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SUMMARY

Autophagy is a recently recognized immune
effector mechanism against intracellular patho-
gens. The role of autophagy in innate immunity
has been well established, but the extent of its
regulation by the adaptive immune response
is less well understood. The T helper 1 (Th1)
cell cytokine IFN-g induces autophagy in mac-
rophages to eliminate Mycobacterium tubercu-
losis. Here, we report that Th2 cytokines affect
autophagy in macrophages and their ability to
control intracellular M. tuberculosis. IL-4 and
IL-13 abrogated autophagy and autophagy-
mediated killing of intracellular mycobacteria
in murine and human macrophages. Inhibition
of starvation-induced autophagy by IL-4 and
IL-13 was dependent on Akt signaling, whereas
the inhibition of IFN-g-induced autophagy was
Akt independent and signal transducer and
activator of transcription 6 (STAT6) dependent.
These findings establish a mechanism through
which Th1-Th2 polarization differentially affects
the immune control of intracellular pathogens.

INTRODUCTION

Autophagy is a fundamental homeostatic mechanism in

which cells sequester discrete portions of the cytoplasm

into an autophagosome, a specialized vacuole with

a double membrane, which in turn delivers them to ly-

sosomes for degradation (Levine, 2005; Shintani and

Klionsky, 2004). This process removes damaged or sur-

plus organelles such as leaky mitochondria and excess

peroxisomes and, by degrading long-lived cytoplasmic

macromolecules during periods of starvation, promotes

cell survival (Kuma et al., 2004). Autophagy has recently

been shown to play a role in innate immunity against

intracellular pathogens, including Epstein-Barr Virus
Im
(Paludan et al., 2005), Shigella flexneri (Ogawa et al.,

2005), Salmonella typhimurium (Birmingham et al.,

2006), Toxoplasma gondii (Ling et al., 2006), and Myco-

bacterium tuberculosis (Gutierrez et al., 2004). In addition,

autophagy has been implicated in adaptive immunity,

playing a role in endogenous antigen presentation (Deng-

jel et al., 2005; Deretic, 2005; Paludan et al., 2005; Schmid

et al., 2006b).

Autophagy can be induced pharmacologically with ra-

pamycin, which inhibits TOR, a conserved Ser and Thr

kinase that regulates cell growth and metabolism in re-

sponse to growth factors, energy inputs, and nutritional

demands (Wullschleger et al., 2006). TOR integrates vari-

ous inputs; its activation stimulates anabolic processes

and biomass production, whereas its inhibition enhances

catabolic processes, including autophagy. A classical ex-

ample of this system in action is demonstrated by amino

acid starvation, which leads to inhibition of TOR and in-

duction of autophagy. Conversely, TOR can be activated

by growth factors via the Akt (also known as PKB) path-

way, resulting in the inhibition of autophagy (Wullschleger

et al., 2006). In some cases, withdrawal of growth factors

is sufficient for induction of autophagy, even in the pres-

ence of adequate nutrients. For example, removal of IL-3

from cultures of an IL-3-dependent hemopoietic cell line

that also lacks the apoptotic regulators Bax and Bak has

been shown to induce autophagy, and if left unchecked,

the cells eventually die (Lum et al., 2005). However, the

cells die more rapidly when autophagy is blocked, sug-

gesting that autophagy is a survival mechanism in these

cells (Lum et al., 2005). Autophagy can be modulated by

cytokines and other immunological signals (Andrade

et al., 2006; Djavaheri-Mergny et al., 2006; Singh et al.,

2006). For example, TNF-a can induce autophagy in

Ewing sarcoma cells in the absence of NF-kB activation

(Djavaheri-Mergny et al., 2006), whereas in macrophages

and other cells, IFN-g, a classical T helper 1 (Th1) cell

cytokine and a critical antituberculosis immune mediator,

induces or augments autophagy (Gutierrez et al., 2004; In-

bal et al., 2002; Pyo et al., 2005). Moreover, the protective

role of IFN-g against mycobacteria has been associated

with autophagy (Gutierrez et al., 2004; Singh et al.,
munity 27, 505–517, September 2007 ª2007 Elsevier Inc. 505

mailto:vderetic@salud.unm.edu


Immunity

Th2 Inhibition of Autophagy as an Immune Effector
Figure 1. Inhibition of Starvation-Induced Autophagy by IL-4 and IL-13

(A) Murine RAW264.7 or (B) human U937 cells were transiently transfected with pEGFP-LC3, amino acid- and serum-starved for 2 hr with or without

IL-4 or IL-13 (30 ng/ml), and analyzed by confocal microscopy. The number of large (R1 mm) LC3 puncta per cell were quantified (C and D). Data are

presented as means ± SEM; *p < 0.05 and yp R 0.05; n = 3. Scale bars represent 5 mm.
2006), indicating that this process is an important effector

mechanism of the Th1 response.

The two classical Th2 cytokines, IL-4 and IL-13, signal

through the receptor IL-4Ra, which forms a heterodimer

either with the gamma common (gc) chain (for IL-4) or

the IL-13Ra1 (for IL-13) (Nelms et al., 1999). In addition,

IL-13 can signal through the high-affinity IL-13Ra2, initially

thought to be a decoy, nonsignaling receptor (Donaldson

et al., 1998; Fichtner-Feigl et al., 2006; Kawakami et al.,

2001; Zhang et al., 1997). Ligation of the IL-4 and IL-13 re-

ceptor complexes results in signaling via the insulin recep-

tor substrate (IRS)-1 and 2 and STAT-6 pathways (Nelms

et al., 1999). Although STAT-6 is involved in IL-4- and IL-

13-induced gene expression, IRS-1 and 2 signaling acti-

vates the type I phosphatidylinositol 3-kinase (PI3K) path-

way and subsequently the Akt pathway. On the basis of

the latter signaling pathway, we hypothesized that IL-4

and IL-13 would inhibit the autophagy-induced killing of

mycobacteria by macrophages. Here, we showed that

IL-4 and IL-13 inhibited autophagy induced by either

amino acid starvation or by IFN-g in murine and human

macrophages but that different signaling pathways were

used to suppress starvation-induced versus IFN-g-

induced autophagy. This IL-4 and IL-13 action specifically

inhibited the transfer of mycobacteria into lysosomal com-

partments and enhanced mycobacterial survival within

infected macrophages by inhibiting autophagy.
506 Immunity 27, 505–517, September 2007 ª2007 Elsevier Inc
RESULTS

