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Introduction 

The usual metric space (A, d) is a set A with a map d from A2 into the set iw + (of 

non-negative reals) satisfying d(x,y)=Oox=y, d(x,y)<d(x,z)+d(z,y) and 

d(x, y)=d(y, x) for all x,y, ZEA. Inspired by Quilliot’s [21] combinatorial results, 

Jawhari et al. [13] extended in 1986 the concept of a metric space in several directions. 

Firstly, ([w+;b, +,O,) is replaced by _V=(V;<, +,O, -) where(i) (V; +,O, <) is an 

ordered monoid (not necessarily abelian) whose neutral element 0 is the least element 

of ( V, d ), (ii) the self map u +V is an involutive order automorphism of (V, <) such 

that (v + w) = W + V for all u, WE V. Secondly, the map d from A 2 to V satisfies the same 

axioms as above, except that the third axiom is replaced by d(y, x) = d(x, y). A natural 

model for _Vis the set of all binary reflexive relations on a set E, where < is C, + is the 

composition 0 of relations, 0 is the diagonal (that is the set {(u, u): UE V)) and - is the 

inversion, usually denoted I, of binary relations (that is p- 1 := {(y, x): (x, y)~p}). 

The latter paper developed certain aspects of the category of such spaces and 

contractions, and showed that graphs, directed graphs and ordered sets may be 

viewed in this context. It also extended absolute retracts, injective envelopes and fixed 
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point properties to the more general spaces, linking these infinistic concepts to discrete 

structures provided v has special properties. In such cases a y-space is called hyperconvex. 

In this paper we go a step further. We do not require the neutral element 0 to be the 

least element of ( V, d ) and we replace the first axiom by d(x, y) d 0 o x = y (a model 

for such Vis the set of all binary relations on E). This seemingly innocuous change has 

significant consequences leading to a more complex theory. 

The paper is divided in four sections. The first one relates the category of such 

spaces and contractions to the category of relational systems and relational 

homomorphisms. This is done in a more general setting for (A, d), where d maps A” to 

(V, < ) (for a positive integer n). In Section 2, for a join-semilattice we define m-ary 

contracting operations on A linking these n-ary spaces to universal algebras. In this 

context, we discuss the preservation of n-ary relations on A, the n-interpolation 

property and the extension property. In Section 3, we develop the proper theory of 

generalized Y-metric spaces mentionned earlier. In particular we study the elements of 

I/ appearing as the values of d for at least one l/-space (A, d). The central notion of 

hyperconvexity takes a more complex form but is still equivalent to the one-point 

extension property. Special _V’s may themselves be turned into metric spaces ( V, d,) 

and in this case we can embed every F-metric space into a power of ( V,dV). This 

happens when _V is an Heyting algebra i.e. satisfies an infinite distributive law (for 

+ and A ). In this case, the notions of injectivity, absolute retracts, retracts of powers 

of ( V, d,) and hyperconvexity coincide. Moreover, we can say something about the 

relations compatible with all contracting operations. Next, we look at the special case 

of a meet-semilattice with least element 0. A y-metric space is called then an 

ultrametric and the contracting operations form exactly the sets of terms of a congru- 

ence affine algebra on A. In Section 4, we first extend an arbitrary binary space V into 

an Heyting algebra and we proceed to show that an arbitrary I!-space embeds 

isometrically into a power of ( V, dV). We apply this to binary relational systems and to 

automata. A further application to the structural theory of automata studies the 

composition of an automaton from given building blocks which are themselves 

automata. Limiting ourselves to feedback-free compositions, but allowing an infinite 

number of states, we can describe the situation in terms of a hyperconvex ultrametric. 

1. Valued spaces and relations 

1.1. Spaces 

Let _V= ( F’, < ) be an ordered set and n be a nonnegative integer. An n-space over 

_Vis a pair A=(A,6) where A is a set and 6 is a map from A” to V. If A=(A,6) and 

A’ = (A’, 6’) are such n-spaces over y, a map f from A to A’ is a contraction from 4 to 

A’ if the following inequality holds 

~‘(f(a1), . . ..f(%))Q~(~l. . . ..a.) (1.1) 

for all ai, . . . . a,EA. 
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If n= 1, a map ffrom A to A’ is a contraction provided &(f(a))<S(a) for all UEA. 

The contractions for n> 1 may be perceived as unary ones if we consider the l-spaces 

(A”, 6) and (A’“, 6’) and the natural extension f (“) from A” to A’” defined by setting 

f(“)(U r, . . . . a.):=(f(u,), . . . . f(Q) for all al, . . . . u,EA. Trivially the composition of 

contractions is a contraction and the identity map on every n-space over vis a contrac- 

tion. Thus the n-spaces over v, equipped with the contractions form a category which 

will be denoted S,,. In what follows we give another description of S,,. 

1.2. Relations 

Let D be a set, let n be a positive integer and, for each dE D, let Pd be an n-ary relation 

on A (i.e. a subset of A”). We call 4 = (A, (pd: dE D)) an n-ury relational system on A of 

type D. A map f from A to A’ is a relational homomorphism from A= (A, ( pd: dE D)) to 

,j’=(A’,(p&: dED)) if for all dED we have f(pd)zpb (i.e. (f(u,), . . ..~(u.))EP~ for all 

(a r, . . . , u,)~p,). The n-ary relational systems of type D and their relational homomor- 

phisms form also a category which will be denoted RnD. 

1.3. Correspondence between spaces and relations 

Let A=(A,6) be an n-space over _V. For OEV put (6),:=((ui,...,u,)~A”: 

S(a r, . . . . a,) Gu}. For DEVput &=(A,((6) “: UE D)). For D, E G V we say that D is 

meet-dense in E if each veE\D is a meet of a (possibly infinite) set of elements of D (i.e. 

v is the greatest element of the set { XEE: x<y for all ysD, y au}). We have the 

following. 

Lemma 1.3.1. Let A=(A,6) and A’=(A’,Y) b e n-spaces over _V; let D G V and let f be 

a map from A to A’. If f is a contraction from A to A’ then f is a relational homomorphism 

from A,, to AL,.. If, moreover, D is meet-dense in Im 6 then every relational homomor- 

phism from And to A$s a contraction. 

Proof. Let (aI, . . .) a,)E( 6), (i.e. 6(ui, . . . , u,)dd). Since f is a contraction, 

6’(f(u,), . . ..f(a.))<b(u,, . . ..a.)<4 proving (f(q), ...) f(u,))E(6’)& and thus f is 
a relational homomorphism. Conversely, let D be meet-dense in Im6 and let f be 

a relational homomorphism from ADa to AfDs,. Consider (ai, . . . , u,)EA”. For every 

dED we have 6’(f(u,), . . ..f(u.))<d whenever 6(uI, . . ..u.)<d and, since D is meet- 

dense in Im6, we obtain the required 6’(f(u1), . . . . f(u.))<b(u,, . . . . a,). 0 

Let To denote the functor assigning AD6 to 4 =( A, 6) and mapping each contrac- 

tion into itself. 

We have the following proposition. 

Proposition 1.3.2. If D is meet-dense in V then Tn is a faithful functor from S,, into R,D. 
In other words, the category of n-spaces over V is isomorphic to a full subcategory of 

n-ury relational systems of type D. 
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Moreover, if _V is a complete lattice then T, has a left inverse, namely the functor 
CJ,Y from R,D into S,, which to every 4 =(A, (pp: dcD)) associates the n-space (A, 6,) 

over _V where 6, is the map from A” to V defined by setting G,(a)=Inf(dED: aEp,} fir 

every aEA”. 

Proof. The first statement is just the lemma above. For the second, first we show that 

U,V is a functor. Let a map f from A to A’ be a relational homomorphism. Then for 

every a=(a 1, . . . . an)EA”, we have 

{ deD: acpd} s { dED: f”“(a)Ep&}, 

where f(“)(a):=(f(a,) , . . . , f( a,,)). Hence 

~4~(f~“~(a)):=Inf{d~D:f@“(a)~p~}~Inf{d~D: aEpd}=:6,(a), 

proving that f is a contraction. We show U,,” T,= Is+. Let (A, S)E,!& and aEA”. 

Then 

Gdo6(a)=Inf{dED: a~(G),}=Inf{dcD: d(a)<d}:=a(a) 

because aE( 6), means 6(a) d d and D is meet-dense. 0 

For a particular _V we can prove more. Let p(D) denote the family of all 

subsets of D. 

Proposition 1.3.3. Let D be a set, _V=( p(D), _ ) 1 an n an integer. Then the category d 
R,D is isomorphic to the category S,,,. 

