
Discrete Mathematics 229 (2001) 3–27
www.elsevier.com/locate/disc

Faster exact algorithms for hard problems:
A parameterized point of view(

Jochen Alber, Jens Gramm, Rolf Niedermeier ∗

Wilhelm-Schickard-Institut f�ur Informatik, Universit�at T�ubingen, Sand 13,
D-72076 T�ubingen, Germany

Abstract

Recent times have seen quite some progress in the development of ‘e�cient’ exponential-time
algorithms for NP-hard problems. These results are also tightly related to the so-called theory
of �xed parameter tractability. In this incomplete, personally biased survey, we reect on some
recent developments and prospects in the �eld of �xed parameter algorithms. c© 2001 Elsevier
Science B.V. All rights reserved.

Keywords: NP-complete problems; Parameterized complexity; Fixed parameter tractability;
W -hierarchy; Exact algorithms

1. Introduction

How to cope with computational intractability? Several methods to deal with this
problem have been developed: approximation algorithms [7,57] average case analysis
[59], randomized algorithms [67], and heuristic methods [66]. All of them have their
drawbacks, such as the di�culty of approximation, lack of mathematical tools and
results, limited power of the method itself, or the lack of provable performance guar-
antees at all. Clearly, the direct way of attacking NP-hard problems is in providing
deterministic, exact algorithms. However, in this case, one has to deal with exponen-
tial running times. Currently, there is an increasing interest in faster exact solutions for
NP-hard problems. In particular, performance bounds are to be proven. Despite their
exponential running times, these algorithms may be interesting from a theoretical as

(Parts of this work are an updated and revised version of the invited paper ‘Some prospects for
e�cient �xed parameter algorithms’ of the third author in the proceedings of the 25th Conference on
Current Trends in Theory and Practice of Informatics (SOFSEM’98), Springer, Lecture Notes in Computer
Science, Vol. 1521, pp. 168–185, held in Jasna, Slovakia, November 21–27, 1998. This work is performed
within the ‘PEAL’ project (Parameterized complexity and Exact ALgorithms), supported by the Deutsche
Forschungsgemeinschaft (NI-369=1-1).
∗ Corresponding author.
E-mail addresses: alber@informatik.uni-tuebingen.de (J. Alber), gramm@informatik.uni-tuebingen.de
(J. Gramm), niedermr@informatik.uni-tuebingen.de (R. Niedermeier).

0012-365X/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0012 -365X(00)00199 -0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82027128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4 J. Alber et al. / Discrete Mathematics 229 (2001) 3–27

well as a practical point of view. With respect to the latter, note that for some appli-
cations, really exact solutions are needed or the input instances are of modest size, so
that exponential running times can be tolerated.
Parameterized complexity theory, whose cantus �rmus can be characterized by the

words ‘not all forms of intractability are created equal’ [32], is another proposal on
how to cope with computational intractability in some cases. In a sense, so-called ‘�xed
parameter algorithms’ form a variant of exact, exponential-time solutions mainly for
NP-hard problems. This is the basic subject of this paper and some related survey
articles [33,34,80].
Many hard computational problems have the following general form: given an object

x and a positive integer k, does x have some property that depends on k? For instance,
the NP-complete VERTEX COVER problem is: given an undirected graph G = (V; E) and
a positive integer k, does G have a vertex cover of size at most k? Herein, a vertex
cover is a subset of vertices C ⊆V such that each edge in E has at least one of its
endpoints in C. In parameterized complexity theory, k is called the parameter. In many
applications, the parameter k can be considered to be ‘small’ in comparison with the
size |x| of the given object x. Hence, it may be of high interest to ask whether these
problems have deterministic algorithms that are exponential only with respect to k and
polynomial with respect to |x|.
The basic observation of parameterized complexity, as chiey developed by Downey

and Fellows [32], is that for many hard problems, the seemingly inherent ‘combinatorial
explosion’ really can be restricted to a ‘small part’ of the input, the parameter. So,
for instance, VERTEX COVER allows for an algorithm with running time O(kn + 1:271k)
[24,73], where the parameter k is a bound on the maximum size of the vertex cover set
we are looking for and n is the number of vertices of the given graph. The best known
‘non-parameterized’ solution for VERTEX COVER is due to Robson [81]. He showed that
INDEPENDENT SET and, thus, VERTEX COVER can be solved in time O(1:211n). However,
for k60:79 n, the above-mentioned �xed parameter solution turns out to be better.
Moreover, note that in several applications k.n is a natural assumption, underpinning
the qualities of �xed parameter solutions further.
In what follows, we assume the reader to be familiar with basic notions from al-

gorithms and complexity as, e.g., provided by the text books [28,45,65,76]. The aim
of this work is not to list as many parameterized problems as possible together with
their ‘�xed parameter solutions’, but to give a, in a sense, ‘personally biased’ view on
current research including open problems.
The paper is structured as follows. In the next section, we very briey provide a

general overview of some main topics and ideas of parameterized complexity theory.
Moreover, we take a closer look at the concept of ‘�xed parameter tractability’ and
also the critical points in it. Thus, we will have the ground for the rest of the paper.
In Sections 3–6, we sketch some results and challenges in the �elds of graph theory,
VLSI design, computational biology, and logic, thus showing the richness of the �eld
for applying �xed parameter techniques. The idea here is to present some fundamental
results, ideas, and observations by examples, without even trying to give a complete

J. Alber et al. / Discrete Mathematics 229 (2001) 3–27 5

account of the whole �eld. Each of these sections contains two subsections, the �rst
of which providing some known results and the second one presenting some possible
challenges for future research. Finally, in Section 7 we discuss the so far relatively ne-
glected �eld of implementing �xed parameter algorithms. We end the paper by drawing
some general conclusions and prospects for future research.

2. A crash course in parameterized complexity

We briey want to sketch some complexity theoretical aspects for parameterized
problems. For a detailed and complete exposition we refer to the monograph of Downey
and Fellows [32]. The focus of this section, however, lies on the practical relevance
of �xed parameter tractability.

2.1. Some theory

Given an undirected graph G = (V; E) with vertex set V , edge set E and a positive
integer k, the NP-complete vERTEX COVER problem is to determine whether there is a
subset of vertices C ⊆V with k or fewer vertices such that each edge in E has at
least one of its endpoints in C. VERTEX COVER is �xed parameter tractable: There are
algorithms solving it in time less than O(kn + 1:3k) [24,73,72]. By way of contrast,
consider the also NP-complete CLIQUE problem: Given an undirected graph G = (V; E)
and a positive integer k, CLIQUE asks whether there is a subset of vertices C ⊆V with
k or fewer vertices such that C forms a clique by having all possible edges between
the vertices in C. CLIQUE appears to be �xed parameter intractable: It is not known
whether it can be solved in time f(k)nO(1), where f might be an arbitrarily fast
growing function only depending on k [32]. Thus, in some sense, the handling of
the parameter seems to be more sophisticated for the CLIQUE problem compared to the
VERTEX COVER problem. Moreover, unless P=NP, the well-founded conjecture is that no
such algorithm exists. The best-known algorithm solving CLIQUE runs in time O(nck=3)
[70], where c is the exponent on the time bound for multiplying two integer n × n
matrices (currently best known, c=2:38, see [27]). Note that O(nk) time is trivial. The
decisive point is that k appears in the exponent of n, and there seems to be no way
‘to shift the combinatorial explosion only into k’, independent from n [32–34,80].
The observation that NP-complete problems like VERTEX COVER and CLIQUE behave

completely di�erently in a ‘parameterized sense’ lies at the very heart of parameterized
complexity, a theory pioneered by Downey and Fellows and some of their co-authors
[32]. In this paper, we will mainly concentrate on the world of �xed parameter tractable
problems as, e.g., exhibited by VERTEX COVER. Hence, here we only briey sketch some
very basics from the theory of parameterized intractability in order to provide some
background on parameterized complexity theory and the ideas behind it. For many
further details and an additional discussion, we refer to the literature, e.g., [32–34,80].

6 J. Alber et al. / Discrete Mathematics 229 (2001) 3–27

Attempts to prove nontrivial, absolute lower bounds on the computational complexity
of problems have made relatively little progress [16]. Hence, it is not surprising that up
to now there is no proof that no f(k)nO(1) time algorithm for CLIQUE exists. In a more
complexity theoretical language, consider the class of parameterized problems that can
be solved in deterministic time f(k)nO(1), called FPT. This can be rephrased by saying
that it is unknown whether CLIQUE ∈ FPT. The complexity class FPT is called the set
of �xed parameter tractable problems. Analogously to classical complexity theory,
Downey and Fellows developed some way out of this quandary by providing a com-
pleteness program. However, the completeness theory of parameterized intractability
involves signi�cantly more technical e�ort. We very briey sketch some integral parts
of this theory in the following.
To start with a completeness theory, we �rst need a reducibility concept: Let L; L′ ⊆

�∗ ×N be two parameterized languages.1 For example, in the case of CLIQUE, the �rst
component is the input graph coded over some alphabet � and the second component
is the positive integer k, that is, the parameter. We say that L reduces to L′ by a
standard parameterized m-reduction if there are functions k 7→ k ′ and k 7→ k ′ from N
to N and a function (x; k) 7→ x′ from �∗ ×N to �∗ such that

(1) (x; k) 7→ x′ is computable in time k ′|x|c for some constant c and
(2) (x; k) ∈ L i� (x′; k ′) ∈ L′.
Notably, most reductions from classical complexity turn out not to be parameterized