IL-4 and IL-13 Inhibit Starvation-Induced
Autophagy
Induction of autophagy in the murine RAW264.7 and hu-

man U937 monocyte or macrophage cell lines was moni-

tored with morphometric analysis after the formation of

pEGFP-LC3-labeled (Kabeya et al., 2000) autophago-

somes (R1 mm). LC3 is the mammalian equivalent of yeast

Atg8, a specific marker that translocates from the cytosol

to autophagosomal membranes (Kabeya et al., 2000).

Amino acid starvation resulted in a significant increase in

the number of pEGFP-LC3+ puncta per cell (Figure 1).

Translocation of cytosolic LC3 to autophagosomal organ-

elles was also detected by 4D live confocal microscopy

(Chua and Deretic, 2004; Kyei et al., 2006; Roberts et al.,

2006) in macrophages transfected with tdTomato-LC3

(Bjorkoy et al., 2005) (Movie SM1 in the Supplemental

Data available online). Amino acid-starvation-induced for-

mation of LC3 puncta was abrogated with the addition of

3-MA (Figure S1), a classical inhibitor of autophagy (Blom-

maart et al., 1997). After ascertaining the expression of IL-

4Ra by flow cytometry (Figure S2), IL-4 and IL-13 were

added to macrophages induced for autophagy by amino

acid starvation. Either one of the Th2 cytokines tested ab-

rogated autophagy, as shown by inhibition of pEGFP-

LC3+ puncta formation in both RAW and U937 cells
.
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Figure 2. Inhibition of Starvation-Induced Autophagy by IL-4 and IL-13 in Murine Macrophages

(A) Bone marrow macrophages (BMMs) from GFP-LC3 transgenic mice were amino acid- and serum-starved (S) for 2 hr with or without IL-4 or IL-13

(30 ng/ml) and analyzed by confocal microscopy.

(B) Quantification of large (>1 mm) GFP-LC3 puncta per cell (within the denominator; calculations included cells without any large puncta); n = 3

(separate slides).

(C) Quantification of large (R1 mm) LC3 puncta in RAW264.7 cells transfected with GFP-LC3 and induced for autophagy by starvation in the presence

of decreasing concentrations of IL-4 or Il-13; n = 3 (separate slides; shown is one out of two independent experiments).

(D) Immunnoblot analysis of LC3 lipidation state in RAW264.7 cells starved and incubated without (none) or with IL-4 or IL-13. Full; cells grown in full

medium. Cells were amino acid- and serum-starved for 2 hr (lanes 2–4). Actin was used as the loading control. Data are presented as means ± SEM;

*p < 0.05, **p < 0.01, and yp R 0.05.
(Figure 1). Similar results were obtained with primary bone

marrow-derived macrophages (BMMs) from GFP-LC3

transgenic mice (Mizushima et al., 2004) (Figures 2A and

2B). A titration of IL-4 and IL-13 in RAW264.7 cells showed

that at 0.3 ng/ml, both cytokines still exerted their effects,

albeit IL-4 was losing some of its potency at the lowest

concentration tested (Figure 2C).

The inhibitory effects of IL-4 and IL-13 on starvation-

induced autophagy were independently confirmed by an

assay that measures conversion of LC3-I (nonlipidated

form with lower electrophoretic mobility) to LC3-II (LC3

form C-terminally lipidated by phosphatidylethanolamine,

displaying higher electrophoretic mobility) with immuno-

blots (Kabeya et al., 2000). As expected, induction of au-

tophagy by starvation reduced both LC3-I and LC3-II

band intensity in RAW264.7 cell (Figure 2D and Fig-

ure S2B, lanes 1 and 2) because of the autophagic con-
Im
sumption of LC3 (Kabeya et al., 2000). At the same time,

the intensity of the LC3-II band changed (increased) re-

lative to the intensity of LC3-I band (Figure 2D and

Figure S2B, lanes 1 and 2). When IL-4 and IL-13 were

added to starved macrophages, two changes occurred:

(1) The intensity of the LC3-I band increased (Figure 2D,

lanes 3 and 4, relative to lane 2), indicative of a reduced

LC3-I-to-LC3-II conversion, consistent with the inhibition

of autophagy induction by IL-4 and IL-13. An increase in

LC3-I band was also observed in primary murine BMM

(Figure S2C). (2) The LC3-II band intensity decreased in

starved RAW264.7 macrophages treated with IL-4 and

IL-13 (Figure 2D, lanes 3 and 4, compared to lane 2).

This could be the result of reduced LC3-I-to-LC3-II con-

version, in keeping with an inhibition of autophagy induc-

tion. However in BMM, only an LC3-I increase but no LC3-

II decrease was observed (Figure S2C). The differences in
munity 27, 505–517, September 2007 ª2007 Elsevier Inc. 507
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Figure 3. Inhibition of IFN-g-Induced Autophagy by IL-4 and IL-13

(A) Murine RAW264.7 or (B) human U937 cells were transiently transfected with pEGFP-LC3 and treated with 200 U/ml IFN-g or IFN-g in combination

with IL-4 or IL-13 (30 ng/ml) for 24 hr and were analyzed by confocal microscopy. Large (R1 mm) LC3 puncta per cell were quantified (C and D). Data

are presented as means ± SEM; *p < 0.05, **p < 0.01, yp R 0.05; n = 3. Scale bars represent 5 mm.
LC3-II band intensity between RAW364.7 and BMM may

be the net result of differences in the rates of LC3-I-to-

LC3-II conversion versus LC3-II depletion through degra-

dation in autolysosomes. This was substantiated with

lysosomal and autolysosomal protease inhibitors

(Figure S2, lanes 3 and 4, compared to lane 2), which, as

expected, increased LC3-II amounts by blocking its deg-

radation both in the presence or absence of IL-4. Consis-

tent with the conclusion that Th2 cytokines inhibit LC3-I-

to-LC3-II conversion, IL-4 presence increased LC3-I

band intensity (Figure S2B, lane 4 compared to lane 3).