Proof. Put D’ := { {d j : dED}. The set D’ is meet-dense in _V, which is a complete lattice, 

so by Proposition 1.3.2 we obtain that the functor T,. from S,, to RnDp has a left 

inverse U,“. We show that TOP 0 U,,” = 1 RnD,. Indeed, with 

A=(A,(pd,: d’ED’))ERnD, 

the functor UnV associates (A, 6,) where BA(a)=Inf{ d’ED’: aepd,} for aeA”. Now to 

(A, 6,) the functor T,. associates the relational system B=(A, ((d,),,.: ~‘ED’)). Let 

d’ED’ and acAn; by definition aE(6A)d, means 6,(a)<d’, that is 6A(,)~d’. Since d’ is 

a singleton and hA(a)=Inf{ t’ED: aEpir,;} =Inf{ tED: acpltj}, this inclusion means 

aEp,,, that is ( 6A)d,=pdP. This gives A = B and thus R,,, = S,,. However, the difference 

between R,,! and RnD is purely notational and so the proposition is proven. 0 

Remark 1.3.4. For _V=( p(D), z ), the isomorphism between RnD and S,, is explicitly 

given by the maps U from R,, to Snr and T from S,,, to R,D defined as follows: to 

A=(A,(pd:d~D)) associate U(A):=(A,G,) where the map 6, from A” to Vis defined 

by setting aA( { dED: aEp,} for all ae A”. Conversely, to an n-space 4 =(A, 6) over 

_V associate-the relational system T(A) := (A, (( ~5):~~ : dED)). 
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Summing up, for a given r, the category S,, of n-spaces over _V is a full subcategory 

of the category R,D provided that the poset v embeds into the poset _v’ = (go (D), 2) 

(as this embedding induces an embedding of S,,, into S,,,. where the latter is isomor- 

phic to R,,). Here the minimum size of such a set is what Kelly and Trotter [15] call 

the 2-order-dimension of v. On the other hand, for a given set D, each ordered subset 

_V of (p(D), 3) leads to a category of n-ary spaces, namely Snr, and thus to a full 

subcategory of RnD. This provides a classification of relational systems by the category 

S,, to which they belong. We have as many structurally different categories as there 

are non-isomorphic subposets of (p(D), 2). 

Proposition 1.35 Let v and y be two posets. The categories S,,, and S,,! have exactly 

the same contractions if and only if _V and y are order-isomorphic. 

Proof. If $ is an order-isomorphism from _Vonto I!‘, then we have the functor F which 

to the object (A, 6) of S,,, associates the object (A, $0 6) of S,,, and which maps each 

contraction onto itself. Conversely, suppose that F is an isomorphism from S,,, onto 

S,,,, mapping each contraction of S,, onto itself. The image of an object (A, 6) of S,,, is 

of the form (A, $(6)) (because id, is a contraction of (A, 6) onto itself). For a given 

A this defines a map Y from _v”” onto I!’ A”. These sets being ordered componentwise, 

Y is an order-isomorphism: indeed, the fact that id, is a contraction from (A, 6,) onto 

(A, 6,) means SZ ~6~. Thus for a one element set A this map Y induces an order- 

isomorphism from v onto I/“. 0 

Remark 1.3.6. For an isomorphism F from S,,, onto S,,, mapping each contraction of 

S,,, onto itself, there need not exist an order-isomorphism $ from _V onto _v’ such that 

F( A, 6) = (A, II/ 0 S)for every (A, 6) in S,,. Indeed, let n = 2 and _V= _v’ be an antichain. 

Let n: be a fixed permutation of V; given an object (A, 6) of S,, define F( A, 6) = (A, 6’) 

by setting &(a,,a,):=6(a,,a,) if 6(a,,a,)=6(a,,a,) and 6’(a,,a,):=z(6(a,,az)) 

otherwise. Since _V is an antichain, in S,, a map fis a contraction from (A,, 6,) onto 

(AZ,&) iff62(f(al),f(a2))=61(al, a2) holds for all al, azEAl. With this fact one can 

show that F is an isomorphism preserving the contractions. For a nontrivial n there is 

no rl/ such that 6’ = II/ c 6 for all 6. 

1.4. Products of relations and spaces 

Recall that in R,D, for an index set I and relational systems Ai =( Ai, (Pdi : dED)), 

(iEl), their product A=(A,(pd: dED)) is defined by (1) A:=n{Ai: ie:I} (the 

Cartesian product), (2) for fi, . . . . fn~A, and dGD we put (fr, . . . . ~“;I)EP~ whenever 

(fi(i), . . . . f”(i))EPdi for all iFI. Concerning S,,V we have the following. 

Lemma 1.4.1. The category S,, has finite (resp. arbitrary) products if and only if _V is 

a join-semilattice (resp. a complete lattice). In this case, for a finite nonempty (resp. 
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arbitrary) index set I, the product of n-spaces (Ai, Si) over T’, (ill), is (A, 6), where 

A:=n{Ai: ill} (th e Cartesian product) and for all fi, . . . , f,EA: 

Xfl, . ..> f~):=SLlp(Gi(f~(i), ...) f,(i)): iEl}. 

Proof. If _V is a join-semilattice (resp. a complete lattice) then a routine verification 

shows that (A, 6) defined in the lemma is a product of the (Ai, 6J.s. Conversely, if 

S,, has finite (resp. arbitrary) products then each nonempty finite family (resp. an 

arbitrary family) of one-element spaces has a product in S,,. This insures that _V is 

a join-semilattice (resp. a complete lattice) and these products are one-element spaces. 

Indeed, let W be a nonempty subset of I/ and B := {b} a one element set; for VE V 

put &:=((b},&), where 6,(b ,..., b)= v. Let 4 :=( A, 6) be a product of the family 

{B ,,,: WE W>; taking into account the contractions p,,, from 4 to &, we obtain 

w=&(b, . . . . b)<6(al, . . . . a,)for all al, . . . . U,EA and WE W. In particular, the set U of 

upper bounds of W is non-empty. For UE U the map ids is a contraction from B, onto 

B, for all WE W and so by definition of the product, there is a unique contraction 

A from & into 4 such that pw 0 A = id,; that is for UE U there is a unique element x, in 

A such that 4(u):=d(x,, . . . . x,) d u. Let u, U’E U; the existence of a product of & and 

&I,. insures similarly that u and u’ have an upper bound. Let v be such an element. 

Since VEU, we get x,=x,=x,,; thus 4(u) is the supremum of W, and A is a 

singleton. 0 

Example 1.4.2. If _V=( [w + , d ), the non-negative reals with the natural order, and if 

the (Ai, Si) are ordinary metric spaces then their product is endowed with the so-called 

Sup-distance or P-distance. 

2. The clone of contracting operations 

2.1. Operations and clones 

Let A be a set. For a positive integer n, an n-ary operation on A is a map f from A” to 

A. We denote by 02) the set of all n-ary operations on A and put Q,.,:= u { 02): 

1~ n <co}. We consider special subsets of Q*, called clones, which are closed under the 

composition of operations, the permutation and identi$cation of variables, and contain 

the projections. A clone is a direct multivariable analog of a monoid of transforma- 

tions of A, or more specifically, a permutation group on A, whereby the projections 

play the same role as idA. (Note that in universal algebra, ‘nullary operations’ are used 

to provide distinguished constants, e.g. 0 and 1 in a ring or a lattice; for our purpose 

they present notational difficulties and constants are introduced via constant unary 

operations (i.e. constant selfmaps of A)). 

There are several formal definitions of clones in the literature. We briefly present 

one due to Mal’tsev [16] which is conceptually simple, algebraic, and easy to apply. 
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Composition (also called substitution or superposition) of operations parallels the 

composition of selfmaps. However, the presence of several variables makes the 

description more complex. To capture the replacement of a variable in an operation 

by the value of another operation on other variables, we postulate it only for the first 

variable. For this we define the following binary operation on 0,. 

Let feOJT) and go@). Put p:=m+n-1 and define h:=f*g~@’ by setting 

h(a 1, ..*, up):=f(g(al, . . . . a,), a,,,, . . . . up) for all al, . . . . u,EA. The operation * is 

associative with neutral element idA. 

In universal algebra, logic and applications, often it is desirable to manipulate 

variables in one operation by introducing all operations obtained from it by 

permuting or fusing its variables. To describe this succintly we introduce self-maps 

[, r and A on Q* which reduce to the identity on 06’) whereas for m> 1 and 

f&a-) both [~z&Q~~ are defined by setting (cf)(u):=f(az, . . ..~.,a~), 

(rf)(u):=f(~, u1,u3, . . . . a,) for all u=(ul, . . . . u,)EA”’ while Af~Q$‘-l)is defined by 

(Af)(al, . . . ,u,_l):=f(ul,ul,uz ,..., a,_,) for all al ,..., umelEA. 

A subset P of 0, closed under *, c, T and A (i.e. f* g, if, rf, A~EP for all f, gEP) is 

a preiterutive set (also called a closed class). For 1 d i <m the ith m-ary projection eT is 

defined by ejm (al) . ..) a,) :=aj for all al, . . . , ,,, a EA. A clone on A is a subset closed 

under *, i, r and A and containing all projections (or equivalently just e:). 

2.2. Contracting operations 

Let (A, 6) be an n-space over an ordered set _V. If _V is a join-semilattice, then by 

Lemma 1.4.1 an m-ary operation fon A is a contraction from (A, S)m into (A, 6) if for 

every n x m matrix X over A 

w”(X,*), . . . . f(x”*))~s(x*l) v ... v 6(X*,) (2.1) 

where Xi* and X*j denote the ith row and jth column vector of X. 

If _V is not a join-semilattice then we can embed it into a join-semilattice y as 

a meet-dense set (e.g. via the MacNeille completion [17]). Condition (2.1) then reduces 

to the following requirement: 

6(X*j)<U (j=l, ..., m) implies S(f(X,.), . . . . f(X,.))dv (2.2) 

for every n x m matrix X over A and every VE V. We say that fsatisfying this condition 

is a d-contraction over v. 