[32]. For instance, the well-known reduction from INDEPENDENT SET to VERTEX COVER,
which is given by letting G′ = G and k ′ = |V | − k for a graph instance G = (V; E)
(see [76]), is not a parameterized one. This is due to the fact that the reduction
function of the parameter k 7→ k ′ strongly depends on the instance G itself, hence
contradicting the de�nition of a parameterized m-reduction. However, the reductions
from INDEPENDENT SET to CLIQUE and the other way round, which are obtained by simply
passing the original graph over to the complementary one for k ′ = k, actually turn out
to be parameterized ones. Therefore, these problems are of comparable di�culty in
terms of parameterized complexity.
Now, the ‘lowest class of parameterized intractability’, so-called W [1], can be de�ned

as the class of languages that reduce to the so-called SHORT NONDETERMINISTIC TURING

MACHINE ACCEPTANCE problem (also known as the k-STEP HALTING problem) [32]. Here,
we want to determine for an input consisting of a nondeterministic Turing machine M
and a string x, whether M has a computation path accepting x in at most k steps. In
some sense, this is the parameterized analogue to the NONDETERMINISTIC TURING MACHINE
ACCEPTANCE problem — the basic generic NP-complete problem in classical complexity
theory. Some more naturally de�ned problems being W [1]-complete are the CLIQUE

and the INDEPENDENT SET problem. Note that a parameterized m-reduction from one of

1 In most of the cases it is natural to have positive integers as a parameter. However, in some cases di�erent
structures appear as parameter (e.g., a graph as in the GRAPH MINOR ORDER TESTING problem [32]). Here, we
de�ne a parameterized language to be a language in �∗ × �∗.

J. Alber et al. / Discrete Mathematics 229 (2001) 3–27 7

these problems to VERTEX COVER would lead to a collapse of the classes W [1] and
FPT. Downey and Fellows provide an extensive list of many more W [1]-complete
problems [32].
As a matter of fact, a whole hierarchy of parameterized intractability can be de�ned,

W [1] only being the lowest level. In general, the classes W [t] are de�ned based on
‘logical depth’ (i.e., the number of alternations between unbounded fan-in And- and
Or-gates) in boolean circuits. For instance, the well-known DOMINATING SET problem,
which is NP-complete, is known to be W [2]-complete when taking the size of the
dominating set as a parameter [32]. We omit any further details in this direction and
just refer to the monograph of Downey and Fellows [32].
We also want to mention that Flum and Grohe recently came up with some close

connections between parameterized complexity theory and a general logical framework
of descriptive complexity theory [43,51]. They study the parameterized complexity
of various model-checking problems through the syntactical structure of the de�ning
sentences. Moreover, they provide a descriptive characterization of the class FPT, as
well as an approach of how to characterize classes of intractability by syntactical means.
There exists a very rich structural theory of parameterized complexity, somewhat

similar to classical complexity. Observe, however, that in some respects parameterized
complexity appears to be, in a sense, ‘orthogonal’ to classical complexity: For instance,
the so-called problem of computing the V-C dimension from learning theory [13,77],
which is not known (and not believed) to be NP-hard, is W [1]-complete [30,31].
Thus, although in the classical sense it appears to be easier than VERTEX COVER (which
is NP-complete), the opposite appears to be true in the parameterized sense, because
VERTEX COVER is in FPT.
From a practical point of view, it is probably su�cient to distinguish between

W [1]-hardness and membership in FPT. Thus, for an algorithm designer not being
able to show �xed-parameter tractability of a problem, it may be su�cient to give
a reduction from, e.g., CLIQUE to the given problem using a standard parameterized
m-reduction. This then gives a concrete indication that, unless P = NP, the problem is
unlikely to allow for an f(k)nO(1) time algorithm. One piece of circumstantial evidence
for this is the result showing that the equality of W [1] and FPT would imply a time
2o(n) algorithm for the NP-complete 3-CNF-SAT problem [32], which would mean a
breakthrough in computational complexity theory.

2.2. Interpreting �xed parameter tractability

The remainder of this paper concentrates on the world inside FPT and the potential
it carries for improvements and future research. We therefore �nish this section by
an interpretation of the class FPT under some application aspects. Note that in the
de�nition of FPT the function f(k) may take unreasonably large values, e.g.,

22
22
22
2k

:

8 J. Alber et al. / Discrete Mathematics 229 (2001) 3–27

Table 1
Comparing the e�ciency of various VERTEX COVER algorithms with respect to the exponential terms involved

k f(k) = 2k f(k) = 1:292k f(k) = 1:271k

10 ≈ 103 ≈ 13 ≈ 11
20 ≈ 106 ≈ 170 ≈ 120
30 ≈ 109 ≈ 2180 ≈ 1330
40 ≈ 1012 ≈ 2:8× 104 ≈ 1:5× 104

50 ≈ 1015 ≈ 3:7× 105 ≈ 1:6× 105

75 ≈ 1022 ≈ 2:2× 108 ≈ 6:5× 107

100 ≈ 1030 ≈ 1:3× 1011 ≈ 2:6× 1010

500 ≈ 10150 ≈ 4:2× 1055 ≈ 1:2× 1052

Thus, showing that a problem is a member of the class FPT does not necessarily
bring along an e�cient algorithm (not even for small k). In fact, many problems
that are classi�ed �xed parameter tractable still wait for such e�cient, hence practical
algorithms. In this sense, we strongly have to distinguish two di�erent aspects of �xed
parameter tractability: The theoretical part which consists in classifying parameterized
problems along the W -hierarchy (i.e., proving membership in FPT) and the algorithmic
component of actually �nding e�cient algorithms for problems inside the class FPT.
The Graph Minor Theorem by Robertson and Seymour [32, Chapter 7], for example,

provides a great tool for the classi�cation of graph problems. It states that, for a given
family of graphs F which is closed under taking minors, membership of a graph G
in F can be checked by analyzing whether a certain �nite ‘obstruction set’ appears
as a minor in G. Moreover, the GRAPH MINOR ORDER TESTING problem is in FPT [32], or,
more precisely, for a �xed graph G of size n, there is an algorithm with running time
O(f(|H |)n3) that decides whether a graph H is a minor or not. As a matter of fact, the
set Fk of vertex covers of size 6k are closed under taking minors, hence there exists a
�nite obstruction set Ok for Fk . The above method then yields the existence of a �xed
parameter algorithm for VERTEX COVER. However, in general, the function f appearing
in the GRAPH MINOR ORDER TESTING algorithm grows fast and the constants hidden in the
O-notation are huge. Moreover, �nding the obstruction set in the Robertson–Seymour
Theorem, in general, is highly nonconstructive. Thus, the above mentioned method may
only serve as a classi�cation tool.
Taking into account that the theory of �xed parameter tractability should be under-

stood as an approach to cope with inherently hard problems, it is necessary to aim
for practical, e�cient �xed parameter algorithms. In the case of VERTEX COVER, for ex-
ample, it is fairly easy to come up with an algorithm of running time O(2kn) using
a simple search tree strategy. The base of the exponential term in k was further im-
proved, now below 1:3 (see [24,72,86]). Table 1 relates the size of the exponential
term for these base values. From this table we can conclude that even seemingly minor
improvements in the exponential growth of f can lead to signi�cant changes in the
running time and, moreover, enlarge the range of suitable values k for which the given
algorithm guarantees small running time.

J. Alber et al. / Discrete Mathematics 229 (2001) 3–27 9

In order to address this issue of slowly growing e�cient functions f in a more
detailed manner, Downey and Fellows [32] introduced so-called klam values. The klam
value of a �xed parameter algorithm is the largest value of k such that the function f
occurring in the algorithm’s running time ful�lls f(k)6U , where U is some reasonable
absolute bound on the maximum number of steps of any computation, e.g., U = 1020.
For example, using U=1020, the current klam value for VERTEX COVER is approximately
140. Unfortunately, for few parameterized problems klam values of comparable high
quality are known. Hence, an important algorithmic challenge concerning FPT problems
is to provide klam values as large as possible.
In this context, to demonstrate the problematic nature of the comparison ‘�xed pa-

rameter tractable’ versus ‘�xed parameter intractable’, let us compare the functions
22

k
and nk = 2(k log n). The �rst refers to �xed parameter tractability, the second to in-

tractability. It is easy to verify that assuming input sizes n in the range from 103 up
to 1015, the value of k where 22

k
starts to exceed nk is in the small range {6; 7; 8; 9}.

A striking example in this direction is that of computing treewidth. For constant k,
there is a famous result giving a linear-time algorithm to compute whether a graph
has treewidth at most k [14]. However, this algorithm su�ers from enormous constant
factors (unless k63) and so the O(nk+1) algorithm [5] is more practical. Hence, this
shows how careful one has to be with the term �xed parameter tractable, since, in
practice with reasonable input sizes, a �xed parameter intractable problem can easily
turn out to have a still more ‘e�cient’ solution than a �xed parameter tractable one.

3. Graph problems

Graph theory and related computational problems so far appear to be among the
most fertile grounds for the study of parameterized problems.