Because the presence of IL-4 did not diminish LC3-II

band levels relative to protease inhibitors alone

(Figure S2, lane 4 versus lane 3), as one might expect

from lower LC3-I-to-LC3-II conversion, Th2 cytokines

may have an additional effect on the fate of LC3-II by par-

tially inhibiting its delivery to or its degradation in autolyso-

somes. This conclusion is consistent with the apparent

preservation of the LC3-II band in BMM (Figure S2C). Of

note is that IL-4 and IL-13 did not change expression of

the murine LC3 gene MAP1LC3b under starvation condi-

tions (Figure S2D). In conclusion, IL-4 and IL-13 inhibit

LC3-I-to-LC3-II conversion and initiation of autophagy

but may have additional effects on the autophagic path-

way; these effects become apparent when different cells

are examined.
508 Immunity 27, 505–517, September 2007 ª2007 Elsevier Inc
IL-4 and IL-13 Inhibit IFN-g-Induced Formation
of Autophagosomes
Treatment of macrophages with IFN-g promotes the for-

mation of autophagosomes (Gutierrez et al., 2004; Singh

et al., 2006). We tested whether this effect could be in-

hibited by treating RAW and U937 cells with IFN-g in com-

bination with either IL-4 or IL-13. In both cell types, IL-4

and IL-13 significantly reduced the number of IFN-g-

induced pEGFP-LC3+ puncta per cell (Figure 3). In

addition, we found that IFN-g treatment increased the per-

centage of RAW cells with large vacuoles that stained

positively for monodansylcadaverine (MDC), another

marker for autophagic vacuoles (Biederbick et al., 1995),

and this effect was inhibited by IL-4 or IL-13 (Figures

S3A and S3B). By using the MDC assay, we confirmed

the effects of IL-4 and IL-13 in primary human, peripheral

blood monocyte-derived macrophages (MDMs) and

found, in titration experiments, a similar concentration-

dependence pattern to that seen in murine macrophages

(Figure S3C).

IL-4 and IL-13 Inhibit Autophagy-Dependent BCG
Phagolysosome Maturation
Mycobacterium tuberculosis normally resides in phago-

somes that do not acquire phagolysosomal properties,

such as lumenal acidification and the presence of
.
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Figure 4. Inhibition of Starvation- and

IFN-g-Induced BCG Phagosome Matura-

tion by IL-4 and IL-13

(A) Confocal images of murine RAW264.7 mac-

rophages infected with GFP-BCG for 2 hr.

Cells were amino acid- and serum-starved for

2 hr (during infection) or treated with IFN-g

(200 U/ml) for 24 hr prior to infection, with or

without IL-4 or IL-13 (30 ng/ml). After infection,

cells were fixed and stained for CD63. The per-

centage of CD63+ BCG phagosomes was

quantified (B and C). The percentage of Lyso-

tracker red (LT)+ BCG phagosomes was re-

corded in PMA-differentiated human THP-1

monocytes after (D) starvation or (E) IFN-g

(200 U/ml) treatment with or without IL-4 or

IL-13 (30 ng/ml). Representative images are

shown in Figure S6. Data are presented as

means ± SEM; *p < 0.05 and yp R 0.05; n = 3.
lysosomal hydrolases (Vergne et al., 2004). Induction of

autophagy has been shown to promote the transfer of

mycobacteria into degradative autolysosomal organelles

(Gutierrez et al., 2004). To investigate whether IL-4 and

IL-13 counteract this effect, we examined the maturation

of M. tuberculosis variant bovis BCG (BCG) phagosomes

by monitoring the late endosomal or lysosomal marker

CD63. Induction of autophagy by starvation in BCG-

infected RAW cells significantly increased colocalization

of GFP-BCG with CD63 (Figures 4A and 4B). The effect

of starvation-induced autophagy on BCG phagosome

maturation was inhibited by the addition of either IL-4 or

IL-13 (Figures 4A and 4B). Both IL-4 and IL-13 also in-

hibited IFN-g-induced phagosome maturation in BCG-

infected cells (Figures 4A and 4C). Starvation increased

phagosome maturation in U937 cells, an effect that was

inhibited with either IL-4 or IL-13 (Figure S4). For unknown
Im
reasons, IFN-g did not significantly increase BCG phago-

some maturation in U937 cells (data not shown). Instead,

we tested PMA-differentiated human THP-1 cells, by us-

ing the acidotropic dye LysoTracker Red (LT) to visualize

lysosomal compartments. As with RAW cells, phagosome

maturation was increased by either starvation or IFN-g;

this was inhibited by treatment with either IL-4 or IL-13

(Figures 4D and 4E and Figure S5).

Phagosome maturation was autophagy dependent, as

demonstrated by siRNA knockdown of Beclin 1, a critical

mammalian autophagy factor (Liang et al., 1999) (Figures

5A–5C). Although RAW cells transfected with scrambled

siRNA showed an increase in BCG phagosome matura-

tion in response to starvation (Figures 5A and 5D) or

IFN-g (Figures 5B and 5D), cells treated with Beclin 1

siRNA did not, demonstrating that these responses are

dependent on functional autophagic machinery. In the
munity 27, 505–517, September 2007 ª2007 Elsevier Inc. 509
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Figure 5. Starvation- and IFN-g-Induced BCG Phagosome Maturation Is Autophagy Dependent

(A) Quantitative analysis of CD63+ BCG phagosomes that were in murine RAW264.7 macrophages transiently transfected with either nontargeting

(scrambled) siRNA or Beclin 1 siRNA and that were amino acid- and serum-starved for 2 hr.