Lemma 2.2.1. For an n-space (A, 6) the set Cdv_ of all &contracting operations is a clone. 

Proof. Direct verification. 0 

Remark 2.2.2. Even on a join-semilattice there are other possibilities to define 

contractions which are not based on the join operation. For example, for n=2 and 

_v:=(iR +, d ), the nonnegative reals with the natural order, the Sup-distance is not the 
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only one used; in fact the Euclidian P, and the I’ or Hamming distances are much 

more common. This suggests that we may try to replace (2.1) by 

J(S(X,*), . . ..S(X.*))<&l(~(X*,), . . ..d(X*.)). (2.3) 

where gm are appropriate m-ary operations on V( m = 1,2,. . .). More generally one can 

suppose each A” to be endowed with a map 6, from (A”)” to V, and consider the 

contractions f from the n-spaces (A”, 6,) to (A, 6); they satisfy: 

&f(X,*), . . ..f(X.*))G&(X,*, . . . . X,*). (2.4) 

One can observe that if the projections satisfy (2.4) then the d-contractions (defined 

by (2.1) or (2.2)) do as well. Consequently, if the set of operations satisfying (2.4) (for 

m= 1,2, . ..) is a clone, then it contains the clone of all d-contracting operations. 

Problem. Do they coincide? Concerning this problem, note that if we consider the 

collection C of maps satisfying (2.3) (rather than (2.4)) then it contains the projections 

provided the gm are extensive (that is to say al, . . . , u, bg,(vl, . . . , v,)); if the gm come 

from an associative binary operation + (that is gm(al, . . . , II,,,) := u1 + ... + u,) then C is 

closed under composition provided that + is order-preseruing (that is u1 + u2 d u; + u; 

whenever u1 <u; and u2 d vi) whereas it is closed under taking all operations obtained 

via identification of variables provided + is subidempotent (that is u+ u<u). Under 

these conditions C=Cay; indeed, if the ordered set _V is endowed with a binary 

operation + which is associative, order preserving, extensive and subidempotent, 

then it is, in fact, a join-semilattice and + is the join operation. (Indeed, by extensivity, 

v + ~1 is an upper bound of v and w, while for v,<x and w <.x the fact that + is 

order-preserving and subidempotent yields u + w < x + x <x, proving that u + w is the 

join of L’, w.) 

2.3. Preservation 

Let m and n be positive integers. A partial m-ary operation f with domain D is a map 

from a subset D of A” into A. As defined in Section 1.2 an n-ary relation on A is 

a subset p of A”. We say that f preserves p if (f(X,,), . . . ,f(X,,,))~p whenever X is an 

n x m matrix whose row vectors Xi, belong all to D and whose column vectors 

Xsj belong all to p. In particular, if fis a full operation (i.e. D = A”‘) fpreserves p iff fis 

an homomorphism from (A, p)” to (A, p) or, equivalently, p is a subuniverse (i.e. the 

carrier or domain of a subalgebra) of the nth power of the algebra A =( A,f). This 

concept is more imporant than it seems at first glance. For example, if f is a full 

operation and p is unary, thus a subset of A, then f preserves p means fop, 

whereas if p is an equivalence relation then f preserves p iff p is a congruence of 

4 = (A,f); similarly if 4 is a map from A into itself and p is the graph of 4, that is 

{(u,~(u)): =4}, then f~ reserves p iff 4 is an endomorphism of 4. For an ordering 

< on A, the fact that the operation f preserves < has the usual meaning of 

order-preserving map (also called isotone or monotone in the literature): 
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.f(x 1, . . ..%n)ax., . . . . (x’,) whenever x I <x;, . . . , x, <XL. Several names are used for 

‘fpreserues p’:fcompatible with p or p-invariant, stable or homomorphic with respect 

to p, etc. 

We will need the immediate extension of this concept to possibly infinite m and n. 

For an ordinal k let k denote the set of all ordinals less than k (e.g. 2 = (0, 11, 

w={O, 1, . ..) n, . ..}. in fact one could suppose k=k_ as well). Let m be an ordinal; as 

usual A” denotes the set of all maps from m to A; we identify A” and A” for m finite. 

For D s A” a map ffrom D to A is a partial m-ary operation with domain D (it is a full 

operation if D = A”). A subset p of A” is an n-ary relation on A. For an application 

X from m x n into A, i < n and j < m, put Xi*(j) = X*j( i) := X( i,j). For f: D c A” +A, 

and X such that all X,,ED, let _&E A” be defined by setting fx( i) :=f( Xi*) for all i < n. 

We say that fpreserves p if fx~p whenever all Xi*ED and all X*jEp. 

For an ordinal m let @‘), resp. Qirn, denote the set of operations on A with arity m, 

resp. with arity less than m (and nonzero). Let RA (“I denote the set of n-ary relations on 

A and Ri” the set of relations on A with arity less than n (and nonzero). Given 

a relation p on A, let Pol(“‘)p, resp. Pol<“p, denote the set of f~@.!), resp. f EQ;"', 
preserving p. Given a set R of relations put Pol(“‘) R := n (Pol(“)p : PER} and define 

Pol’“R in a similar way. If in these definitions we replace operations by partial 

operations, we obtain successively the sets p$‘) and f>m, Polp’“‘p and Polp’“p, 

Polp(“) R and Polp’” R. For a set F of partial operations on A, put Inv(“) F := { PE R$): 

every f~ F preserves p > and define similarly Inv im F. In all these notations, we omit 

the exponent ‘cm if m=o. 

The relation of preservation induces a Galois connection between various sets of 

operations and sets of relations. For instance, the sets of the form Pol(“‘) R In@) F are 

the Galois closed subsets of 0, , (m) R$‘), induced by f preserves p. Some of t’heir general 

properties as well as intrinsic characterizations are in [19] for A finite, and in [25] for 

A infinite. We mention just the fact that all Pol R are clones and conversely each clone 

on A is of the form Pol R where R is a countable set of finitary relations if A is finite 

and R = {p} where p is an m-ary relation on A, with m = 1 A 1, if A is infinite. 

Finally a clone C on A has the n-interpolation property if C contains each f’~@“) 

(m= 1, . ..) such that for every subset B of A”‘, with size at most n, there is some gBEC 

which coincides with fon B. In other words, to test whether fbelongs to C it suffices 

to verify that for every B := {a,, . . . , a,}EA”‘we have f(ai)=g,(ai), (i=l,...,n) for 

some geEC. We mention in passing that clones with the n-interpolation property for 

all finite n, called local clones, play an important role in universal algebra. 

2.4. The clone of contracting operations 

Let L be a lattice; let us recall [12] that an element VEL is compact if v < 

Sup{ vi: iEl} implies v < Sup { ui: iEJ} for some finite subset J of I; denote by c(L) the 

set of compact elements of L. The lattice L is algebraic if it is complete and every 

element is a supremum of a set (possibly infinite) of compact elements; it is triuial if it 

has one element. 
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Let _V be an ordered set and let (A, 6) be an n-space over _V. As in Section 1.3, for 

v~Vweput(6),:={a~A”:G(a)Qv).Clearlythemap~:v-*(6),isanorder-preserving 

map from _V into (R(“) A , s). We say that (A, 6) is algebraic if: (al) V is a nontrivial 

algebraic lattice, (a2) c(y) contains &A”) and is finitely sup-generated by 6(A”), and 

(a3) 4 is injective. 

Proposition 2.4.1. The following are equivalent for C E 0, and a positive integer n: 

(i) C is the set of b-contracting operations of an n-space (A, 6) over an ordered set _V; 
(ii) C is the set of &contracting operations of an algebraic n-space (A, 6); 

(iii) C=Pol R for a set R of n-ary relations on A; 
(iv) C is a clone with the n-interpolation property. 

Proof. We prove (ii) =+i)=>(iii)*(iv)*(ii). The equivalence of (iii) and (iv) is known 

(cf. [27]), but for reader’s convenience we prove it here. 

(ii)*(i) Evident. 

(i)=$iii) Evident: take R := { (6)“: VE V}. 

(iii)=>(iv) Let fe@“) b e such that on every subset B of A” with size at most n, the 

operation agrees with some gBEC. We prove that fg C. Let PER and let X be an n x m 
matrix with X .I, . . . . X,,E~ and let B be the set consisting of X1,, . . . . X,.. By 

assumption there is g,ECEPolp such that (f(X,.), . . . . f(Xn*))=(gB(X1*), . . . . 

gB(Xn*))Ep proving that fEPolp. Thus fEr){Polp: ~ER)=C. 
(iv)*(ii) Put V:=Inv”” C and _V:=( V, G). It is well known and easy to see (cf. 

Section 2.3) that Vis the set of subuniverses of the nth power of the algebra (A, C) and 

hence a non-trivial algebraic lattice (since the empty set and A” belong to V) (cf. [12] 

Section 0.6). For UEA” put 6(a):= n{p~ K asp}. Clearly 6(a), called sometimes the 

orbit of a, is the least n-ary relation from V (i.e preserved by all operations from C) 

containing a. For VE V, by the minimality of 6(a) we have (6)” := { UE A”: 6(a) Q v} = u 
whence 4 : v +( 6)” is obviously injective. As it is well known, the members of c( _V) are 

exactly the finitely generated subalgebras of the nth power of (A, C). Consequently 

(A, 6) is algebraic. 