3.1. Some results

3.1.1. Vertex cover
Given an undirected graph G=(V; E) with n vertices and a positive integer k, is there

a subset C ⊆V of vertices such that each edge in E has at least one endpoint in C?
VERTEX COVER has seen quite a long history in the development of FPT algorithms [32,
p. 5]. Surprisingly, a lot of papers published �xed parameter results on VERTEX COVER

that are worse than the O(2kn) time bound that directly follows from the elementary
search tree method, e.g., described in Mehlhorn’s text book on graph algorithms [65,
p. 216]. The simple observation, which is also used in the factor 2 approximation
algorithm for VERTEX COVER, is as follows: Each edge {a; b} has to be covered. Hence,
either a or b (or both) has to be in the cover. Thus, building a search tree where we
branch as either bringing a or b in the cover, deleting the respective vertex together
with its incident edges and continuing recursively with the remaining graph by choosing
the next edge (which is arbitrary) solves the problem. The search tree, which has

10 J. Alber et al. / Discrete Mathematics 229 (2001) 3–27

depth k, has 2k nodes, each of which can be processed in linear time using suitable
data structures. In recent times, there has been very active research on lowering the
size of the search tree [9,24,34,72,86], the best known result now being 1:271k [24].
The basic idea behind all of these papers is to use two fundamental techniques of
parameterized complexity, that is, bounded search trees and reduction to problem
kernel. To improve the search tree size, intricate case distinctions with respect to the
degree of graph vertices were designed. As to reduction to problem kernel, the idea
is as follows: Assume that you have a graph vertex v of degree k + 1, that is, k + 1
edges have endpoint v. Then to cover all these edges, one has to either bring v or all
its neighbors into the vertex cover. In the latter case, however, the vertex cover then
would have size at least k+1 — too much if we are only interested in covers of size at
most k. Hence, without branching we have to bring v and all other vertices of degree
greater than k into the cover. From this observation, one can easily conclude that after
doing this kind of preprocessing, the remaining graph may consist of O(k2) vertices.
A well-known theorem of Nemhauser and Trotter [69,79] can be used to construct an
improved reduction to problem kernel resulting in a graph of only 2k vertices [24].
Up to now, research concentrated on UNWEIGHTED VERTEX COVER. However, very re-

cently, �rst results were also obtained for three variants of WEIGHTED VERTEX COVER [75].
Here, by way of contrast to UNWEIGHTED VERTEX COVER, each vertex has some positive
number as weight and we are looking for a cover such that the sum of the weights of
the vertices in the cover is at most k. The three variants are:

(1) INTEGER-WVC, where the weights are arbitrary positive integers,
(2) REAL-WVC, where the weights are real numbers ¿1, and
(3) GENERAL-WVC, where the weights are positive real numbers.

GENERAL-WVC easily turns out to be �xed parameter intractable unless P=NP, whereas
REAL-WVC can be solved in time O(kn+1:3954k) and INTEGER-WVC as fast as UNWEIGHTED
VERTEX COVER [75]. To derive the bounds for REAL-WVC is clearly the most important
result. In addition, if we modify the REAL-WVC problem such that k is not the weight of
the vertex cover we are looking for, but the number of vertices in a minimum weight
vertex cover, then also the running time O(kn+ 1:3954k) can be obtained.

3.1.2. Planar dominating set
The DOMINATING SET problem is, given a graph G = (V; E) and a positive integer

k, is there a set of k vertices V ′ ⊆V with the property that every vertex of G either
belongs to V ′ or has a neighbor in V ′? DOMINATING SET is W [2]-complete [32] and, thus,
considered to be �xed parameter intractable. For planar graphs, however, Downey and
Fellows [31,32] gave an O(11kn) bounded search tree algorithm. Note that, in contrast
to VERTEX COVER, for PLANAR DOMINATING SET it is not obvious how to construct such a
bounded search tree. The approach by Downey and Fellows is based on a clever graph
theoretical observation (see [32, Lemma 3.3]). Unfortunately, even for a modest k, the
exponential term 11k gets enormously big. Hence, as in the VERTEX COVER case, one
would be very interested in lowering the exponential term.

J. Alber et al. / Discrete Mathematics 229 (2001) 3–27 11

A completely di�erent approach, which does not rely on a bounded search tree
strategy, was presented recently [2]. There, it is shown that PLANAR DOMINATING SET

can be solved in time 3O(
√
k)n. Besides, �xed parameter algorithms of similar running

times can be obtained for a whole series of related problems on planar graphs, such as
the DOMINATING SET WITH PROPERTY P (which includes INDEPENDENT DOMINATING SET, TOTAL
DOMINATING SET, PERFECT CODE), or the so-called FACE COVER problem (for details we refer
to [2] and references therein).
The key in order to obtain these results is a — to some extent unexpected —

theorem on the relation of the domination number (G) (which is the minimum size
of a dominating set admitted by G) and the treewidth tw(G) of a planar graph: It
can be proven that tw(G) = O(

√
(G)). Moreover, this not being a pure existence

theorem, one can show that a corresponding tree decomposition can be constructed in
time O(

√
(G)n). The method is based on ‘small separator’ techniques (see [2] for

details).
The overall algorithm then consists of two stages: the �rst stage �nds the tree decom-

position of bounded width and the second stage solves the problem using well-known
dynamic programming approaches on the tree decomposition (see, e.g., [15,87,88]).
This two-stage strategy serves as a common tool to design �xed parameter algorithms
for a variety of di�erent graph theoretical problems. However, in general, the �rst
stage of this type of algorithms, i.e., the problem to determine whether a graph has
treewidth bounded by some constant ‘ and, if so, producing a corresponding tree de-
composition, has, at the current state of research, no algorithmically feasible solution.
Even though the problem is proven to be �xed parameter tractable, the constants in
the algorithm presented in [14] are too large for practical purposes. In this sense, the
PLANAR DOMINATING SET plays an exceptional role, where a tree decomposition of small
width, namely O(

√
(G)), can be found quickly, namely in O(

√
(G)n) time with

small hidden constants in the O-notation.
The resulting algorithm presented in [2] has time complexity 3O(

√
k)n. Although the

constant hidden in the O-notation turns out to be 6
√
34, and thus, at �rst glance, the

practical usefulness of this algorithm is uncertain, the point is that we have a signi�cant
asymptotic improvement. From a theoretical point of view, this means more than ‘only’
lowering the constant base of the exponential term. To our knowledge, this is the �rst
non-trivial result for an NP-hard problem which admits a �xed parameter algorithm
with a sublinear term in the exponent of the running time. It is not known, whether
there is a similar result for the general VERTEX COVER problem (note that in the case
of PLANAR VERTEX COVER again a sublinear expression in the exponential term can be
obtained using the techniques presented in [2]).

3.1.3. Minimum �ll-in
The NP-complete MINIMUM FILL-IN problem asks whether a graph can be triangulated

by adding at most k edges. Kaplan et al. [61] developed a search-tree based O(24km)
time algorithm (which improves to O((4k =(k +1)3=2)(m+ n)) due to a re�ned analysis
by Cai [22]) and a more intricate O(k2nm+ k624k) algorithm for the problem. Here, n

12 J. Alber et al. / Discrete Mathematics 229 (2001) 3–27

denotes the number of vertices and m denotes the number of edges in the graph. This
also illustrates that it can be very important (and di�cult!) to make the exponential
term ‘additive’ (as in the second case) instead of only ‘multiplicative’ (as in the �rst
case). In addition, Kaplan et al. show that PROPER INTERVAL GRAPH COMPLETION (motivated
by computational biology) and STRONGLY CHORDAL GRAPH COMPLETION, both NP-hard, are
�xed parameter tractable (see [61] for details).

3.1.4. Longest path or cycle
Finally, let us mention in passing another promising method yielding fast �xed pa-

rameter algorithms for certain graph problems: the so-called technique of color coding.
Using this technique, Alon et al. [3] came up with an 2O(k)|E| log |V | time algorithm
for the LONGEST PATH problem in a graph G=(V; E). Here, we ask for a simple path of
length k−1 in G, where ‘simple’ means that each vertex appears at most once on this
path. The approach by Alon et al. is based on the idea of hashing and can be sketched
as follows: Fix an arbitrary coloring (that is, a hash function) of G using k colors.
Then, making use of an algorithm based on dynamic programming, it is relatively
simple to obtain an O(2k |E|) time algorithm that �nds a path of length k, such that
all vertices along the path have distinct colors. Such a path is called colorful. Now,
each colorful path clearly is simple. Conversely, in order to come up with a simple
path, the above algorithm has to be repeated using su�ciently many di�erent colorings.
Thus, the hard part of this approach consists in showing that the size of the family
of colorings that are necessarily needed can be kept small. The mainly combinatorial
arguments for the construction of such a (so-called) k-perfect family of hash functions
can be found in Schmidt and Siegel [82]. Note that the related problem of �nding
simple cycles of length k can be attacked with similar methods.

3.2. Some challenges

(1) Besides still asking for improvements of general VERTEX COVER, can, e.g., VERTEX
COVER for planar graphs be solved much faster? Possible approaches might arise
from the general techniques presented in [2], combined with results of Baker [8]
and the known algorithms for the general VERTEX COVER problem.

(2) How ‘practical’ can the solutions for PLANAR DOMINATING SET be made? This question
addresses two issues: On the one hand, it is still unclear how to obtain an O(c

√
kn)

time algorithm with some reasonable constant c. On the other hand, it might be
of high value to lower the base of the exponential term in the O(11kn) search
tree algorithm presented by Downey and Fellows. Also, does PLANAR DOMINATING
SET admit a small linear size problem kernel which could be used to apply the
‘interleaving techniques’ in [73]?

(3) The exponential term 4k for MINIMUM FILL-IN still should be improved, and the same
with the other problems mentioned in [61].