(B) CD63+ BCG phagosomes in RAW264.7 cells transiently transfected with scrambled or Beclin 1 siRNA and treated with IFN-g (200 U/ml) for 24 hr.

Data are presented as means ± SEM; *p < 0.05, **p < 0.01, and yp R 0.05; n = 3 for (A) and n = 6 for (B).

(C) Immunnoblot confirmation of Beclin 1 knockdown by siRNA.

(D) Immunofluorescence panels of BCG colocalization with the late endosomal marker CD63, exemplifying the data in (A) and (B). CD63 is shown in

green; BCG is shown in red.
presence of full-nutrient media, treatment of RAW macro-

phages with IL-4 or IL-13 had no effect on the colocaliza-

tion of CD63 with either live or heat-killed BCG phago-

somes (Figure S6). Thus, these Th2 cytokines do not

inhibit mycobacterial phagosome maturation under nor-

mal conditions but rather specifically inhibit autophagy-

dependent maturation.

IL-4 and IL-13 Inhibit Autophagy-Dependent
Killing of Intracellular Mycobacteria
To determine whether IL-4 and IL-13 affect autophagic

elimination of mycobacteria (Gutierrez et al., 2004), we in-

fected RAW cells with BCG and induced autophagy by

amino acid starvation for 2 hr. Induction of autophagy de-

creased BCG survival in RAW cells (Figure 6A). Addition of

IL-4 or IL-13 to the starvation media abrogated this effect

(Figure 6A). Similar results were obtained when survival of

virulent M. tuberculosis H37Rv was tested with starvation

or IFN-g used as autophagy agonists (Figures 6B and 6C).

Figure 6D shows that these relationships hold true in pri-

mary macrophages because IL-4, used as an example,

abrogated killing of virulent M. tuberculosis H37Rv by star-

vation-induced autophagy in murine BMMs. These find-

ings demonstrate that IL-4 or IL-13 inhibit autophagy-

induced killing of mycobacteria by macrophages.
510 Immunity 27, 505–517, September 2007 ª2007 Elsevier Inc.
IL-4 and IL-13 Inhibit Autophagic Phagosome
Maturation in Primary Human Cells
To confirm that IL-4 and IL-13 inhibit autophagy-induced

effects on mycobacterial phagosomes in human primary

macrophages, we tested whether IL-4 and IL-13 influ-

enced autophagy-induced mycobacterial phagosome

maturation. Human peripheral blood monocyte-derived

macrophages (MDMs) were infected with BCG and in-

duced for autophagy by starvation. The effect of starva-

tion-induced autophagy on mycobacterial phagosome

maturation was decreased by the addition of either IL-4

or IL-13 (Figures 6E and 6F). Similarly, both IL-4 and IL-

13 had an inhibitory effect on IFN-g-induced mycobacte-

rial phagosome maturation (Figures 6E and 6F). These

results validate in human primary macrophages the con-

clusion that Th2 cytokines counteract autophagy in its

ability to deliver mycobacteria into the phagolysosome.

Inhibition of Starvation-Induced Autophagy by IL-4
and IL-13 Is Akt Dependent
To determine the signaling involved in the actions of IL-4

and IL-13 on autophagy in macrophages, we examined

whether the Akt pathway, known to activate TOR and in-

hibit autophagy (Wullschleger et al., 2006), was involved.

In both RAW (Figure 7A) and U937 (Figure S7A) macro-

phages, IL-4 and IL-13 increased phosphorylation of Akt
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Figure 6. IL-4 and IL-13 Inhibit Autophagy-Dependent Killing of M. tuberculosis in Murine Macrophages and Counteract Auto-

phagy-Induced Phagosome Maturation in Primary Human Macrophages

(A) Murine RAW264.7 macrophages were infected with BCG for 1 hr and were amino acid- and serum-starved with or without IL-4 or IL-13 (30 ng/ml)

for 2 hr. Cells were washed and lysed for viability determination and survival expressed as a percentage of the control.

(B) Murine RAW264.7 macrophages were infected with virulent M. tuberculosis H37Rv for 1 hr and were amino acid- and serum-starved with or with-

out IL-4 or IL-13 (30 ng/ml) for 2 hr. Cells were washed and lysed for viability determination.

(C) Murine RAW264.7 macrophages were either untreated or treated with 200 u/ml of m-IFN-g for 24 hr prior to infection with M. tuberculosis H37Rv

for 1 hr with or without IL-4 or IL-13 (30 ng/ml) for 2 hr. Cells were washed and lysed for viability (cfu) determination. Data are presented as means ±

SEM, *p < 0.05, **p < 0.01, and yp R 0.05; n = 3.

(D) IL-4 inhibits autophagy-dependent killing of M. tuberculosis H37Rv in primary murine macrophages. Murine bone marrow macrophages were

infected with virulent M. tuberculosis (strain H37Rv) for 1 hr and were amino acid- and serum-starved with or without IL-4 (30 ng/ml) for 2 hr. Myco-

bacterial viability (colony counts) is expressed as a percentage of the control.

(E and F) Primary human macrophages derived from peripheral blood monocytes were infected with BCG. Transfer of mycobacteria to phagolyso-

some dependent on autophagy was scored with the acidotropic dye LysoTracker. Autophagy was induced for 2 hr by starvation or by treatment with