We next show that C is the set Cay of b-contracting operations. 

(a) We prove C G Cdy (even without (iv)). Let f EC be m-ary and let X be an n x m 
matrix over A. Put p :=6(X.,) v ... v 6(X,,) and note that X*iEG(X*i)Cp for 

i=l , . .., m. Since f EC preserves PE V= Inv’“’ C, we have 

(f (X1*), . . ..f (X,*)kP 

proving the required S(f(X,.), . . . . f(X,.))Gp. 
(b) To prove Cdl( E C let f ECdr be m-ary and let X be an n x m matrix over A. Put 

(T:={(g(X1*), . . ..g(X.*)): gECnQr4m’). (2.5) 

It is known and it may be shown easily that oEInv(“) C. Now the m-ary projection 

e~belongstoCandsoX,i~afori=l,...,m;whence6(X.l)v...v &X.,)~a.Finally 
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from ~~~~~ we get 

K0X,*), ..., f(X”.))<S(X.,) v ... v 6(X*,)GU 

and hence from (f(X,.), . . ..f(X..))~s(f(X,,), . . ..f(X..)) and (2.5) we get 

u-(X,*), . . ..f(Xn*))=MX1*). ...? g(X,,)) for some gEC. Applying the n-interpolation 

property we get the required f6C and so C=CaY. q 

Example 2.4.2. Consider the case n = 1. The unary relation (6)” is a subset of A. 

According to Proposition 2.4.1, the clone C consists of all operations admitting all (6)” 

as subuniverses (such an algebra (A, C) with 1 < ) A 1-c w is called semi-primal in [9]). 

It follows from [3] (cf. [12,0.9 Theorem 213) that _Vfrom Proposition 2.4.l(iv) may be 

any non-trivial algebraic lattice. Examples or n=2 will be discussed in Section 3. 

2.5. Invariants of the clone of contracting operations 

We have seen in Proposition 2.4.1 that the clone Cdli is the clone Pol R determined 

by a set R of n-ary relations on A. What can be said about the structure of Inv C,,? In 

general there is not much we can say. Nonetheless, we note a sufficient condition for 

a k-ary relation p to be preserved by all b-contracting maps, wherein k need not be finite. 

Let (A, 6) be an n-space over a join-semilattice _V. For r: k +A define the following 

n-space (k, 6,) over I! by setting 

&(k 1, . . ..k.):=d(r(k,), . . ..r(k.)) (2.6) 

for all kl, . . . . k, -C k. Note that IV:= I’“” inherits the semilattice structure from _V: for p, 

$G vk” the supremum p v p’ is defined by (,u v p’)(x) := p( x) v p’(x) for all XE I@“. We 

say that a k-ary relation p on A is &closed if for each positive integer m, all ri, . . . , r,,,n~p 

and all rcAk 

6,<6,, v ... v ~3,~ implies rep. (2.7) 

For example, if m= 1 the condition (2.7) states that rEp whenever 6,<6,, for some 

rlEp. According to (2.6) this means that 

&r(k,), . . . . r(k,))Gb(ri(ki), . . ..ri(k.)) (2.8) 

holds for all k 1, . . . , k, <k. We write r < r1 if (2.8) holds. Note that < 1s a quasi-order 

(i.e. a reflexive and transitive relation). In fact, if D denotes the map from Ah to Vb” 

defined by D(r) = 6, for all rE A&, then this quasi-order is the inverse image of the order 

on Vk” discussed above. Let y denote the semilattice consisting of I@” equipped with 

this order. Recall that a subset I of a join-semilattice L is an ideal if x<y and y~l 

implies x~l and x, y~l implies x v y~l. First we slightly reformulate the definition of 

d-closure. To a set I of maps from _k” to V associate D-‘(Z) := { reAk-: 16,~Z). 

Lemma 2.5.1. A k-ary relation p on A is b-closed ifand only ifp = D-I (Z) some ideal 

z of _v”“. 
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Proof. Necessity. Put J := { 6,: REP} and let I be the ideal of IJ’ generated by J. We 

show that p=D-i(Z). Indeed, let rED_‘(I). Then there exist a positive integer m and 

rl, . . ..r.,,~p such that 6,66,, v ... v 6,_ (in Ijj), whence rep by (2.7). Conversely, if 

rep then 6,~Jcl and reD_l(Z). 

Sufficiency. Let I be an ideal of v, m > 0, and rl, . . . , r, E D- '(I). Let r be such that 

&<?I,, v ... v 6,,,,. Then 6,,, . . . . 6,,,, EZ, hence B,EZ and rED_‘(I), proving that 

D-‘(Z) is &closed. Cl 

The b-closed relations are described in the following very special case. For 

rE Ak- put (r] := (r’EAk: r’<r> (where < is the quasi-order defined above), that is 

(r]=D-‘((S,]), where (&]:={p~Vk”: ,u$&}. 

Corollary 2.5.2. Let _V be a complete join-semilattice in which every element is compact 

(e.g. the chain of negative integers). Then a k-ary relation p is &closed if and only if 

p = (r] for some r : k_ -+ A. 

We show that pEInv’k’C,, for a &closed p. 

Proposition 2.5.3. If p is S-closed then every b-contracting operation on A preserves p. 

Proof. Let f be an m-ary b-contracting operation on A, let rl, . . . , r, up and 

k,,...,k,<k. Define the map r:=f(rl,...,r,)EAk by setting r(k’):= 

f(r,(k’), . . . . r,(k’)) for all k’ < k. Let X denote the n x m matrix (rj(ki)),. Since f is 

d-contracting, we have: 

d(r(k), . . . . r(k,))=6(f(Xl.),...,f(X,.))<6(X*l) v ... v 6(X.,) 

=6(rl(kl), . . ..r.(k,)) v ... v &r,(kl), . . ..r.(k,)) 

proving by (2.6) that 6, <a,, v .+. v 6,,,,. 

Now (2.7) yields the required rEp. 0 

In a special situation Inv (k) CIV may be the set of b-closed relations. We describe this 

in terms of the following extension property. A partial m-ary operation f on A with 

domain B is b-contracting if it is a contraction from the n-ary space induced on B by 

the m-power of (A, I!?), that is to say: for every n x m matrix X whose rows are all in 

B we have S(j(X,.), . . . . f(X,,))<S(X.,) v . . . v 6(X,,). Let rc be acardinal. We say 

that (A, 6) has the K-extension property if for every m > 0 each a-contracting partial 

m-ary operation f: B -+ A with 1 B I< IC extends to (or equivalently, is a restriction of) 

a full a-contracting operation. We have the following. 

Proposition 2.5.4. Let (A, 6) be an n-space over a semilattice _V; let K > 0 be a cardinal 

and let k be an ordinal such that 1 k I= K. 
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(i) ifall relations in Inv (k) CIV are &closed, then (A, 6) has the K-extension property; 

and 

(ii) ifn > 1, (A, 6) has the K-extension property and there is an element OE V such that 

&a 1 ,..., a,)<0 ifs al =“.=a,, for all a, ,..., a,eA, (2.9) 

then all relations in I~v(~)C& are &closed. 

Proof. Write C for CaV. 

(i) Let f be a partial m-ary d-contracting operation on A with domain B, where 

1 BI < IC. If B is empty, then any projection, e.g. ey, extends f: Thus, let B be nonempty, 

let 4: k -+B be surjective. Put G:= {go 4: gECnQp)}. As mentioned in the proof of 

Proposition 2.4.1 (cf. [2.5]) it is known, and may be checked easily, that the k-ary 

relation cr belongs to Inv C and so cr is &closed. Put r := fo C$ and rj := ey 0 q5 where ejm is 

the jth m-ary projection (j= 1, . . . . m). Taking into account that eyEC we have 

rl, . . . . r,Ea. We verify that 6,<S,, v ... v a,_. Indeed, let k’=(kI, . . . . k,)E&‘, and let 

X be the n x m matrix with rows q%(k,), . . . . #(k,). According to (2.6) 

&(0=6(r(ki), . . ..r(k.))=6(S(Xi,), . . . . f(X..)). Similarly for j= 1, . . . . m we have 

&,(k’)=a(rj(ki), . . . . rj(k,)) = S(X*j). Since f is a-contracting, we have 6,( k’) < 

&,(k’) v ... v &,(k’)andso&<&, v...v 6,,,,.Asais&closedandr,,...,r,~~,from 

(2.7) we get rErs, hence fo 4 =_fo $J for some fgC wherefis the required extension off: 

(ii) Let peInv’k)C6V, let rl, . . ..r.,,Ep and 6,<6,, v ... v 6,,,,. Define II/: k +A” by 

setting t,b(k’):=(r,(k’), . . ..r.(k’)) for all k’E_k. Further put B:=im$. We show that 

Ker $ G Ker r. Indeed, let $( k’) = +( k”). Setting aj := rj( k’) = rj( k”) for j = 1, . . . , m and 

using the assumption we get 6( rj( k’), rj( k”), . . . , rj( k”)) = 6( aj, . . . , aj) < 0 for all 

j=l , . . . . m. From I&<&, v ..a v a,,,, we get J(r(k’),r(k”), . . ..r(k”))<O v ... v O=O. 

