemental Experimental Procedures.

Driver Fusion Gene Prediction

The potential for driver fusion genes was predicted by using the tool as described (Wu et al., 2013), and the threshold value 0.37 was set for identifying the potential fusion drivers.

In-Frame Fusion Gene Confirmation and Screening by RT-PCR

One microgram of total RNA was reverse transcribed to cDNA using SuperScript III First-Strand Synthesis System for RT-PCR (Life Technologies) according to the manufacturer’s instruction. PCR was done with JumpStart REDAccuTaq LA DNA Polymerase (Sigma-Aldrich).

Generation of Cell Lines

The pMXs-Puro retroviral vectors containing the particular fusion genes were co-transfected with pSVG (psuedotyping construct) into GP2-293 cells using Lipofectamine 2000 to produce virus. HGC27, HeLa, and MCF10A cells were then infected with the viral supernatant containing expression constructs. Stable transfectants were obtained and maintained under selection pressure by puromycin dihydrochloride (Sigma; P9620). Viral transfection was used to establish all cell lines except CLDN18-ARHGAP26, and CLDN18-ARHGAP26 in MDCK, HGC27, and HeLa, which were transfected by Lipofectamine 2000 (Life Technologies). Under selection conditions, clones were picked and maintained.

Cell Aggregation, Cell Adhesion, and Wound Healing Assays

For cell aggregation assay, 20 ml of 1.2 × 10⁶/ml cells were plated on tissue culture dishes as hanging drops and phase contrast images were obtained the next day using Nikon Eclipse TE2000-S. For cell adhesion assay, detailed information is provided in the Supplemental Experimental Procedures. For wound healing assay, 70 ml of 7 × 10⁵ cells/ml were plated on culture insert in μ-Dish 35 mm (Ibidi). Prior to seeding, the μ-Dish plates were treated with collagen type 1. The following day, the insert was peeled off to create a wound
and migration was imaged with Nikon Eclipse TE2000 until closure of the wound.

Cell Proliferation Assay
Eight hundred cells were seeded in quadruplicates for each condition in 24-well plates, and readings were taken according to manufacturer’s instructions (Cell Proliferation Reagent WST-1; Roche) for 7 days. Absorbance was measured using Infinite M200 Quad4 Monochromator (Tecan) at 450 nm using a reference wavelength of 650 nm.

Cell Invasion Migration Assay
5 × 10^5 stably transfected cells in RPMI serum-free media were plated into the Biocoat Matrigel invasion chamber according to manufacturer’s instructions (Corning) with 5% FBS in media added as chemoattractant to the wells of the Matrigel invasion chamber for 24 hr. Further detail is provided in the Supplemental Experimental Procedures.

TER Analysis
2 × 10^5 stably transfected MDCK cells were seeded on 12-mm Transwell inserts (Corning) to obtain a polarized monolayer. The next day, the inserts were placed in CellZcope (nanoAnalytics) for TER measurements.

Soft Agar Colony Formation Assay
Five thousand cells of stable cell lines were added to 2 ml soft agar (0.35% Noble agar and 2 x FBS media) and plated onto solidified base layers (0.7% Noble agar with 2 x FBS) with triplicates set up for each experiment. Colonies were counted 2 to 4 weeks later.

ACCESSION NUMBERS
DNA-PET data for TMK1 and tumors 17, 26, 28, and 38 reported in this paper have been deposited to the NCBI GEO and are available under accession number GEO:GSE26954. Tumors 82 and 92 have been deposited to the GEO under accession number GEO:GSE30833. SOLID sequencing data of the eight additional tumor/normal pairs; the ChIA-PET-sequencing data of HGC27; and the exome sequencing data of tumors 136, 07K611, and 05/0304 have been deposited to the NCBI Sequence Reads Archive and are available under accession number SRA:SRP035443.

SUPPLEMENTAL INFORMATION
Supplemental Information includes Supplemental Results, Supplemental Experimental Procedures, seven figures, and seven tables and can be found with this article online at http://dx.doi.org/10.1016/j.cellrep.2015.06.020.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS
We thank all patients who consented to donate tissue samples. This work was supported by the Agency for Science Technology and Research, Singapore, the Translational Clinical Research Flagship Programme, The Singapore Gastric Cancer Consortium - Improving Outcomes for Our Patients. Additional support was provided by the Genome Institute of Singapore and the Institute of Molecular and Cell Biology internal research funds from the National Medical Research Council of Singapore and the Biomedical Research Council. We thank Sebastian Maurer-Stroh and Vachiranee Limviphuvadh for discussions on fusion protein properties; Guillaume Bourque for discussions and advice on genomics; Hwee Meng Low, Yeen Hui Choy, and Jan Dachlauer for help on DNA and RNA extractions and PCR work; Valère Cacheux for advice on FISH analysis; Soon Wei Jia Wendy and the Next Generation Sequencing laboratory, IMCB, A*STAR, Singapore for histological services. A.M.H., Y.R., F.Y., P.T., W.H., A.S.M.T., Y.Y.S., and K.G.Y. applied for a National University of Singapore, Singapore Health Services and Agency for Science, Technology and Research, Singapore patent (international patent application no. PCT/SG2015/050047) "Fusion Genes in Cancer".

Received: June 26, 2014
Revised: April 21, 2015
Accepted: June 6, 2015
Published: July 2, 2015

REFERENCES

284 Cell Reports 12, 272–285, July 14, 2015 ©2015 The Authors