200 u/ml human IFN-g. Cells were incubated in the absence or presence of 30 ng/ml of human IL-4 or IL-13, as indicated. (F) shows quantification of

experiments shown in (E). Data are presented as means ± SEM; *p < 0.05 and yp R 0.05; n = 3 (three independent donors).
under starvation conditions (Figure S7A, top two panels

and graph). We next tested the activity of TOR, a key neg-

ative regulator of autophagy (when TOR is active, autoph-

agy is inhibited) on the basis of reports that TOR is acti-

vated by Akt (Wullschleger et al., 2006). We investigated

TOR activation by monitoring phosphorylation of p70 S6

kinase (S6k) (Figure S7A, bottom two panels and graph)

and eukaryotic initiation factor 4E (eIF4E)-binding protein

1 (4E-BP1) (Figures 7B–7E and Figure S7), both commonly

used as indicators of TOR activation state (Wullschleger

et al., 2006). Treatment of U937 cells with IL-4 or IL-13

increased phosphorylation of S6k (Figure S7A). In
Im
RAW264.7 macrophages, IL-4 and IL-13 treatment in-

creased phosphorylation of 4E-BP1 under starvation con-

ditions in a dose-dependent manner (Figures S7B and

S7C). A finer-resolution analysis of 4E-BP1 phosphoryla-

tion was carried out next. TOR induces 4E-BP1 inactiva-

tion via multiple hierarchical phosphorylations (Gingras

et al., 2001). A fine-resolution immunoblot analysis can

be used for revealing 4E-BP1 hypophosphorylated a and

b forms, and hyperphosphorylated g form, resolved in

the order of their decreasing electrophoretic mobility.

Active Akt elicits 4E-BP1(g) hyperphosphorylation through

TOR activity (Gingras et al., 2001). Our analyses in primary
munity 27, 505–517, September 2007 ª2007 Elsevier Inc. 511
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Figure 7. Role of Akt and STAT6 in Suppression by IL-4 and IL-13 of Starvation- and IFN-g-Induced Autophagy

(A) Immunoblot analysis of Akt phosphorylation in RAW264.7 macrophages amino acid- and serum starved for 2 hr with or without IL-4 or IL-13.

(B) Immunoblot analysis of 4E-BP1 hierarchical phosphorylation in murine bone marrow macrophages (BMMs) starved and treated with IL-4 for 40,

60, and 120 min.

(C) Graph shows the ratio of p-4E-BP1(g)/p-4E-BP1(b).

(D) Immunoblot analysis of 4E-BP1 in murine bone marrow macrophages (BMMs).
512 Immunity 27, 505–517, September 2007 ª2007 Elsevier Inc.
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murine BMMs and in human MDM revealed that IL-4 and

IL-13 treatment specifically increased phosphorylation of

4E-BP1(g) under starvation conditions (Figures 7B–7E).

Furthermore, a time course of 4E-BP1 showed that IL-4

exerted its effects by increasing 4E-BP1(g) hyperphos-

phorylation at 2 hr but had no discernible effects at earlier

time points (Figures 7B and 7C), consistent with other ef-

fects measured in our study. These results demonstrate

that IL-4 and IL-13 activate the Akt pathway in macro-

phages, resulting in the activation of TOR and inhibition

of starvation-induced autophagy.

To establish the role of Akt in the IL-4- and IL-13-

induced inhibition of autophagy in macrophages, we

knocked down Akt1 and Akt2 with siRNA in vitro

(Figure S8A). Compared with the control samples (scram-

bled siRNA), knockdown of Akt1 and Akt2 in RAW macro-

phages increased autophagy, monitored by LC3+ vacuole

formation (Figure 7F and Figure S8B), indicating that basal

levels of autophagy are controlled, at least in part, by

baseline Akt activation. Double knockdown of Akt1 and

Akt2 in RAW cells abrogated the effects of IL-4 and IL-

13 on starvation-induced autophagy (Figure 7F and

Figure S8B). In BCG-infected RAW cells, knockdown of

Akt1 and Akt2 also inhibited the effects of IL-4 and IL-13

on starvation-induced transfer of BCG to autophago-

somes (Figure 7G and Figure S8C).

Inhibition of IFN-g-Induced Autophagy Is STAT6
Dependent
In contrast to the effects with IL-4 and IL-13 on starvation-

induced autophagy, a double knockdown of Akt1 and

Akt2 with siRNA had no effect on the inhibition of IFN-g-

induced phagosome maturation by IL-4 and IL-13

(Figure 7H), suggesting that the suppressive effects of

these Th2 cytokines on the activation by IFN-g involved al-

ternative or additional pathways, independent of Akt sig-

naling. Akt3 was detectable only at very low amounts in

these cells, and its expression was not affected by knock-

down of Akt1 and Akt2 (data not shown). We therefore

tested whether the inhibitory effect of IL-4 and IL-13 on

IFN-g-induced autophagy was regulated via a different

pathway. IL-4 and IL-13 receptors, in addition to signaling

via the Akt pathway, are more commonly known for their

activation of STAT6 (Nelms et al., 1999). Thus, we tested

whether STAT6 was required for Th2 cytokine inhibition
Im
of autophagy activation by IFN-g. When STAT6 was

knocked down (Figure S9), IL-13 could no longer suppress

IFN-g-induced autophagosome formation in macro-

phages (Figures 7I–7L). Collectively, our data on IL-4

and IL-13 inhibition of starvation- and IFN-g-induced au-

tophagy demonstrate that Th2 cytokines can employ ei-

ther of the signaling pathways associated with ligation of

the IL-4 and IL-13 receptors to exert this effect. Suppres-

sion of starvation-induced autophagy occurs through Akt

signaling, whereas STAT6 is needed for suppression of

IFN-g-induced autophagy.

DISCUSSION

Recent studies have demonstrated that autophagy repre-

sents a mechanism for eliminating intracellular pathogens

(Deretic, 2005; Schmid et al., 2006a; Levine and Deretic,

2007), as shown in several bacterial, viral, and protozoan

systems (Birmingham et al., 2006; Gutierrez et al., 2004;

Ling et al., 2006; Ogawa et al., 2005; Orvedahl et al., 2007;

Paludan et al., 2005; Singh et al., 2006). Induction of au-

tophagy by amino acid starvation, rapamycin treatment,

or macrophage activation with IFN-g leads to an increase

in mycobacterial phagolysosome maturation. This in-

crease is concomitant with a decrease in the intracellular

survival of the bacilli (Singh et al., 2006), and such a sur-

vival decrease is independent of apoptosis (Gutierrez

et al., 2004), another process previously implicated in the

elimination of M. tuberculosis (Fratazzi et al., 1999). Here,

we have shown that autophagy-induced killing of myco-

bacteria by murine and human macrophages is inhibited

by the Th2 cytokines IL-4 and IL-13. Both cytokines coun-

teract the autophagic transfer of mycobacteria from their

normally immature phagosomes with early endosomal

characteristics (Vergne et al., 2004) to autolysosomes,

thus preventing the elimination of intracellular bacilli by

autophagy.