Again from the assumption we get the required r(k’) = r(k”). 

Now we define a partial m-ary operation f: B + A by setting f 0 $ = r. We show that 

f is b-contracting. Indeed, let X be an n x m matrix whose rows are all in B. Then 

Xi*=$(ki) for some kiEk (i= 1, . . . . m), and from fi $=r and 6,<S,, v ... v 6,_ we get 

the required 

&J”(X,*), . . . . f(X,*))=U(rC/(ki)), . . ..f(~(kn)))=s(r(k.), . . ..r(k.)) 

Gd(ri(ki), . . . . rr(k,)) v ... v &r,(ki), . . ..r.(k,)) 

=6(X*,) v ... v&X*,). 

In view of 1 B 1 <K and the assumption, the partial operation fhas a full b-contracting 

extension f: Since pEInvtk’ C, we have f(r 1, . . . , r&p proving the required 

r=fo$=f(Y1,...,rm)Ep. 0 
_ 

_ 

2.6. The extension property 

The following property is stronger than the rc-extension property. We say that (A, 6) 

has the extension property if every partial b-contracting operation extends to a full 
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S-contracting operation (i.e. (A, 6) has the K-extension property for all rc). We give 

equivalent conditions for the extension property. Let f: B +A be a partial m-ary 

d-contracting operation. If for some ZEA”\B there is a d-contracting extension f’: 

BU(Z) -+A off we call f’ a one-point extension off: We say that (A, 6) satisfies the 

condition (*) provided: 

if n > 1, then 6 is totally symmetric (invariant under all exchanges of variables) and 

there is OE V such that 6(a1, . . . . an)=0 whenever al =Q. 

We have the following. 

Proposition 2.6.1. The following are equivalent for an n-space (A, 6): 

(i) (A, 6) has the extension property; 

(ii) each partial b-contracting operation with a proper domain has a one point 

extension; 

(iii) for every partial m-ary b-contracting operation f :B -+A and each ZEA”\B there 

is a &contracting ,extension f ‘: BU{ z} +A. 

If, moreover, (A,6) satisjes the condition (*) then the above conditions are also 

equivalent to: 

(iv) for every partial m-ary &contracting operation f: B +A, for each C$ : B”- ’ -+ V 

and every ZEA”\B such that 

6(X*,) v ... v 6(X*,)<$(X,*, . . ..X.*) (2.10) 

holdsfor every n x m matrix X withjrst row z and the other rows in B, there exists tEA 

such that 

&t,f(xz), . . ..f(x.))G4(xz. . . ..xJ 

holds for all x2, . . . . x,EB. 

(2.11) 

Proof. (i)=(iii)*(ii) is obvious. (ii)=(i). Let f: B +A a partial m-ary b-contracting 

operation. We can well order the set A”\B and, by transfinite induction, we can easily 

extend f to A”. 

Let (A,6) be such that the condition (*) holds. 

(i)=$iv). Let f; C$ and z be as in (iv) and let fbe a b-contracting extension off: Put 

t:=_?(z), let x2, . . . . X,EB and let X be the n x m matrix with rows z, x2, . . . . x,. Since 

f is b-contracting and (2.10) holds, we have 

@r,f( x2), ...I f(x.)) = Km*) ) . . ..f(x.*))a(x.,) v 1.. v 6(X.,) 

<4(X,* ,..., X,*)=4(x, ,-.., x,) 

proving (2.11). 

(iv)+(iii). Let f and z be as in (iii). Given an n x m matrix X with the first row z and the 

other rows in B put 4(X2., . . ..Xn.).=8(Xe1) v ... v 6(X.,). Then (2.10) holds and so 

by assumption there is t satisfying (2.11) for all x2,. . . , x,EB. Extend f to f ‘: BU (z} +A 

by setting f’(z):=t. We verify that f’ is contracting; due to (*) it suffices 
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to consider an n x m matrix with first row z and the other rows in B. The required 

inequality is then a consequence of (2.10) and our choice of 4. 0 

We have the following sufficient condition for one-point extensions. 

Lemma 2.6.2. Let (A, 6) satisfy the condition (*). Let B be a subset of A”, ueB and 

ZEA”\B be such that 

6(X*,) v ... v 6(X*,)<& Y*,) v ... v 6( Y*,) (2.12) 

for all m x n matrices X and Y with X1. := u, Y,. := z and Xj* = Y?E B (j = 2, . . . , n). Then 

every b-contracting f with domain B extends to a &contracting f’ with domain BU{ z}, 

Proof. Extend f to f’ by setting f’(z):= f (a). To prove that f’ is a-contracting 

consider two m x n matrices X and Y with X,.:=u, Y,,:=z and Xj*= Yj*EB 

(j=2, . . . . n). As f is b-contracting and (2.12) holds, we have 

S(f’(X,*), . ..1 f’(x..))=s(f(Y,*),...,f(Y”*))d6(X*,) v ... v 6(X*,) 

dS(Y*,) V ... v 6(Y*,). 0 

2.7. The extension property and the invariants of partial operations 

For a set K of ordinals and a set R of relations put PolK R := UksK P01(~r R and 

POlpK R := UksK Po~~‘~‘R. For a cardinal rc, let PolpKpG” R denote the set of all 

f EPolpKR with domain of size d rc. 

Note that Invck) PolK R consist of the k-ary relations on R preserved by every 

operation on A of arity IEK which in turn, preserves all pgR. Since Pol R G Polp R we 

have always 

Invck) PolK R 2 Invck) PolpK R. (2.13) 

We relate the extendability of all partial operations on A to the equality in (2.13). 

Proposition 2.7.1. The following conditions are equivalent for a set R of relations on A, 

a set K of ordinals and a cardinal rc: 

(i) every operation from PolpK*GK R, is a restriction of a (full) operation from Pol R, 

(ii) In@) PolK R = In@ P01p~*~” R, 

(iii) In@ PolK R = In@) PolpK R. 

Proof. Put C := PolK R and E := PolpK R. 

(iii)*(i) Let f EPolpK*G” R have domain DE A”‘. We may assume D nonempty; as 

1 D 1 <K, there is surjection s from K onto D. Put p := {g 0 s: gECnQ$“)). Clearly p is 

a rc-ary relation on A. We show that peInv @)C. Let gEC be p-ary and let rI, . . ..r.,Ep. 

Then ri=gioS for m-ary gigC (i=l, . . ..p). Define hEQ$” by setting 

h(a):=&,(a), . . . , gp( a)) for all aEArn. As C is a clone, we have heC and 

g(ri , . . . , r-r) = h 0 sep proving our claim. By (iii) we have pEInvcK) C c In@ E. Since the 
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projections ey belong to C, we have si := ey 0 sop (i = 1, . . . , m). Now the partial 

operation BEE preserves p and therefore f(sr, . . . . S,)EP. By the definition of p, we 

havef(s,, . . . . s,) = f^ 0 s for some ALEC. It is easy to verify that f^agrees with fon D and 

so, f^is the required extension. 

(i)=$ii) As remarked in (2.13) we have always z in (ii). To prove G, let PEInv@) C. 

Suppose f EE has domain DE A” such that 1 D ( d K. Applying (i), extend f to ALEC. 

Suppose rr, . . . . r,,,Ep are such that (r,(k),..., r,(k))cD for all kEg. In view of 

h :=f(rl, . . . , rP) =f^(rl, . . . , r,)Ep we get the required pEInv(“) E. 

(ii)+(iii) Again only G is needed. Let pEInv (‘) C. Let f EE be m-ary with domain 

D and let r l,...,rm~p be such that D’:={(r,(k),...,r,(k)): keg}gD. Denoting byf 

the restriction of f to D’, clearly f~Polp<. R. By (ii) we have f(rl, . . ..r.,,)= 

f’(r 1, . . . . r,)Ep, proving pEInvtk’ E. 0 

3. Metric and ultrametric spaces 

3.1. Metric over an ordered monoid 

3.1.1. Let _V= ( V; d , + , 0, - ) be such that 

(i) ( V, + ,O, <) is an ordered monoid (i.e. the binary operation + is associative and 

0 its neutral element and p < p’ and q <q’ implies p + q < p’ + q’; note that + need not 

be commutative). 

(ii) v +V is an automorphism of d which is involutive and reverses + in the sense 

that fi=v, (v+w)=W+V holds for all v, WEV. 

Note that 0 = 0 follows easily from (i) and (ii). 

A l/-predistance on A is a map d: A2 -+ V satisfying: 

(dl) d(x,x)<O; 
(d2) d(x, y) < d( x, z) + d( z, y) (the triangle inequality or a -inequality); 

(d3) d(y,x)=d(x,y) 
for all x, y, ZE A. 

The pair (A, d) is called a v-premetric space. A pair (A, d) satisfying (dl’) d(x, y) ~0 

o x = y and (d2) and (d3) is called a r-metric space or shortly a _V-metric and d is 

referred to as y-distance. As usual, the same letter d may represent different Y- 

distances provided there is no danger of confusion. 