(4) How general and practical is the technique of COLOR CODING? Can it also be applied
to other problems to show their �xed parameter tractability?

J. Alber et al. / Discrete Mathematics 229 (2001) 3–27 13

(5) In the t-VERTEX COVER problem one seeks to cover t instead of all edges [20,58].
What is the parameterized complexity of t-VERTEX COVER?

4. VLSI design problems

VLSI design is one more attractive �eld for parameterized complexity studies [32,40].
Interestingly, reduction to problem kernel, a basic parameterized technique, was earlier
used in algorithms for VLSI design [35]. Due to our limited insight and knowledge,
we only mention very few aspects of �xed parameter algorithms for VLSI design.

4.1. Some results

4.1.1. Spare allocation for recon�gurable VLSI
Put concisely, this ‘most widely used approach to recon�gurable VLSI’ uses spare

rows and columns to tolerate failures in rectangular arrays of identical computational
elements, which may be as simple as memory cells or as complex as processor units
[62]. If a faulty cell is detected, the entire row or column is replaced by a spare
one. The underlying problem can be easily modeled in a graph theoretical setting:
given a bipartite graph G = (V1; V2; E) and two positive integers k1 and k2, are there
two subsets C1⊆V1 and C2⊆V2 of sizes |C1|6k1 and |C2|6k2 such that each edge
in E has at least one endpoint in C1 ∪ C2? The existence of two parameters and
two vertex sets makes this problem, called CONSTRAINT BIPARTITE VERTEX COVER (CBVC),
quite di�erent from the original VERTEX COVER problem. Thus, whereas the classical
VERTEX COVER (with only one parameter!) restricted to bipartite graphs is solvable in
polynomial time (because there is a close relation to the polynomial-time solvable
maximum matching problem for bipartite graphs), by a reduction from CLIQUE it has
been shown that CBVC is NP-complete [62]. Recently, to our knowledge, the �rst
nontrivial �xed parameter algorithm for CONSTRAINT BIPARTITE VERTEX COVER was given,
running in time O(1:3999k1+k2 + (k1 + k2)n) [42]. To achieve the result, well-known
methods from parameterized complexity were combined, namely reduction to problem
kernel and bounded search trees, with a new technique for restricting the size of the
search tree by deferring some work to a third, polynomial-time phase, but nevertheless
counting the parameter reduction as kind of bonus when processing the search tree and
hence reducing its size.

4.1.2. Cutwidth
This is another problem originating in VLSI design [32,40]. A layout of a graph

G = (V; E) is a one-to-one function f :V → {1; : : : ; |V |}. If we regard [1; |V |] as an
interval on real numbers and consider � ∈ [1; |V |], then we call the number of edges
{u; v} ∈ E with f(u)¡� and f(v)¿� the value of the cut at �. The cutwidth of a
layout f of G then is the maximum of the value of the cut over all �. The CUTWIDTH

problem for G is to �nd the minimum of the cutwidths of all possible layouts of G. The

14 J. Alber et al. / Discrete Mathematics 229 (2001) 3–27

decision version of this problem is NP-complete [46]. In the parameterized version, for
a given positive integer k we ask whether a given graph has cutwidth 6k. It is known
that CUTWIDTH is �xed parameter tractable [32], but the bounds on the exponential term
seem to be huge.

4.1.3. Bandwidth
The classical problem from VLSI design, BANDWIDTH, is W [t]-hard for all t [32] and

thus appears to be �xed parameter intractable. The bandwidth of a layout f of G is the
maximum of |f(u)−f(v)| over all edges {u; v} ∈ E. The bandwidth of G then is the
minimum bandwidth of all possible layouts of G. The decision version of this problem
is NP-complete [45]. Again, the parameterized version asks, given a graph G = (V; E)
and a positive integer, does G have bandwidth 6k? Despite of its great practical
importance, bandwidth seems to be a problem where parameterized complexity studies
cannot help in general. A recent survey paper [38] sketches various approaches how
to cope with the hardness of bandwidth, rising many open questions also concerning
the development of exact algorithms.

4.2. Some challenges

(1) There is a variant of CONSTRAINT BIPARTITE VERTEX COVER with three instead of two
parameters, motivated by recon�gurable programmable logic arrays [55]. This prob-
lem deserves parameterized complexity investigations similar to that undertaken for
CBVC.

(2) The practical validation of the proposed algorithm for CONSTRAINT BIPARTITE VERTEX
COVER, which is based on a complicated case distinction, remains to be done. In
particular, average case analyses, also based on special input instances (cf. [84]),
are desirable.

(3) Give concrete, small bounds for the exponential term in a �xed parameter algorithm
for CUTWIDTH.

(4) Are there practically relevant, special graph classes where BANDWIDTH is �xed
parameter tractable (with a ‘reasonable’ running time)?

(5) Dive into the ocean of VLSI design literature and �nd new candidates for pa-
rameterized complexity studies, e.g., one candidate might be the VIA MINIMIZATION

problem and its several variants [21,26,68,83].

5. Computational biology problems

Computational biology, a �eld still in its infancy, seems to contain a lot of prob-
lems suitable for parameterized complexity studies. A very algorithmic area of re-
search within computational biology is phylogenetics, in which an important goal is
to construct an evolutionary tree (also called phylogenetic tree) for a given set of
species. Besides the context of phylogenetics, where we consider the problems PERFECT

J. Alber et al. / Discrete Mathematics 229 (2001) 3–27 15

PHYLOGENY, MAST, and GENE DUPLICATION, we also present examples from two other
areas: From genome rearrangement, dealing with the comparison of genomes having a
known set of genes, and from the comparison of RNA and protein sequences, in which
an essential question is to incorporate the three-dimensional structure into the models.

5.1. Some results

5.1.1. Perfect phylogeny
Agarwala and Fern�andez-Baca [1,32] approach the question of building a phyloge-

netic tree for a given set of species in the following model. For a given set C of m
characters they allow a character c∈C to take one state of a �xed set of character
states Ac. These characters may, e.g., represent properties of single organisms or the
positions in its DNA sequence with the nucleotide bases being the character states. In
this setting, we are given a set S of n species, for which we intend to construct a tree.
Each species s ∈ S is represented by a vector of character states s ∈ A1×· · ·×Am. The
PERFECT PHYLOGENY problem is then to determine whether there is a tree T with nodes
V (T)⊆A1× · · · ×Am, where each leaf of the tree is a species. In addition, we require
for every c ∈ C and every j ∈ Ac, the set of all nodes u of the tree with u’s character
c being in state j to induce a subtree. Downey and Fellows [32] refer to this problem
as BOUNDED CHARACTER STATE PERFECT PHYLOGENY. This indicates that the parameter here
is the maximum number of character states r = maxc∈C |Ac|. Using a dynamic pro-
gramming approach and building perfect phylogenies from bottom up, Agarwala and
Fern�andez-Baca present an O(23r(nm3 +m4)) time algorithm, which was improved by
Kannan and Warnow to O(22rnm2) [60].
A generalization of PERFECT PHYLOGENY is the l-PHYLOGENY problem in which the

question is to construct a tree T such that, given the �xed integer l, each character
state does not induce more than l connected components in T . A parameterized analysis
of the problem was started by Goldberg et al. [46] (also see for more details on the
de�nition).

5.1.2. MAST
For a given set of species, we may obtain several phylogenetic trees, e.g., by building

trees based on di�erent gene families. These so-called gene trees are a good hypothesis
for a species tree, i.e., the evolutionary relationship of the species, if they are all the
same. If, however, the trees do not agree for all species, the following problem tries to
�nd those species for which they do. Given a set of rooted trees T1; : : : ; Tr with the leaf
set of each Ti labeled one-to-one with the set of species X and given a positive integer
k, the MAXIMUM AGREEMENT SUBTREE PROBLEM (MAST) is to determine whether there is
a subset S ⊆X of size at most k such that all trees Ti restricted to the leaf set X − S
are the same (up to isomorphism and ignoring nodes of degree two) for i = 1; : : : ; r.
Therefore, the parameter k is the number of species we are willing to exclude from
our analysis.

16 J. Alber et al. / Discrete Mathematics 229 (2001) 3–27

Having three input trees of unbounded degree, the problem is NP-hard [4]. For input
trees with degree bounded by a constant d, it is solvable in polynomial-time O(rn3+nd)
[37]. A �xed parameter algorithm can be obtained as follows. Bryant [18] proposes to
consider triples of species and, for each triple, the possible topologies for a rooted tree
with three leaves. When several of these topologies arise among the given input trees,
the triple is called conicted and at least one of the three species has to be deleted
and to be in the set S. Using this idea, Downey et al. [34] give an O(3krn log n)
time solution for binary input trees. Independently of the input trees’ degree, we can
observe that a solution exists i� there is a set, namely S, of at most k species such
that each conicted triple contains one of these species. In this way, MAST can be
reduced to the 3-HITTING SET problem [19,34]. Here, the problem is, given a collection C
of subsets of size three of a �nite set X and a positive integer k, to determine a subset
S ⊆X with |S|6k so that S contains at least one element from each subset in C. This
problem is NP-complete. With a recent algorithm for 3-HITTING SET [71] using bounded
search trees and reduction to problem kernel, the MAST problem can be solved in
time O(2:270k + rn3).