We have shown that the effect of IL-4 and IL-13 on star-

vation-induced autophagy is dependent on signaling via

the Akt pathway, which activates TOR. Activation of TOR,

downstream of Akt, inhibits autophagy. As expected, IL-4

and IL-13 could not influence rapamycin-induced auto-

phagy (data not shown) because rapamycin acts directly

on TOR, bypassing Akt signaling. Notably, the mechanism

of IL-4 and IL-13 inhibition of IFN-g-induced autophagy is
(E) Immunnoblot analysis of human monocyte-derived macrophages (MDMs) starved for 2 hr with or without IL-4 or IL-13. Graphs in (D) and (E) show

(n = 2; one out of two experiments with similar results) the intensity ratios of p-4E-BP1(g) to p-4E-BP1(b) bands.

(F) Quantification of large (R1 mm) pEGFP-LC3 puncta per cell in RAW 264.7 macrophages transiently transfected with pEGFP-LC3 and either scram-

bled siRNA or Akt 1 + Akt 2 siRNA and starved for 2 hr with or without IL-4 or IL-13.

(G) Quantitative analysis of CD63+ BCG phagosomes in RAW264.7 cells transiently transfected with scrambled siRNA or Akt 1 + Akt 2 siRNA and

infected with BCG for 2 hr. Infected cells were amino acid- and serum-starved with or without IL-4 or IL-13.

(H) Percentage of CD63+ BCG phagosomes in RAW264.7 cells transiently transfected with scrambled siRNA or Akt1 + Akt 2 siRNA, treated with IFN-g

with or without IL-4 or IL-13 for 24 hr, and infected with BCG for 2 hr. Representative images from these experiments and immunoblot-blot confir-

mation of Akt 1 and Akt 2 knockdown are shown in Figure S8.

(I–L) Th2 inhibition of IFNg-dependent autophagy is STAT6 dependent: (I and J) display confocal-microscopy images and quantification of GFP-LC3

puncta formation in response to IFN-g, with or without IL-13, in cells treated with control (csramble) siRNA. (K–L) display images and quantification of

GFP-LC3 puncta formation in response to IFN-g, with or without IL-13, in cells treated with control STAT6 siRNA. Immunoblot analysis of STAT6

knockdown is given in Figure S9. Data in all graphs (when error bars are shown) are presented as means ± SEM; n R 3; *p < 0.05, **p < 0.01, and

yp R 0.05.
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Akt independent. This finding was surprising given the es-

tablished role of Akt in inhibiting autophagy in general (Pe-

tiot et al., 2000) and given the inhibitory effects of Akt in

starvation-induced autophagy in macrophages demon-

strated here for IL-4 and IL-13 and in nonphagocytic cells

elsewhere for IL-13 (Arico et al., 2001). To explain these

observations, we have now uncovered a previously un-

known signaling relationship; STAT6 modulates the Th2

antiautophagic function when macrophages are stimu-

lated for autophagy by IFN-g. This places STAT6 within

the ranks of the immunologically relevant regulators of

autophagy. Most importantly, it provides an explanation

for how Th2 cytokines counter autophagy-dependent pro-

tection against intracellular pathogens afforded by Th1 re-

sponses. The effects of STAT6 on autophagy downstream

of IL-4 and IL-13 action may involve a number of path-

ways, one of which could be linked to the intriguing ability

of STAT6 to increase the Bcl-2 and Bcl-XL antiapoptotic

proteins (Wurster et al., 2002). Bcl-2 and Bcl-XL are now

also recognized as being antiautophagic effector proteins

(Maiuri et al., 2007; Pattingre et al., 2005). Bcl-2 and Bcl-XL

interact directly (Pattingre et al., 2005) through the recently

recognized BH3 domain (Maiuri et al., 2007) within Beclin 1,

the key activator of autophagy. Because Bcl-2 and Bcl-XL

association with Beclin 1 blocks autophagy induction

(Maiuri et al., 2007), and the rapid induction of STAT6

downstream of IL-4 and IL-13 stimulation may increase

Bcl-XL availability (Wurster et al., 2002), the IL-4-IL-13-

STAT6-dependent inhibition of autophagy observed in our

work could reflect these recently uncovered relationships.

In this work, we did not specifically study alternative

activation of macrophages by IL-4 and IL-13 (Gordon,

2003) but instead focused on the effects of short-term ex-

posure (2 hr) or treatment in combination with IFN-g.

Treatment of macrophages with IL-4 or IL-13 for 6 days

has been shown to enhance fluid-phase pinocytosis and

mannose receptor-mediated endocytosis through activa-

tion of phosphatidylinositol 3 kinase; both cytokines in-

crease tubular-vesicle formation at pericentriolar sites un-

der the plasma membrane, concurrent with decreased

particle sorting to the lysosomes (Montaner et al., 1999).

Although these previous observations could explain the

inhibitory effects on autophagolysosome formation, IL-4

and IL-13 had no effect on BCG phagosome maturation

in the absence of starvation- or IFN-g-induced autophagy,

demonstrating that the effects observed in our experi-

ments are autophagy specific. A study on the effects of al-

ternative activation of macrophages with Th2 cytokines, in

the context of autophagy, may be difficult to address

because prolonged autophagy can lead to type-II-

programmed cell death, and most cells will downregulate

this process to ensure their survival (Pattingre et al., 2005).

Nevertheless, alternative activation of macrophages with

IL-4 in vitro delays and inhibits antibacterial responses

to intracellular M. tuberculosis (Kahnert et al., 2006) by

an unknown mechanism that may be related to the pro-

cesses reported here.