3.1.2. Let 4 = (A, d) and A’ = (A’, d’) be binary spaces. Recall that f: A + A’ is a con- 

traction from 4 to A’ provided d’(f(x),f(y))<d(x,y) holds for all x,y~A. The map 

fis an isometry if it is injective and 

d’(f(x),f(y))=d(x,y) for all x,y~A. (3.1) 

Observe that for a y-metric space 4 and a _V-premetric space A’ a map f satisfying 

(3.1) is injective (indeed, if f(x)=f(y), then O>d’(f(x),f(y))=d(x,y) implies x=y). 
In real metric spaces contractions are usually termed non-expansive maps. 
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For a y-metric space 4 = (A, d) and B c A let d rB denote the restriction of d to B (i.e. 

dl,mapsB’into ~and(d~,)(x,y):=d(x,y)forallx,y~B).Call(B,d~,)thesubspace 

induced by B (or an induced subspace). Usually we write (B, d) instead of (B, d Is). 

The spaces considered in [13] are distinguished among y-metric spaces by the fact 

that the neutral element 0 (of the operation +) is also a least element of ( V, <). In this 

case the Property (dl) reduces to the standard property d(x, y)= 0 * x =y. Such 

spaces are discussed in detail in [13] together with several combinatorial and other 

applications. 

The _V-premetric and the y-metric spaces are closely related: Given a I/-premetric 

space (B, 6) define a binary relation M on B by setting b M b’ whenever d( b, b’) < 0. It is 

completely straightforward to verify that, modulo z, the y-premetric space (B, 6) 

becomes a Y-metric space. 

Lemma 3.1.3. The relation z is an equivalence relation on B. The map 6 is constant on 

each product C1 x C2 of blocks (i.e. equivalence classes) C1 and C2 of SZ. If D G B and 6’ 

and z’ are the restrictions of 6 and z to D and f a contraction from (D, 6’) into 

a V-metric space (A,d), then f (x)=f (x’) whenever x zx’. 

In view of Lemma 3.1.3 we concentrate on V-metric spaces. The I/-premetric spaces 

are needed only in the proof of Theorem 3.3.4. 

3.2. The possible values of a distance 

3.2.1. For the main result of this section we need the following rather technical 

concepts. Let VE V. Call v idempotent if v + v = v, selfdual if V= v and small whenever v is 

simultaneously idempotent, selfdual and v<O; we denote by V,, the set of small 

elements of V. Call v a distance value if v = d( x, y) for some I/-metric space (A, d) and 

x, YEA. We have: 

Lemma 3.2.2. An element VE V is small rf and only zfv = d( a, a) for some V-metric space 

(A,d) and LIEA. 

Proof. (3) Consider ({v}, d) where d(v, v) = v. The axioms of a y-metric space are 

satisfied due to v<O, v=v+v and v=ii. 

(-=) The element t’= d(a, a) satisfies v 60 by (dl). Next 

v:=d(a,a)dd(a,a)+d(a,a)=v+v<v+O=v 

by (d2), isotony and v<O. Moreover, fi=d(a,a)=d(a,a)=v. Thus v is small. 0 

Lemma 3.2.3. An element VE V is a distance value if and only if 

v+t?>a, i?+vab, a+v=v=v+b 

for some small a, bE V. 

(3.2) 
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Proof. (*) Let (A, d) be a V-metric space and v=d(x, y) for some x, yeA. Put 

a=d(x, x) and b=d(y, y). By Lemma 3.2.2 both a and b are small. We have 

a=d(x,x)dd(x,y)+d(y,x)=v+fi 

and similarly b d V + u. Using a < 0 we obtain 

u=d(x,y)<d(x,x)+d(x,y)=a+v<o 

proving a + u = v. The equality u = u + b is derived in a similar way. 

(-=) Let u, a, b satisfy (3.2) and let a, b be small. We have two cases: 

(1) Let u$ 0. Put A={O, l} and define d: (0, l} + V by setting, 

d(O,O):=a, d(O,l):=v, d(l,O):=G, d(l,l):=b. 

Using (3.2) and a, b small, it may be verified directly that d is a predistance. For 

example, d(O,O)=adO, d(l,l)=bdO. Now, if d(x,y)<O, then d(x,y)E{a,b} due to 

~$0, and Vgo=O and so (dl’) holds. 

(2) Let ~60. Then also 6~0 and from (3.2) we have: 

proving u = a. Thus u is small and so a distance value by Lemma 3.2.2. 0 

Put I:={uEE u+u=udO}. Note that UEZ implies UE~, hence i~I=y~ishows 

I=1 We have the following. 

Lemma 3.2.4. Let T be a non empty subset of I. If s := Sup T exists then SEI. If, 
moreover, T= T then S is selfdual. 

Proof. Clearly sb0. For each tET we have t = t + t <s+s and hence s<s+s. As 

s<O, we also have s+s<s+O=s. Now, - being an order automorphism, we have 

S=Sup{t: tET}=SupT=SupT=s. Cl 

3.2.5. For VE V, put Z(u):= { ~1: udv} and let rul:=SupI(u) provided it exists. 

Suppose rul exists. According to Lemma 3.2.4 the element rul is the greatest element 

of Z(u). We show that TV1 exists and rt71=rul. Indeed, since - is an order automor- 

phism, we have: 

rul=sup+ uE~, udvj=s~p{wd: ~~~v)=s~~{~d: w~fij=rq 

In particular, for u selfdual we have rvl=rVl=rvl and, as rulEZ, the element ru1 is 

small. Note that bgrul whenever b<u and b is small. 

We return to the distance values characterized in Lemma 3.2.3. Note that from (3.2) 

we get the necessary condition v < a + v < v + I?+ v. The question is when the condition 

ubu+V+v is also sufficient (for u to be a distance value). We start with a technical 

lemma. For brevity put a0 := v + V. 



M. Pouzet, I.G. Rosenberg/ Discrete Mathematics 130 (1994) 103-169 121 

Lemma 3.2.6. Consider the following statements: 

(i) both r II0 1 and r 8 1 exist and r v” l+u=u=v+r 3’1; 

(ii) both r v” 1 and r 8 1 exist and r u” l+v+r 19 l=v; 

(iii) v is a distance value. 
We have (i)*(ii)*(iii) for each VE V. Moreover, if v is such that r v” 1 exists whenever 

odv+ V+v, then (i), (ii) and (iii) are equivalent. 

Proof. (i)=k-(ii) u=r VO l+v=r VO l+v+r v” 1. 

(ii)*(iii) Put a :=r v” 1 and b :=r 8 1. F rom o=a+v+b and a idempotent 

a+v=a+a+v+b=a+v+b=v and similarly v+b=u. This proves (3.2) and (iii). 

Suppose r v” 1 exists whenever u < u + V+ v. We prove (iii)*(i). 

Let v be a distance value. Then we have v<v+V+v. Applying - to this we get 

V<V+V=+V. Consequently both r v” 1 and r i?’ 1 exist. By Lemma 3.2.3 the relation 

(3.2) holds for some small a and b. Then we have a <r u” 1~0 and therefore 

v=a+vQ 0O 1+0dv. 

The equality v +r co 1= v follows in a similar fashion and so (i) holds. 0 

In the sequel we adapt the standard notational convention: u + v A w stands for 

u +(v A w) and va := v A 0. In the next lemma we consider _V such that ( V, <) is 

a meet-semilattice satisfying: 

(D,) u+vO== un(u+oO) for all u,v~V. (3.3) 

Note that this law is equivalent to: 

(D,) Vod+U=(VO+U)AU for all U,VEv. (3.4) 

(Indeed, it suffices to replace u by U in (3.3) and apply the order automorphism - to 

both sides). We have the following lemma. 

Lemma 3.2.1. Let ( V, <) be a meet-semilattice and let _V satisfy (3.3). The following are 

equivalent for vE I/: 

(i) v is a distance value, 
(ii) v d v + V + v, 

(iii) r v” 1 exists and r v” 1+ v = v. 
If one of (i)-(iii) holds then 

(iv) v Oa is idempotent. 
Moreover, (iv) implies 

(v) r V” 1 exists and r v” J=vO~. 

Proof. (i)=$ii) As noted in 3.2.5, (ii) follows from (3). 

(ii)* Put r := v”+, 

v”+vo=v+v+v+v~v+v=vo, V”A\=VoAVoA\=VoA\=~. (3.5) 
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Applying (3.3) (3.5) we get: 

r+r=r+u”“=(r+uo) Ar=(u”+uO)AuoAr=uoAr=r, 

(iv)*(v) Follows from (iv) and r d 0, r d u”. 

(ii)=>(iii) From (v), (3.5) and (ii) we get 

rU”l+U=Uoa+U=(Uo+U)AU=(U+~+U)AU=U. 

(iii)+ii) + u” ~+u~u~+u=u+V+U. 

(iii)*(i) Applying - to ubu+V+u, we get VdV+v’+V and so v also satisfies (ii). It 

follows that (iii) holds for both u and V. Now the hypothesis as well as (ii) in 

Lemma 3.2.6 hold and so (i) holds. 0 

Remarks 3.2.8. (1) The implication (iii)*(ii) in Lemma 3.2.7 holds in every _V. We do 

not know whether (ii)+(iii) holds under other assumptions than those of Lemma 3.2.7. 