5.1.3. Gene duplication
As we have seen in the previous problem, when considering several gene families

for a set of species, the gene trees can di�er from the species tree. A way to explain the
contradictions in the trees is the possibility that genes are duplicated in the evolutionary
history and evolve independently. This observation motivates the following model to
infer a species tree from several, possibly contradictory gene trees, the GENE DUPLICATION
problem: Given a set of species and a set of trees (the gene trees) with their leaves
labeled from the species set, the question is, intuitively speaking, to �nd a tree (the
species tree) that requires a minimum number of gene duplications in order to explain
the given gene trees (refer to [39,85] for further details). Note that in this model we
count duplication events copying only one gene at a time. Stege [85] gives a �xed
parameter algorithm for GENE DUPLICATION, with the allowed number of duplications as
the parameter.
As a duplication event in evolutionary history copies a piece of DNA with possibly

many genes on it, Fellows et al. [39] study the MULTIPLE GENE DUPLICATION problem. In
contrast to GENE DUPLICATION, here, one duplication event copies a set of genes. With
the upper bound on the number of duplications as parameter, they show even the easier
version to be W [1]-hard where we are also given the species tree and only ask for the
minimum number of required duplications.

5.1.4. Genome rearrangement
Knowing the succession of genes on a chromosome, a way to measure the similarity

of two corresponding chromosomes from di�erent organisms with the same set of genes,
is to count the number of mutation events required to obtain one succession of genes
from the other. Examples of such mutation events are, e.g., inverting a subsequence,

J. Alber et al. / Discrete Mathematics 229 (2001) 3–27 17

called reversal, or their deletion and insertion at another position, called transposition.
Reversals are the most common kind of these mutations. Restricting to them, the
comparison of two sequences of the same set of genes is modeled in the SORTING

BY REVERSALS problem: Given a permutation � of {1; 2; : : : ; n}, the question is to �nd
the minimum number of reversals we need to transform � into id. SORTING BY REVERSALS
is NP-complete [23]. Hannenhalli and Pevzner’s results [53], however, imply a �xed
parameter algorithm for the problem when parameterized by the number of reversals.
Another genome-level distance measure that was shown to be �xed parameter tractable

is the SYNTENIC DISTANCE [41]. In this model, a genome is given by k subsets of a set
of n genes. These subsets represent the chromosomes and the elements in a set repre-
sent the genes located on the chromosome. The mutation events in this model are the
union of two chromosome sets, the splitting of a chromosome set into two sets, and
the exchange of genes between two sets. Given two genomes G1 and G2, the SYNTENIC
DISTANCE problem is to compute the minimum number of mutation events needed to
transform G1 into G2. DasGupta et al. [29] show that computing the SYNTENIC DISTANCE
is NP-hard and �xed parameter tractable when parameterized by the distance.

5.1.5. Comparison of RNA and protein structure
The three-dimensional structure of RNA or protein sequences is considered to be

important for their function and for the degree of their evolutionary and functional
similarity. Therefore, it is important to �nd models which do incorporate this structure
when comparing sequences. An approach common for RNA sequences is to repre-
sent bonds between single bases by arcs between positions in the sequence, leading
to so-called annotated sequences. Considering these arcs when comparing two se-
quences, their longest common subsequence can be interpreted as a measure for sim-
ilarity not only on the sequence level, but also on the structural level. Evans [36]
proposes the following model, which takes as input two annotated sequences S1 and
S2 of length n and m, respectively. Thereby, crossing edges are allowed, in order to
represent three-dimensional structures. Further inputs are an integer l denoting the tar-
get length and an integer k denoting the cutwidth, i.e., the maximum number of arcs
crossing a position. The ARC-PRESERVING LONGEST COMMON SUBSEQUENCE problem is, in
this context, to determine whether there is a common subsequence in S1 and S2, which
preserves the arcs, is of length at least l and has cutwidth at most k. Evans points out
that with di�erent parameterizations the problem exhibits di�erent parameterized com-
plexity. It is W [1]-complete when the parameter is the target length l and the cutwidth
is not limited. If, however, we take the cutwidth k as the parameter without having a
target length, the problem is �xed parameter tractable: the algorithm for this variant
�nds the longest common subsequence in time O(9knm) [36].
A similar model to compare the three-dimensional structure of proteins is the CON-

TACT MAP OVERLAP problem described by Goldman et al. [47]. They give results showing
MaxSNP- and NP-hardness of the problem and identify special versions relevant in
practice that are solvable in polynomial time by dynamic programming. A parameter-
ized analysis of the problem is open.

18 J. Alber et al. / Discrete Mathematics 229 (2001) 3–27

5.2. Some challenges

(1) Can the parameterized analysis of l-PHYLOGENY started by Goldberg et al. [46] be
continued?

(2) Can the �xed parameter algorithm solving SORTING BY REVERSALS with the distance
as parameter be extended to also allow other mutation events, e.g., transpositions
and duplications?

(3) The analysis of protein structure is a tremendously important issue in computational
biology. With respect to the question of comparing two proteins, can we study the
parameterized complexity of CONTACT MAP OVERLAP [47] and identify parameters that
make the problem tractable?

(4) In Section 3.1, we mentioned the PROPER INTERVAL GRAPH COMPLETION problem rele-
vant in physical mapping. The problem asks whether a given graph can be turned
into a proper interval graph (de�ned in [61]) by adding at most k edges and is
shown to be �xed parameter tractable [61] for parameter k. What is the parameter-
ized complexity of the problem when we allow removing edges, adding vertices,
and=or removing vertices?

(5) The optimal alignment of two sequences [52] can usually be done in polynomial
time. The alignment of an arbitrary number of sequences is usually NP-complete.
In both cases we say ‘usually’, as these results depend on the model and the used
function to score an alignment. It would be interesting to survey the parameterized
complexity of multiple alignment in di�erent models.

6. Logic problems

Logic, seen in a broad sense, is another �eld of diverse problems to be attacked with
parameterized complexity methods. We basically present three types of logic problems:
the optimization problem MAXIMUM SATISFIABILITY, the ‘classical logic’ problem FALSIFIA-

BILITY FOR PURE IMPLICATIONAL FORMULAS, and the complexity of DATABASE QUERIES.

6.1. Some results

6.1.1. Maximum satis�ability
This is a problem especially well-known from the �eld of approximation algorithms

[7,57] and heuristic methods [11], having also important practical applications [54].
The input instance is a boolean formula in conjunctive normal form (CNF), and the
problem is to �nd a truth assignment that satis�es the maximum number of clauses.
The decision version of MAXIMUM SATISFIABILITY is NP-complete, even if the clauses have
at most two literals (so-called MAXIMUM 2-SATISFIABILITY) [45]. One of the major results
in theoretical computer science in recent times shows that if there is a polynomial time
approximation scheme for MAXIMUM SATISFIABILITY, then P = NP [6].

J. Alber et al. / Discrete Mathematics 229 (2001) 3–27 19

The natural parameterized version of MAXIMUM SATISFIABILITY requires an algorithm
to determine whether at least k clauses of a CNF formula F can be satis�ed. Assume
that F contains m clauses and n variables. For each F , there always exists a truth
assignment satisfying at least dm=2e clauses: simply pick any assignment — either
it does or its bitwise complement does. This can be checked in time O(|F |). For
this reason, Mahajan and Raman [64] introduced a more meaningful parameterization,
asking whether at least dm=2e+k clauses of a CNF formula F can be satis�ed. However,
the �rst parameterization still remains of interest since, from a ‘non-parameterized point
of view’, an algorithm with running time exponential in m with a small base for the
exponential factor can be of interest. Thus, we �rstly stick to this basic parameterization
and afterwards very briey deal with the ‘more meaningful’ parameterization.
Mahajan and Raman [64] presented an algorithm running in time O(|F |+1:6181kk2)

that determines whether at least k clauses of a CNF formula F are satis�able. This
algorithm uses a reduction to problem kernel as well as a bounded search tree. The
reduction to the problem kernel relies on the distinction between ‘large’ clauses (i.e.,
clauses containing at least k literals) and ‘small’ clauses (i.e., clauses containing less
than k literals). If F contains at least k large clauses, then it is easy to see that at least
k clauses in F can be satis�ed. Hence, the subsequent search tree method has only to
deal with small clauses. Observe that the size of the remaining ‘subformula of small
clauses’ can easily be bounded by O(k2). This is also owing to the fact that, if the
number of clauses in F is at least 2k, then, trivially, k clauses in F can be satis�ed.
Now the bounded search tree, here more appropriately called branching tree, appears
as follows. First, note that we can restrict ourselves to only considering variables that
occur both positively and negatively in F , because so-called ‘pure literals’ can always
be set true, always increasing the number of satis�ed clauses without any disadvan-
tage. The basic technique now is to pick one variable x occurring both positively and
negatively in F and then to ‘branch’ into two subformulas F[x] and F[�x], which arise
by setting x to true and false. Clearly, the size of such a branching tree can easily
be bounded by 2k . However, Mahajan and Raman [64] use a further trick based on
‘resolution’, leading to the above running time. Using many more, carefully designed
transformation and splitting rules for propositional formulas, the above result could be
improved to time complexity O(|F |+1:3995kk2) [74] and, based on this, even further
to O(|F | + 1:3803kk2) [10]. We only mention in passing that the parameterization of
MAXIMUM SATISFIABILITY requiring the satis�ability of at least dm=2e + k clauses is led
back to the case considered above by Mahajan and Raman, thus obtaining a time com-
plexity of O(|F |+1:61816kk2) ≈ O(|F |+17:9443kk2). Plugging in the above described
improvements [10], we immediately get O(|F |+ 1:38036kk2) ≈ O(|F |+ 6:9158kk2).
The special case of MAXIMUM SATISFIABILITY where each clause may contain at most

2 literals has received special attention [49,50]. Among other things, this is due to
the fact that important NP-complete graph problems such as MAXIMUM CUT and INDEPEN-

DENT SET can be reduced to special instances of MAXIMUM 2-SATISFIABILITY [25,64]. Not
surprisingly, the upper bounds for MAXIMUM 2-SATISFIABILITY are better than those for
the general case, for the time being, however, parameterized complexity studies seem

20 J. Alber et al. / Discrete Mathematics 229 (2001) 3–27

to fail in this context: In time LO(1) · 2m2=5 one can determine a maximum satisfying
assignment, where L is the total number of literal occurrences in the formula and m2
is the number of clauses of size two occurring in it [49]. This also holds for clauses
with positive integer weights. In an earlier paper [50], the parameterized bound 2k=2:73

for MAXIMUM 2-SATISFIABILITY has been proved. However, the above ‘unparameterized’
bound 2m2=5, where m2 is the number of 2-clauses, is better for all reasonable values
of k: the parameterized bound is better only when k¡0:55m2, while an assignment
satisfying 0:5m+0:25m2¿0:75m2 can be found in polynomial time [64]. It seems like
the idea of counting only 2-clauses does not work for parameterized bounds.