The concentrations of IL-4 and IL-13 used in our titration

experiments fall well within the in vivo and ex vivo tissue
514 Immunity 27, 505–517, September 2007 ª2007 Elsevier Inc
levels of these cytokines under various conditions (Aspord

et al., 2007; Huang et al., 1995; Zhu et al., 1999), including

studies with mycobacterial antigens (Chensue et al.,

1997). Because local concentrations in the vicinity of T

cells secreting IL-4 or IL-13 in vivo can be much higher,

our range included 10-fold increments. Although lympho-

cytes in the lungs of patients with pulmonary tuberculosis

typically have a Th1 phenotype, secreting IFN-g and IL-12

(Mazzarella et al., 2003; Taha et al., 1997), little is known of

the phenotype or cytokine-secretion profiles of infected

macrophages and dendritic cells within the granuloma.

However in vitro studies, in human peripheral blood mono-

cyte-derived macrophages have demonstrated that viru-

lent strains of tuberculosis preferentially upregulate Th2

cytokines (IL-4, IL-5, IL-10, and IL-13), whereas nonviru-

lent strains induce Th1 cytokines and chemokines (Free-

man et al., 2006; Manca et al., 2004; Sun et al., 2006).

Moreover, Th2 lymphocyte subsets have been observed

in lung tissue from patients with cavitary tuberculosis,

compared with Th1 subsets in noncavitary disease (Maz-

zarella et al., 2003). This correlates with higher production

of IL-4 in the periphery of patients with cavitary disease

(van Crevel et al., 2000). Thus, it is possible that in an en-

vironment predominantly influenced by Th1 cytokines,

paracrine, and autocrine secretion of IL-4 and IL-13 could

specifically impair the response of infected macrophages

to IFN-g. Moreover, the peripheral response of patients

with active tuberculosis disease may not necessarily mir-

ror the response in the lungs. Up to 15% of patients with

active pulmonary tuberculosis display specific anergy to

tuberculin (Bloom and Small, 1998), and this has been

linked with increased ratios of IL-4- and IL-10-positive

lymphocytes and decreased ratios of IL-12 (Baliko et al.,

1998). Some authors have reported a Th1 response in

the periphery of patients with mild pulmonary tuberculosis

and Th2 responses in anergic patients and those with

more severe disease (Boussiotis et al., 2000; Dlugovitzky

et al., 1997). Clinical observations in tuberculin-reactive

patients have also demonstrated that Th1 responses, al-

though high in the granuloma, are often paradoxically de-

pressed in peripheral blood lymphocytes in response to

mycobacterial antigens (Jo et al., 2003). In this context,

it would be interesting to determine whether the cytokine

profile in the periphery could influence the autophagic sta-

tus of newly recruited monocytes in the granuloma. Thus,

the balance of Th1 and Th2 cytokines is clearly critical in

the host response to M. tuberculosis. On the basis of the

Th1 autophagy-promoting and Th2 autophagy-dampen-

ing roles, we can now shed more light on this dichotomy.

In summary, we have shown that inhibition of autophagy

by IL-4 and IL-13 impairs the ability of macrophages to kill

intracellular mycobacteria. The Th2 cytokines inhibit phys-

iologically and immunologically induced autophagy in

murine and human monocyte and macrophage cells.

Moreover, these cytokines inhibit autophagy-dependent

maturation of the mycobacterial phagosome and subse-

quent killing of mycobacteria. In addition to furthering

our understanding of the modulation of autophagy in mac-

rophages, these data present evidence for a novel role of
.



Immunity

Th2 Inhibition of Autophagy as an Immune Effector
Th1-Th2 polarization, modulating autophagy as an im-

mune effector mechanism in opposing ways. Our studies

offer an explanation as to why Th2 cytokines are incom-

patible with protection against certain intracellular patho-

gens, including M. tuberculosis. By antagonizing autoph-

agy, IL-4 and IL-13 inhibit Th1-dependent protection

against mycobacteria. Because Th1 and Th2 cytokines

show antagonistic effects on autophagy as an immune ef-

fector, the regulation of autophagy may represent a critical

aspect of Th1-Th2 polarization in the host response to in-

tracellular pathogens.

EXPERIMENTAL PROCEDURES

Antibodies and Reagents

Unless otherwise stated, reagents were from Sigma. Recombinant

murine and human IL-4 and IL-13 were purchased from R & D Sys-

tems. Rabbit polyclonal antibody against CD63 was from Santa Cruz

Biotechnology, rabbit polyclonal antibody against LC3 was from T.

Ueno and E. Kominami. pEGFP-LC3 was from T. Yoshimori and

GFP-LC3 transgenic mice were from N. Mizushima. Tdtomato-LC3

was from G. Bjorkoy.

Cells and Bacterial Cultures

Murine RAW264.7 macrophages were cultured in Dulbecco’s modified

Eagle’s medium (DMEM, Invitrogen) supplemented with 10% fetal bo-

vine serum (FBS) and L-glutamine (full-nutrient medium). The human

monoblastic cell lines, U937 and THP-1, were maintained in RPMI-

1640 (Invitrogen) with 10% FBS, L-glutamine, and HEPES. Before

use, U937 and THP-1 cells were differentiated with PMA (100 nM) for

24–72 hr. Mycobacterium bovis BCG was grown in Middlebrook 7H9

broth with 0.5% Tween, 0.2% glycerol, and albumin-dextrose-

catalase supplement (BD Diagnostics, Franklin Lakes, NJ, USA). Pri-

mary human monocyte-derived macrophages (MDMs) were isolated

and cultured from buffy coats by density gradient centrifugation on

Ficoll-Paque Plus (GE Healthcare). PBMCs were allowed to adhere

to gelatin-coated plates for at least 1 hr, washed so that nonadherent

cells could be removed, and cultured in RPMI-1640 with 10% human

human AB serum for 24 hr. After this time, cells were lifted, counted,

and plated on tissue-culture plastic or glass coverslips for 5–7 days.