(2) Suppose 

r u” 1 exists and u=a+u, a<u” (3.6) 

holds for some small E V. Then a small and ad u” implies a <r u” 1~0, hence 

u=u+u <r u” l+u<a proving r u” 1+ u=u. Let the assumptions of Lemma 3.2.7 

hold. Since u = r u” 1+ u < u + V+ u, from (ii)*(i we get that uoa is idempotent 

and so r v” I= uoa. To see that an element a with the above properties may exist, 

consider _V such that ( V, <) has a least element 0’ and let u = 0’ + c for some CE V’. It is 

easy to see that 0’ is small and 0’ + u = u, 0’ < u”. For every 0’ <a <r u” 1, we have 

u=O~+udu+uqu~~+u=u,uqu~~~uO 

and so all small a in the interval (O’,r u” 1) satisfy (3.6). For an example of such non 

trivial interval, let V be the set of languages over a finite alphabet A and u be the set of 

all non-empty words over A (cf. 4.3). Then r u” 1 is the set of words of length different 

from 1. Such an example shows that we may have d(u, b) = d(u’, b’), without 

d( a, a) = d( a’, a’) and d( b, b) = d( b’, b’). 

Motivated by (iii) in Lemma 3.2.7 for UE V put 

A,:=(uEV: U~U, r UO 1 exists and r UO J+u=u}. 

We have the following. 

Lemma 3.2.9. Let r u” 1 exist. Then r u” 1+ u is the greatest element of A,. If, moreover, 

_V satisfies the assumptions of Lemma 3.2.7, then r u” 1+ u is the largest distance value 

<u. Finally, ifr 19 1 also exists then 

~u~~+u=u+~~~~=~u~~+u+~~~~ (3.7) 

Proof. Put r :=r u” 1 and w := r + u. By 3.2.5, the element r is selfdual and so r is small. 

Next G=z?+r and 

r=r+r+r<r+u+C+r=w+G<u+z? (3.8) 
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The set Z(U) has been introduced in 3.2.5. From (3.8) we get rFl(w +G)~Z(u+fi). 

Moreover for everyx EI( w + W) we have x d r u + V 1= r and r w + W 1 exists and equals 

r. We have: 

and w = r + u < v due to r d 0. Thus WE&. Let XEA, be arbitrary. Then r x+X 1 exists; 

from x<u we have r x+X l<r u+iFl=r and x=r x+x l+x<r+v=w proving that 

w is the largest element of A,. Let the assumptions of Lemma 3.2.7 hold. From (i)o(iii) 

in Lemma 3.2.7 we see that w is the largest distance value <u. Finally suppose that 

r C” 1 also exists. From what has just been shown, r 0” 1+ v is the largest distance value 

dV. Noting that r @ 1 is selfdual and applying - we obtain that z:=v+r t?’ 1 is the 

greatest distance value below v. Thus w =z proving the first equality in (3.7). By 

Lemma 3.2.7 the element r u” 1 exists whenever u < u + G+ u. Applying Lemma 3.2.6 

(ii)Q(iii) we obtain the second equality in (3.7). Cl 

Remarks 3.2.10. (1) Even under the assumptions of Lemma 3.2.7 we do not know 

whether the existence of r v” 1 implies the existence of r 8 1. Suppose that r v” 1 exists. 

By Lemma 3.2.9 the element w :=r u” 1+ u is a distance value, whence W is a distance 

value and r W+ w 1 exists by Lemma 3.2.7. However, we do not know whether 

r w+~ ~=2:+~. 

(2) We can prove the following: Let r v” 1 and r UO 1 be dejned and let 

rvo10+r601+fi, rqdv+ rtiol+v. (3.9) 

Then u:=r u” 1+ v +r 8 1 is the largest distance value below v. 

Indeed, put r:=r u” 1 and s:=r Co 1. Noting that both r and s are small and using 

(3.9) we get 

r=r+r+r<r+u+s+fi+r=r+u+s+v+r=u+u. (3.10) 

We have u=rv” l+v+r u” JGU and SO r u” l=r<u+ii<u+6=u”. Thus r U+U 1 

exists and equals r. Now from u=r +v+s and r idempotent we get 

r u+ U 1+ u =r+u=u. Proceeding in a similar fashion we get r U+U l=s, and 

u + r U + u 1= U. From (i)*(iii) in Lemma 3.2.6 we obtain that u is a distance value. As 

shown above u <v. Let x be a distance value and let x <v. Let a and b be the 

corresponding small elements from (3.2) then a dx + X<r v” 1 and b <r I?’ 1 and 

x=a+x=a+x+bdr v” l+u+r I?’ l=v. Thus u is the largest distance value du. 

3.3. Extension property, convexity and hyperconvexity 

3.3.1. Let M be a class of r-metric spaces and K a cardinal. A space AEM has the 

one-point K-extension propertyfor M if for every B = (B, d)EM, each contraction from 

a subspace (D, d) of B into A such that IDI < rc, extends to a contraction from 

(Du{u},d) into 4 f or every UEB\D. If 4 has the one-point rc-extension property for 

every K we say that 4 has the one-point extension property for M. For instance, if yis 
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a join-semilattice and M is the class of finite powers of a fixed Y-metric space A_ we get 

the extension property defined in Section 2. 

Let (A, d) be a V-metric space, XEA, r~ V and TV V small. Put 

U,:={aEA: d(a,a)<t}, B(x,r):={aEA: d(x,a)<r} 

and call B,(x, r):=B(x,r)nU, a t-bull. We have: 

Lemma 3.3.2. Let 4 =(A, d) and B=(B, 6) be I/-metric spaces, D = {ei: i < K} GB, 

UEB\D and f a contraction from the induced subspuce (D, 6) into 4. Put t:=6(u, u) and 
ri:=S(ei,n), xi:=f(ei) (i<rc). Then 

(1) The contraction f extends to a contraction from (Du{u}, 6) into A tf and only 
if n{B,(xi, ri):i < IC} is nonempty. 

(2) Let r u + 17 1 exist for all UE V. Then r ri + t + 6 1 exists and 

tGYi+r ri+t+< l+ri, (3.1 li) 

d(xi,xj)<ri+t+rj 

holds for all i,j < JC. 

(3.12ij) 

Proof. (1) (a) Let g be the extension off to Du{u}. For all i<lc we have d(g(ei), 
g(n))< 6(ei, U) =ri proving that z:=g(u)~B(Xi, ri). Moreover, d(z, Z) b&u, u)= t and SO 

ZEB,(X~, ri) for all i < IC. 

(0 Let zEB,(xi,ri) for all i<rc. Put g(u):=z and g(ei)=f (ei) for all i<tc. It suffices 

to show that g is a contraction from (Du{u}, 6) into (A,d). For this we only need to 

verify 

d(g(ei), g(U))=d(xi,z)~riG(ei,u), 

(2) For i<lc, we have 

d(g(u), g(u))=d(z,z)b t=Q,u). 

6(ei,ei)~6(ei,U)+6(U,U)+6(U,ei)=ri+t+ri. 

By Lemma 3.2.2, both the elements t and 6(ei,ei) are small. Setting u:=ri+ t we have 

v’:=v+v=ri+t+t+ri=ri+t+ri. 

By assumption r ri + t + < 1 exists and by 3.2.2 also 6(ei, ei) < r ri + t + c 1. 

Now 

t:=6(u,u)~6(u,ei)+6(ei,ei)+6(ei,U)~ri+ r <+t+ri l+ri 

thus proving (3.1 li). Since f is a contraction, 

proving (3.1.2ij). q 
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3.3.3. In the remainder of this section we assume that r u+ U 1 exists for all UE V. 

Motivated by Lemma 3.3.2, we say that a Y-metric space (A, d) is u-conuex if for all 

Xi~A, TiE V (i < K) and all tE V, satisfying 

t3.11i) 

d(Xi,Xj)<ri+t+rj 

there is zEr){B,(xi, Ti): i<lc} i.e. satisfying 

d(z, z) d t, 

d(xi, z) < li 

for all i < K. If A is K-conuex for all K, we call 4 hyperconuex. 

(3.12,) 

(3.13) 

(3.14,) 

The main result of this section is the following theorem. 

Theorem 3.3.4. A U-metric is Ic-convex if and only if it has the one-point K-extension 

property in the class of v-metric spaces. 

Proof. (3) Lemma 3.3.2. 

(-z=) Let (A, d) be a Y-metric space with the one-point K-extension property and let 

Xi~A, riE V(~<K) and tE V,, satisfy (3.111) and (3.12,) for all i,j<lc. For each i<lc put 

si:=r ri+t+K 1 and ui:=si+ri. Put s:={i: i<K} and B:=Jcu{u} where u is an 

element outside K. Finally define 6:B2+ V by setting 

6(U,U):=t, 6(i,i):=Si, 6(i,U):=Ui+t, 6(U,i)=t+i&, 

6(i,j)=Ui+t+uj for all i,j<K, i#j. 

We need the following. 

Fact 1. The space (B, 6) is a _V-premetric space. 