6.1.2. Falsi�ability problem for pure implicational formulas
The complexity of this problem was �rst studied by Heusch [56]. A Boolean formula

is in pure implicational form if it contains only positive literals and the only logical
connective being used is the implication. Heusch considered the special case when
all variables except at most one (denoted z) occur at most twice. This problem still
is NP-complete [56]. However, he proved that if the number of occurrences of z
is restricted to be at most k, then there is an O(|F |k) time algorithm for certifying
falsi�ability. Franco et al. [44] subsequently showed how to solve the FALSIFIABILITY

PROBLEM FOR PURE IMPLICATIONAL FORMULAS in time O(kkn2); thus, this problem is �xed
parameter tractable.

6.1.3. Database problems
Finally, let us take a very brief look at connections between parameterized complexity

and database problems, which we boldly term as logic problems: Papadimitriou and
Yannakakis revisited the complexity of DATABASE QUERIES in the light of parameterized
complexity [78]. Here, the basic observation is that the size of the queries is typically
orders of magnitude smaller than the size of the database. They analyze the complexity
of the queries (e.g., conjunctive queries, �rst-order, Datalog, �xpoint logic, etc.) with
respect to two types of parameters: the query size itself and the number of variables that
appear in the query. In this setting, they classify the relational calculus and its fragments
at various levels of the W -hierarchy, hence showing parameterized intractability. On
the positive side, they show that the extension of acyclic queries with inequalities is
�xed parameter tractable (refer to [78] for details). Finally, let us only mention in
passing that also in the �eld of model checking parameterized complexity studies are
useful [43,63].

6.2. Some challenges

(1) A ‘non-parameterized’ challenge: Can MAXIMUM 2-SATISFIABILITY or even MAXIMUM

SATISFIABILITY be solved in less than 2n ‘steps?’ Here, n denotes the number of
di�erent variables in the formula and a step may take polynomial time.

(2) Can the results for MAXIMUM SATISFIABILITY be generalized to so-called MAXIMUM

CONSTRAINT SATISFACTION PROBLEMS (cf., e.g., [12])?

J. Alber et al. / Discrete Mathematics 229 (2001) 3–27 21

(3) Is there a direct way to solve the ‘more meaningful parameterization’ [64] of
MAXIMUM SATISFIABILITY more e�ciently than by just reducing it to the standard
parameterized version?

(4) What are the best (parameterized) bounds for MAXIMUM CUT? We only have the
bounds derived from reductions to MAXIMUM 2-SATISFIABILITY.

(5) Can the time bound O(kkn2) for the FALSIFIABILITY PROBLEM FOR PURE IMPLICATIONAL

FORMULAS WITH k NEGATIONS be further improved?

7. And what about experimental results?

There are numerous examples of NP-complete problems for which theoretical upper
bounds have been shown on the running time. However, these results are only rarely
accompanied by an implementation. In most cases, it remains open as to how these
algorithms behave in practice. Since better theoretical results often rely on more com-
plex constant-time computations, it is reasonable that practitioners ask whether these
strategies are still e�cient and how, e.g., they compare to known heuristics or how
they can be combined with heuristic approaches.
In the following, we concretely describe some experiments made with algorithms

designed for the MAXIMUM 2-SATISFIABILITY problem [48,50] and try to draw some general
conclusions. The algorithms use the strategy of bounded search trees, as explained in
Section 6.1. Bounded search trees are a common pattern of �xed parameter algorithms.
Therefore, we conjecture that the following observations are typical for these kinds
of algorithms. Note, however, that the test runs are done with the non-parameterized
version of the algorithm, i.e., the algorithm which searches an assignment satisfying
the maximum number of clauses. For a given parameter k, the parameterized version
would stop as soon as k clauses are satis�ed. Apart from this, the algorithms work
analogously, such that the same observations apply for the parameterized as for the
nonparameterized version.
Before we start to outline our experiences, we quickly review the implemented strat-

egy. The algorithms traverse a search tree of exponential size. In each node of this
tree, the current problem instance is simpli�ed by excluding subcases which give no
improvement of the maximal number of satis�ed clauses, e.g., by assigning values to
pure literals. The known simpli�cations of this kind are manifested in a set of seven
transformation rules, which are applied if possible. As soon as none of these trans-
formation rules applies any more, we branch into two or more subcases by setting
selected variables to certain values, e.g., setting a variable to true in one case and
false in the other, and work on each of these subcases recursively. The subcases to be
branched into are determined by a set of eight branching rules. The involved analysis
of these branching cases allows to give estimations for the size of the search tree. The
questions resulting from this strategy are whether it is e�cient to test for transforma-
tion and branching rules and to maintain the quite complex data structures necessary
in order to decide which of the rules applies. In order to answer these questions, the

22 J. Alber et al. / Discrete Mathematics 229 (2001) 3–27

algorithms were implemented in JAVA and tested on a common Linux-PC with an
AMD K6 processor with 233 MHz. In the following, we outline some important ob-
servations resulting from these experiments:
In order to judge their performance, we compared the algorithms with the heuristic

EDPL (Extended Davis–Putnam–Loveland) strategy presented by Borchers and Furman
[17], for which an implementation in C is publicly available. For all problem instances,
the new algorithms produced smaller search trees than the EDPL strategy. Regarding
the running time, the new algorithms were outperformed by the EDPL strategy on
instances of very small size despite the larger search trees of the latter. One reason is
certainly the performance di�erence of the programming languages (C was measured
to be faster than JAVA in this setting by a factor of about 9). But with growing
instances, the algorithms are faster than the EDPL strategy, with an exponentially
growing gap between them. Instances handled by the new algorithms in seconds, e.g.,
random formulas with 200 variables in 400 clauses, cannot be processed by the EDPL
strategy in reasonable time. In this case, the additional time the new algorithms spend
in each search tree node, e.g., to maintain the data structures and to perform the case
analysis, is de�nitely outweighed by the gain through the shrunken search trees.
Although the algorithms exhibited a good performance in general, we encountered

examples in which better theoretical bounds did not imply faster algorithms. E.g., we
tested our algorithms not only with randomly generated 2-CNF formulas but, addition-
ally, we derived formulas from MAXIMUM CUT instances, which can easily be reduced to
MAXIMUM 2-SATISFIABILITY. As these MAXIMUM CUT instances exhibit a special structure,
the theoretical analysis can be improved for them, yielding better upper bounds [49]. In
practice, however, the MAXIMUM CUT instances turn out to be harder for the algorithms
than random instances.
Besides the overall performance, we were interested in the role of single transforma-

tion and branching rules. Therefore, we collected statistical data about the application
of these rules. Regarding the transformation rules, we note the high number of appli-
cations. Regarding the branching rules, we observe that most of the branching rules
are used only in rare cases. Most branchings result from two of the eight rules. This
indicates that the carefully designed branching rules mainly serve for the theoretical
analysis which gives guarantees on the upper bounds.
In conclusion, we point out the following experiences, which seem to be important

for all algorithms using a similar kind of strategy:

• The algorithms are able to exhibit a good performance comparable to current exact
heuristics. Note that it is possible to enrich and improve the algorithms with heuris-
tic strategies, e.g., the branch and bound principle, without sacri�cing the proven
performance bounds.

• There are examples showing that an improvement of theoretical bounds does not
necessarily imply faster algorithms.

• There is a di�erence in the roles of transformation and branching rules. Therefore,
to improve the practical performance, it seems to be more promising to search for

J. Alber et al. / Discrete Mathematics 229 (2001) 3–27 23

further transformation rules. Along with the set of transformation rules, a better
re�nement of branching rules promises better theoretical upper bounds.

8. Conclusion

To study faster exact solutions for NP-hard problems, one always should check
whether a parameterized point of view (also) makes sense. A parameterized approach
may help ‘improving’ known upper bounds; for example, this holds true in the case of
VERTEX COVER (compare the parameterized [24] with the nonparameterized [81] results).
We tried to illustrate that parameterized problems appear almost everywhere — we
gave a few examples from graph theory, VLSI design, computational biology, and
logic. The study of whether or not a problem is �xed parameter tractable and, if yes,
how small the exponential terms can be made, might perhaps deserve similar attention
as questions for the approximability of problems currently obtain.
In this paper, we focused on concrete examples and concrete open problems con-

cerning the development of (e�cient) �xed parameter algorithms. To some extent,
we neglected more general, probably ‘more structural’ open problems in parameter-
ized complexity analysis, which, nevertheless, should play a major role in future re-
search. This includes questions for the relationship between approximation and param-
eterized complexity, the relationship between heuristics and parameterized complexity,
and a closer investigation of algorithmic paradigms as linear or integer programming
or dynamic programming in relation with parameterized complexity. Many challenges
remain.