Bone marrow-derived macrophages (BMMs) were isolated and cul-

tured as described.

Flow Cytometry

After blocking with seroblock (AbD Serotec), RAW264.7 cells were

stained with rat anti-mouse CD124 (IL-4Ra)-PE (BD) for 30 min on

ice. U937 and THP-1 cells were blocked with human serum (10%)

and stained first with anti-human CD124 for 30 min on ice, then with

anti-mouse IgG1-PE (BD) for 30 min on ice. The cells were analyzed

on a BD FACScaliber, and data were processed with CellQuest

software.

Induction of Autophagy

Autophagy was induced either by amino acid starvation, in which cells

were incubated for 2 hr in Earle’s balanced salt solution (EBSS) or by

treatment with IFN-g (200 U/ml) for 24 hr. (Gutierrez et al., 2004).

Macrophage Transfection

RAW264.7 and U937 cells were transfected by nucleoporation as pre-

viously described (Chua and Deretic, 2004). In brief, cells were har-

vested after 2–3 days in culture and resuspended in 100 ml of the

appropriate electroporation buffer (Amaxa Biosystems) with 5–10 mg

plasmid DNA or 1.5 mg siGENOME SMARTpool siRNA or siCONTROL

nontargeting siRNA (Dharmacon) and nucleofected with Amaxa Nucle-

ofector apparatus. After electroporation, cells were cultured in full-

nutrient medium for 24 hr before use.
Fluorescence Confocal Microscopy

Cells were cultured on glass coverslips, fixed in 2% paraformaldehyde

for 20 min at room temperature, permeabilized, and blocked in PBS

with 0.5% Tween 20, 1% BSA, and 2% goat serum for 30 min at

room temperature. Cells were incubated with primary antibody for

1 hr and then with secondary antibody for an additional 1 hr. Alterna-

tively, cells were incubated with Lysotracker Red DND-99 (LT, Invitro-

gen) for 2 hr prior to and during incubation with mycobacteria. For

labeling of acidic, lipid-rich vacuoles, cells were incubated with mono-

dansylcadaverine (MDC, 50 mM) for 15 min prior to fixing. Bone marrow

macrophages expressing GFP-LC3 were fixed with 2% paraformalde-

hyde for 10 min, permeabilized with 0.2% saponin for 5 min, blocked

for 30 min, and incubated with rabbit polyclonal antibodies against

GFP (Abcam) overnight for visualization of the GFP-LC3 fusion protein

(GFP fluorescence in BMMs isolated from these transgenic mice is

sporadic, and GFP antibody is routinely used for visualization of GFP-

LC3.). Slides were incubated with a secondary anti-mouse fluorescein

isothiocyanate-conjugated antibody. Coverslips were mounted onto

glass slides with Permafluor Aqueous mounting medium (Thermo

Scientific, Waltham, MA, USA) and analyzed on a Zeiss LSM510

META laser-scanning confocal microscope.

Immunoblotting

Cells were washed in PBS and lysed with buffer containing 10 mM Tris

HCl, 150 mM NaCl, 0.5% deoxycholate, 2 mM EDTA, 2% NP-40, 1 mM

PMSF, and protease inhibitor cocktail (Roche Applied Science). A total

of 50 mg of protein was loaded and separated on a 12% or 15% SDS-

polyacrylamide gel (BioRad) and transferred to nitrocellulose. The

membrane was blocked in 5% milk or 3% BSA in PBS/Tween 20

(0.1%) and probed with antibodies overnight at 4�C. After washing

with PBS/Tween, the blot was probed with HRP-conjugated second-

ary antibody for 1 hr at room temperature. Staining was revealed

with SuperSignal West Dura Extended Duration Substrate (Pierce).

Phagolysosome Maturation and Mycobacterial-Survival

assays

For phagocytosis of mycobacteria, macrophages were incubated with

Texas red-labeled BCG, GFP-BCG, or Mycobacterium tuberculosis

strain H37Rv for 15–30 min, washed, and incubated for an additional

2 hr, in the presence of starvation media in the presence or absence

of cytokines as indicated. After staining the fixed cells for the lyso-

somal marker CD63 (LAMP3), confocal microscopy was used so that

the percentage of CD63-positive mycobacterial phagosomes from at

least 100 cells could be recorded. For mycobacterial-survival assays,

RAW cells or MDM were infected with BCG or H37Rv for 1 hr, washed,

and incubated for an additional 2 hr with starvation media and cyto-

kines as indicated. Cells were washed with PBS and lysed with distilled

water. Serial dilutions of lysates were made, and 5 ml aliquots were in-

oculated on Middlebrook 7H10 agar plates supplemented with oleic

acid–albumin–dextrose–catalase (BD). Plates were sealed and incu-

bated for 2 weeks at 37�C, and colonies were counted from dilutions

yielding 10–50 visible colonies. Data are expressed as colony-forming

units per ml (cfu/ml).

Statistical Analysis

Data are presented as means ± SEM (approximately three indepen-

dent experiments); p values (Student’s t test; two-tailed) are relative

to the control, unless otherwise specified.

Supplemental Data

Nine figures and one movie are available at http://www.immunity.com/

cgi/content/full/27/3/505/DC1/.
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Note Added in Proof

The following errors as they appeared in the original publication of this

paper (on September 20, 2007) have now been corrected online: (1)

Figure S2 did not contain panel D; (2) Figures S5, S6, and S7 were

not in order and were incorrectly cited in the main text (detailed below

in points 3–6); (3) Figure S5 as it was published originally online should

have been Figure S7; (4) Figure S6 should have been Figure S5; (5) Fig-

ure S7 should have been Figure S6; (6) on page 511 of the original main

text, all citations for Figure S7 were incorrectly cited as Figure S5; (7)

and in Figure 3 of the main text, panels A and B were incorrectly

labeled-all instances of the label ‘‘Starve’’ should have read ‘‘IFN-g.’’

See the Correction in the October 26th issue for further details.
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