Acknowledgements

We thank Hans L. Bodlaender, Mike Fellows, Henning Fernau, Mike Hallett, Ton
Kloks, Klaus-J�orn Lange, Peter Rossmanith, and Ulrike Stege for contributing to our
knowledge on parameterized complexity. In particular, the third author is grateful to
Mike Fellows, Jan Kratochv��l, Jarik Ne�set�ril, and Ji�r�� Wiedermann for ‘pushing’ him
into this �eld of research in one way or another.

References

[1] R. Agarwala, D. Fern�andez-Baca, A polynomial-time algorithm for the perfect phylogeny problem when
the number of character states is �xed, SIAM J. Comput. 23 (6) (1994) 1216–1224.

[2] J. Alber, H.L. Bodlaender, H. Fernau, R. Niedermeier, Fixed parameter algorithms for PLANAR

DOMINATING SET and related problems, in: Proceedings of the 7th Scandinavian Workshop on Algorithm
Theory, number 1851 in Lecture Notes in Computer Science, Springer, Berlin, July 2000, pp. 97–110;
Long version appears as Technical Report UU-CS-2000-28, Universiteit Utrecht, The Netherland.

[3] N. Alon, R. Yuster, U. Zwick, Color-coding, J. ACM 42 (4) (1995) 844–856.
[4] A. Amir, D. Keselman, Maximum agreement subtrees in multiple evolutionary trees, Proceedings of the

35th IEEE Symposium on Foundations of Computer Science, 1994, pp. 758–769.

24 J. Alber et al. / Discrete Mathematics 229 (2001) 3–27

[5] S. Arnborg, D.G. Corneil, A. Proskurowski, Complexity of �nding embeddings in a k-tree, SIAM J.
Algebraic Discrete Methods 8 (1987) 277–284.

[6] S. Arora, C. Lund, Hardness of approximation, in: D. Hochbaum (Ed.), Approximation Algorithms for
NP-Hard Problems, PWS Publishing Company, Boston, 1997, pp. 399–446 (Chapter 10).

[7] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Protasi, Complexity and
Approximation, Springer, Berlin, 1999.

[8] B.S. Baker, Approximation algorithms for NP-complete problems on planar graphs, J. ACM 41 (1994)
153–180.

[9] R. Balasubramanian, M.R. Fellows, V. Raman, An improved �xed parameter algorithm for vertex cover,
Inform. Process. Lett. 65 (3) (1998) 163–168.

[10] N. Bansal, V. Raman, Upper bounds for MaxSat: further improved, in: Proceedings of the 10th
International Symposium on Algorithms and Computation, number 1741 in Lecture Notes in Computer
Science, Springer, Berlin, December 1999, pp. 247–258.

[11] R. Battiti, M. Protasi, Approximate algorithms and heuristics for MAX-SAT, in: D.-Z. Du, P.M. Pardalos
(Eds.), Handbook of Combinatorial Optimization, Vol. 1, Kluwer Academic Publishers, Dordrecht, 1998,
pp. 77–148.

[12] R. Battiti, M. Protasi, Reactive local search techniques for the maximum k-conjunctive constraint
satisfaction problem (MAX-k-CCSP), Discrete Appl. Math. 96–97 (1999) 3–27.

[13] A. Blummer, A. Ehrenfeucht, D. Haussler, M.K. Warmuth, Learnability and the Vapnik-Chervonenkis
dimension, J. ACM 36 (1989) 929–965.

[14] H.L. Bodlaender, A linear time algorithm for �nding tree-decompositions of small treewidth, SIAM J.
Comput. 25 (1996) 1305–1317.

[15] H.L. Bodlaender, Treewidth: Algorithmic techniques and results, in: Proceedings of the 22nd Conference
on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, Vol. 1295,
Springer, Berlin, 1997, pp. 19–36.

[16] R.B. Boppana, M. Sipser, The complexity of �nite functions, in: J. van Leeuwen (Ed.), Algorithms
and Complexity, Handbook of Theoretical Computer Science, Vol. A, Elsevier, Amsterdam, 1990,
pp. 757–804 (Chapter 14).

[17] B. Borchers, J. Furman, A two-phase exact algorithm for MAX-SAT and weighted MAX-SAT problems,
J. Combin. Optim. 2 (4) (1999) 299–306.

[18] D. Bryant, Building trees, hunting for trees, and comparing trees, Ph.D. Dissertation, Department of
Mathematics, Univ. Canterbury, Christchurch, New Zealand, 1997.

[19] D. Bryant, M. Fellows, V. Raman, U. Stege, On the parameterized complexity of MAST and 3-hitting
sets, unpublished manuscript, 1998.

[20] N.H. Bshouty, L. Burroughs, Massaging a linear programming solution to give a 2-approximation for
a generalization of the vertex cover problem, in: Proceedings of the 15th Symposium on Theoretical
Aspects of Computer Science, Lecture Notes in Computer Science, Vol. 1373, Springer, Berlin, 1998,
pp. 298–308.

[21] T.N. Bui, W. Hsu, S.-S. Lee, A 2.5 approximation algorithm for the multi-via assignment problem,
IEEE Trans. Comput.-Aided Design 11 (11) (1992) 1325–1333.

[22] L. Cai, Fixed-parameter tractability of graph modi�cation problems for hereditary properties, Inform.
Process. Lett. 58 (1996) 171–176.

[23] A. Caprara, Sorting permutations by reversals and Eulerian cycle decompositions, SIAM J. Discrete
Math. 12 (1999) 91–110.

[24] J. Chen, I. Kanj, W. Jia, Vertex cover: Further observations and further improvements, in: Proceedings
of the 25th International Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes
in Computer Science, Vol. 1665, Springer, Berlin, June 1999, pp. 313–324.

[25] J. Cheriyan, W.H. Cunningham, L. Tun�c el, Y. Wang, A linear programming and rounding approach
to Max 2-Sat, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 26,
1996, pp. 395–414.

[26] H.-A. Choi, K. Nakajima, C.S. Rim, Graph bipartization and via minimization, SIAM J. Discrete
Mathematics 2 (1) (1989) 38–47.

[27] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetical progression, J. Symbolic Comput.
9 (1990) 251–280.

[28] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, The MIT Press, Cambridge, MA,
1990.

J. Alber et al. / Discrete Mathematics 229 (2001) 3–27 25

[29] B. DasGupta, T. Jiang, S. Kannan, M. Li, E. Sweedyk, On the complexity and approximation of syntenic
distance, Discrete Appl. Math. 88 (1998) 59–82.

[30] R.G. Downey, P. Evans, M.R. Fellows, Parameterized learning complexity, Sixth Annual Conference
on Learning Theory, COLT’93, ACM Press, 1993, pp. 51–57.

[31] R.G. Downey, M.R. Fellows, Parameterized computational feasibility, in: P. Clote, J. Remmel (Eds.),
Feasible Mathematics II, Birkh�auser, Boston, 1995, pp. 219–244.

[32] R.G. Downey, M.R. Fellows, Parameterized Complexity, Springer, Berlin, 1999.
[33] R.G. Downey, M.R. Fellows, Parameterized complexity after (almost) ten years: Review and open

questions, Combinatorics, Computation & Logic, DMTCS’99 and CATS’99, Australian Computer
Science Communications, Vol. 21 No. 3, Springer, Singapore, 1999, pp. 1–33.

[34] R.G. Downey, M.R. Fellows, U. Stege, Parameterized complexity: A framework for systematically
confronting computational intractability, In Contemporary Trends in Discrete Mathematics: From
DIMACS and DIMATIA to the Future, AMS-DIMACS, Vol. 49, AMS, 1999, pp. 49–99.

[35] R.C. Evans, Testing repairable RAMs and mostly good memories, Proceedings of the IEEE International
Test Conference, 1981, pp. 49–55.

[36] P.A. Evans, Finding common subsequences with arcs and pseudoknots, Proceedings of the 10th Annual
Symposium Combintorial Pattern Matching (CPM), Lecture Notes in Computer Science, Vol. 1645,
Springer, Berlin, 1999, pp. 270–280.

[37] M. Farach, T. Przytycka, M. Thorup, On the agreement of many trees, Inform. Process. Lett. 55 (1995)
297–301.

[38] U. Feige, Coping with the NP-hardness of the graph bandwidth problem, in: Proceedings of
the Seventh Scandinavian Workshop on Algorithm Theory, Lecture Notes in Computer Science,
Vol. 1851, Springer, Berlin, July 2000, pp. 10–19.

[39] M. Fellows, M. Hallett, U. Stege, On the multiple gene duplication problem, in: Proceedings of the 9th
International Symposium on Algorithms and Computation, Lecture Notes in Computer Science, Vol.
1533, Springer, Berlin, December 1998, pp. 347–356.

[40] M.R. Fellows, M.A. Langston, On well-partial-ordering theory and its applications to combinatorial
problems in VLSI design, SIAM J. Discrete Math. 5 (1992) 117–126.

[41] V. Feretti, J.H. Nadeau, D. Sanko�, Original synteny, in: Proceedings of the Seventh Annual Symposium
Combinatorial Pattern Matching (CPM), Lecture Notes in Computer Science, Vol. 1075, Springer,
Berlin, 1996, pp. 159–167.

[42] H. Fernau, R. Niedermeier, An e�cient exact algorithm for Constraint Bipartite Vertex Cover, in:
Proceedings of the 24th Conference on Mathematical Foundations of Computer Science, Lecture Notes
in Computer Science, Vol. 1672, Springer, Berlin, September 1999, pp. 387–397; Long version to appear
in J. Algorithms.

[43] J. Flum, M. Grohe, Fixed-parameter tractability and logic, Technical Report [99-23], Mathematische
Fakult�at, Albert-Ludwigs-Universit�at Freiburg, 1999.

[44] J. Franco, J. Goldsmith, J. Schlipf, E. Speckenmeyer, R.P. Swaminathan, An algorithm for the class of
pure implicational formulas, Discrete Appl. Math. 96–97 (1999) 89–106.

[45] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
Freeman, San Francisco, 1979.

[46] L.A. Goldberg, P.W. Goldberg, C.A. Phillips, E. Sweedyk, T. Warnow, Minimizing phylogenetic number
to �nd good evolutionary trees, Discrete Appl. Math. 71 (1–3) (1996) 111–136.

[47] D. Goldman, S. Istrail, C.H. Papadimitriou, Algorithmic aspects of protein structure similarity,
Proceedings of the 40th IEEE Symposium on Foundations of Computer Science, 1999, pp. 512–521.

[48] J. Gramm, Exact algorithms for Max2Sat and their applications, Diploma Thesis, WSI f�ur Informatik,
Universit�at T�ubingen, 1999. Available through http:==www-fs.informatik.uni-tuebingen.de= ∼gramm=
publications=

[49] J. Gramm, E.A. Hirsch, R. Niedermeier, P. Rossmanith, New worst-case upper bounds for MAX-2-SAT,
with application to MAX-CUT, Invited for submission to a special issue of Discrete Appl. Math. May
2000. Also appears as ECCC Technical Report TR00-037, Trier, Federal Republic of Germany.

[50] J. Gramm, R. Niedermeier, Faster exact solutions for Max-2-Sat, in: Proceedings of the Fourth Italian
Conference on Algorithms and Complexity, Lecture Notes in Computer Science, Vol. 1767, Springer,
Berlin, March 2000, pp. 174–186.

[51] M. Grohe, Descriptive and parameterized complexity, in: Computer Science Logic, 13th Workshop,
Lecture Notes in Computer Science, Vol. 1683, Springer, Berlin, September 1999, pp. 14–31.

26 J. Alber et al. / Discrete Mathematics 229 (2001) 3–27

[52] D. Gus�eld, Algorithms on Strings, Trees, and Sequences (Computer Science and Computational
Biology), Cambridge University Press, Cambridge, 1997.

[53] S. Hannenhalli, P. Pevzner, To cut : : : or not to cut (applications of comparative physical maps in
molecular evolution), Proceedings of the 7th ACM-SIAM Symposium on Discrete Algorithms, 1996,
pp. 304–313.

[54] P. Hansen, B. Jaumard, Algorithms for the maximum satis�ability problem, Computing 44 (1990) 279–
303.

[55] N. Hasan, C.L. Liu, Fault covers in recon�gurable PLAs, 20th International Symposium on
Fault-Tolerant Computing Systems (FTCS’90), IEEE Computer Society Press, Silver Spring, MD, 1990,
pp. 166–173.

[56] P. Heusch, The complexity of the falsi�ability problem for pure implicational formulas, Discrete Appl.
Math. 96–97 (1999) 127–138.

[57] D.S. Hochbaum (Ed.), Approximation Algorithms for NP-Hard Problems, PWS Publishing Company,
Boston, MA, 1997.

[58] D.S. Hochbaum, The t-vertex cover problem: extending the half integrality framework with budget
constraints, in: Proceedings of APPROX98, Lecture Notes in Computer Science, Vol. 1444, Springer,
Berlin, July 1998, pp. 111–122.

[59] M. Hofri, Analysis of Algorithms: Computational Methods and Mathematical Tools, Oxford University
Press, Oxford, 1995.

[60] S. Kannan, T. Warnow, A Fast algorithm for the computation and enumeration of perfect phylogenies,
SIAM J. Comput. 26 (6) (1997) 1749–1763.

[61] H. Kaplan, R. Shamir, R.E. Tarjan, Tractability of parameterized completion problems on chordal,
strongly chordal, and proper interval graphs, SIAM J. Comput. 28 (5) (1999) 1906–1922.

[62] S.-Y. Kuo, W.K. Fuchs, E�cient spare allocation for recon�gurable arrays, IEEE Des. Test 4 (1987)
24–31.

[63] O. Lichtenstein, A. Pnueli, Checking that �nite state concurrent programs satisfy their speci�cation,
12th Annual ACM Symposium on Principles of Prog. Lang., 1985, pp. 97–107.

[64] M. Mahajan, V. Raman, Parameterizing above guaranteed values: MaxSat and MaxCut, J. Algorithms
31 (1999) 335–354.

[65] K. Mehlhorn, Graph Algorithms and NP-Completeness, Springer, Berlin, 1984.
[66] Z. Michalewicz, D.B. Fogel, How to Solve it: Modern Heuristics, Springer, Berlin, 2000.
[67] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, Cambridge, 1995.
[68] N.J. Naclerio, S. Masuda, K. Nakajima, The via minimization problem is NP-complete, IEEE Trans.

Comput. 38 (11) (1989) 1604–1608.
[69] G.L. Nemhauser, L.E. Trotter Jr., Vertex packings: structural properties and algorithms, Math.

Programming 8 (1975) 232–248.
[70] J. Ne�set�ril, S. Poljak, On the complexity of the subgraph problem, Comment. Math. Univ. Carolin. 26

(2) (1985) 415–419.
[71] R. Niedermeier, P. Rossmanith, An e�cient �xed parameter algorithm for 3-hitting set, Technical Report

WSI-99-18, WSI f�ur Informatik, Universit�at T�ubingen, Federal Republic of Germany, October 1999, J.
Discrete Algorithms, to appear.

[72] R. Niedermeier, P. Rossmanith, Upper bounds for vertex cover further improved, in: Proceedings of
the 16th Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science,
Vol. 1563, Springer, Berlin, 1999, pp. 561–570.

[73] R. Niedermeier, P. Rossmanith, A general method to speed up �xed-parameter-tractable algorithms,
Inform. Process. Lett. 73 (2000) 125–129.

[74] R. Niedermeier, P. Rossmanith, New upper bounds for maximum satis�ability, J. Algorithms 36 (2000)
63–88.

[75] R. Niedermeier, P. Rossmanith, On e�cient �xed parameter algorithms for weighted vertex cover, in:
Proceedings of the 11th International Symposium on Algorithms and Computation, Lecture Notes in
Computer Science, Taipei, Taiwan, Springer, Berlin, December 2000, to appear.

[76] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[77] C.H. Papadimitriou, M. Yannakakis, On limited nondeterminism and the complexity of the V-C

dimension, J. Comput. System Sci. 53 (1996) 161–170.
[78] C.H. Papadimitriou, M. Yannakakis, On the complexity of database queries, Proceedings of the Sixteenth

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 1997, pp. 12–19.

J. Alber et al. / Discrete Mathematics 229 (2001) 3–27 27

[79] V.T. Paschos, A survey of approximately optimal solutions to some covering and packing problems,
ACM Comput. Surveys 29 (2) (1997) 171–209.

[80] V. Raman, Parameterized complexity, Proceedings of the Seventh National Seminar on Theoretical
Computer Science, Chennai, India, June 1997, pp. I-1–I-18.

[81] J.M. Robson, Algorithms for maximum independent sets, J. Algorithms 7 (1986) 425–440.
[82] J.P. Schmidt, A. Siegel, The spatial complexity of oblivious k-probe hash functions, SIAM J. Comput.

19 (5) (1990) 775–786.
[83] C.-J. Shi, J.A. Brzozowski, A characterization of signed hypergraphs and its applications to VLSI via

minimization and logic synthesis, Discrete Appl. Math. 90 (1999) 223–243.
[84] W. Shi, W.K. Fuchs, Probabilistic analysis of algorithms for recon�guration of memory arrays, IEEE

Trans. Comput.-Aided Des. 11 (9) (1992) 1153–1160.
[85] U. Stege, Gene trees and species trees: the gene-duplication problem is �xed-parameter tractable, in:

Proceedings of the 6th Workshop on Algorithms and Data Structures, Lecture Notes in Computer
Science, Vol. 1663, Springer, Berlin, 1999, pp. 288–293.

[86] U. Stege, M. Fellows, An improved �xed-parameter-tractable algorithm for vertex cover, Technical
Report No. 318, Department of Computer Science, ETH Z�urich, April 1999.

[87] J.A. Telle, A. Proskurowski, Practical algorithms on partial k-trees with an application to domination-like
problems, in: Proceedings of the 3rd Workshop on Algorithms and Data Structures, Lecture Notes in
Computer Science, Vol. 709, Springer, Berlin, 1993, pp. 610–621.

[88] J.A. Telle, A. Proskurowski, Algorithms for vertex partitioning problems on partial k-trees, SIAM J.
Discrete Math. 10 (4) (1997) 529–550.