Proof of Fact 1. Recall that each SiEI’v, by 3.2.5. From this and tEV, we see that 

6(b,b)<O and s(b,b)=d(b,b) holds for all bEB. Next for i, j<q i#j we have 

It remains to check the validity of the A -inequality 6(i, j) < 6(i, k) + 6(k,j) for all i, j, 

keB. First note that for i,jElc we have 6(i, j)<Ui+ t+Uj. Indeed, if i#j we have even 

equality while for i = j taking into account si =r ri + t +< 1~ V, we have 
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Note that due to (3.1 lk) and t, SUE V,, we have 

t<t+u,+u,+t. 

We distinguish the following cases. 

(1) Let i, j, k~lc. 

(a) Let i # k #j. Then from (3.15J 

6(i,j)=ui+t+ujdui+t+Uk+Uk+t+Uj=8(i, k)+d(k,j). 

(b) Let i = k #j. We have 

Ui+t=Si+ri+t=Si+Si+ri+t=si+ui+t 

and so 

6(i,j)=Ui+t+uj=Si+Ui+t+uj=~(i, i)+d(i,j) 

(c) Let i #j = k. Applying - to (3.16,) we get 

t+uj=t+uj+Sj 

leading to 

6(i,j)=ui+t+q=ui+t+uj+sj=6(i,j)+d(j,j). 

(d) Let i=j= k. Then 

6(i, i)=Si=Si+Si=6(i,i)+6(i, i). 

(2) Let exactly one of i, j and k equal u 

(a) Let k=u. Then, since i, j< K, we have 

6(i,j)=Ui+t+uj=ui+t+t+uj=6(i,u)+6(u,j). 

(b) Letj=u. Then by (3.1&) 

6(i,u)=ui+tdui+t+Uk+Uk+t=8(i,k)+6(k,U). 

(c) Let i=u. Apply - to (3.17,). 

(3) Let exactly two of the elements i, j and k equal u. 

(a) Let i < IC. Then 

6(i,u)=ui+t=ui+t+t=6(i,u)+6(u,u). 

(b) Let j< rc. Apply - to (3.183). 

t3.15k) 

(3.161) 

(3.171) 

(3.18;) 
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(c) Let k<rc. Then by (3.1&). 

@,u)=t<t+tri;+u,+t=6(u,k)+&k,u). 

(4) Finally let i=j= k=u. Then 

6(u,u)=t=t+t=6(u,u)+6(u,u). 0 

Fact 2. The map f(i):= Xi(i < K) is a contraction of (g,6) into (A, d). 

Proof of Fact 2. Let i, j < K. Note that by (3.12;1) we have d(xi, Xi) d Yi + t +ri. Since 

d(xi, Xi) is small, by Lemma 3.2.4 we have d(xi, xi) < si = r Ti + t + 6 1. NOW by (3.12ij) 

we have 

4fGL f( j))=d(Xi, Xj) d ri + t +rj. 
Thus for i # j we have 

d(xi,xj)=d(Xi,Xi)+d(Xi,Xj)+d(Xj,Xj)~si+ri+t+rj+sj=Ui+t+uj’S(i,j) 

whereas 

d(f(i),f(i))=d(Xi, Xi)bSi=6(i, i). 0 

Let z be the equivalence on B defined in Section 3.1. By Lemma 3.1.3 it is an 

equivalence. Let B” denote the set of blocks of z. Also by Lemma 3.1.3, we may define 

a map 6” : Bo2+ V assigning to Cr , C,EB” the element 6(c1,c2) where ciECi are 

arbitrary (i= 1,2). For DGB put D”:={CEB” : CnD #O} (the hull of D in z). Letf be 

the map from Fact 2. Definef”: D”+A by settingf” (C):=f(c) for all CEB” and any 

CEC. We have the following. 

Fact 3. (B”,S”) is a y-metric space and f” is a contraction from (D”,6”) into (A,d). 

Proof of Fact 3. In view of Lemma 3.1.3 it is clear that (B”,6”) is a V-premetric. Let 

6”(C,,Cz)<0. Then 6(c1,c2)=8”(C1,Cz)<0 for some CiECi (i=1,2) whence c1zc2 

and Ci = Cz.Thus (B”, 6”) is a Y-metric space. The other statements follow from 

Fact 2. 0 

Proof of Theorem 3.3.4 (conclusion). Put D:= K and letfdenote the map from Fact 2. 

Consider the contractionf” from the metric subspace (so, 6”) of (B”, 6”) into the metric 

space (A, d). By the one-point K-extension propertyf” extends to a contraction g from 

(B”,6”) into (A,d). Let Z denote the block of z containing u and put z:=g(Z). 

Similarly for i<lc let iEX,EB”. Taking into account Lemma 3.1.3. we obtain 

d(z,z)=d(s(Z), s(Z))~6”(Z,Z)=6(z,z)=t, 

d(xi,z)=d(g(Xi),g(Z))<6”(Xi,Z)=6(xi,u)=ri+t<ri 

for all i < K. This proves that (A, 6) is K-convex. 0 
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3.3.5. The following special case provides an illustration of the meaning of 2- 

convexity. Let (A,d) be a r-metric space. Recall that 

(d)“:={(x,y)EAZ: d(x,.Y)Gu} 

for all VE V (cf. 1.3). Let p and CJ be binary relations on A. The composition ( relational 

or de Morgan product) and the inverse (converse) relations are 

p 0 g:= { (x, ~)EA’: (x, u)E~, (u,y)~a for some UEA} 

and p-l:= {( y, x): (x, y)~p} . The relations p and r~ permute (commute) if p 0 G = G 0 p. 

Finally p is symmetric if p=p-1 and rejexive if p 2 {(a, a):a~A} . Recall that 
(poo)-l=o-lop-l. 

The following is immediate. 

Fact. (d);’ =(d);, (d),o(d),~(d),+. holdsfor all u, DE V. 

We have the following. 

Lemma 3.3.6. Assume that 0 is the least element of (V, G); let (A,d) be a 2-convex 

y-metrix space and u, VE V. Then (d), is reflexive and (d), 0 (d),=(d),+.. Consequently, 
(d), and (d), permute whenever u + u = o + u. 

Proof. The relation (d)” is reflexive on account of d(x, x)<O <u for all XEA. Let 

(x1,x&(d)u+v hence d(xI , x2) Q u + (17). By 2-convexity d(xI, z) <u and d(x2, z) Q 5 for 

some ZEA, proving (x1, x2)E(d), 0 (d),. Combining this with the Fact above, we have 

(d),o(d),~(d),+,c(d),o(d),. 0 

Lemma 3.3.7. Let Y be such that r V+V 1 existsfor all VE_V. 

(1) The following are equivalent: 

(i) r U+U l=r ii+r u+u l+u lfor every U. 

(ii) t<ti+u ifand only ift<ii+r u+t+ul+ufor every u, and every small t. 

(2) If moreover, w A 0 exists for every self-dual element w and for all v, bE V 

(R2) (V+(6+b)AO+u)r\O=(v+6+b+u)/\(U+u)/\O, 

(R3) (u+IT)AO+(U+~T)AO=(U+V+U+~~)A(U+C)AO, 

then the above conditions (i) and (ii) are satisjed. 

Proof. (1) (ii)*(i) Since ru+UlGO, we have u+r u+ll+udU+u, and thus 

Z(U+ru+UJ+u)cZ(u+u). For the converse, let t=rti+ul. Then t is small and 

tdt.i+u, thus from (ii) we have t~u+ru+t+ul+u~u+ru+ul+u, giving 

I (u+u)sZ (U+ru+iil+u). From Z(U+u)=l(U+r u+ul+u) and the existence of 

r u + u 1 the equality in (i) follows. 

(i) *(ii) We only need to prove that if t<ti+u then tbti+ru+t+Gl+u (the 

converse follows from the fact that U +r u + t + ii 1+ u <ii + u for all small t). Applying 
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(i) to u’=u+t, we get: rt+u+u+t l=rt+u+ru+t+?+u l+u+t 7 Using the fact 

that t is small (i.e. t<O, t+t=t,?=t), from t<C+u we get t<?+ii+u+t and thus 

tqt+ii+u+t l=p+ii+p4+t+fil+u+t lq ii+ru+t+ti J+u 1 

(2) For a small t such that t <U+u, let a=(u+t+G)AO We claim that 

r u + t + U 1= IX. It suffices to show that LX is idempotent. Applying (R3) to u= u + t and 

using t=t+t=t+t we get 

cc+a=(u+t+u+u+t+u)A(u+t+u)AO. 

Since t d U + u, it follows 

u+t+u=u+t+t+t+udu+t+~+~+t+~, 

yielding c( + c( = tl. 

We claim that for every small t, t < U + u implies t < U+ (u + t + 17) A 0 + u. Indeed, 

from (R2) we get 

(ti+(u+t+ii)r\O+u)AO=(z7+u+t+z7+u)r\(ii+u)r\O and tQC+u implies 

t=t+t+t+t<u+u+t+u+u. 

From the fact that (u + t + U) A 0 =r u + t + U 1 we get condition (ii). 0 

Lemma 3.3.8. Assume that every subset X of V, has a supremum in K Then 
(1) For every family r = {riE V: i < K} in V and each aE V, the set 

T,={teI/,: t<a, t<Fi+rri+t+Fil+ri for all i<lc} 

has a largest element f;(a). 

(2) A _V metric space (A, d) is Ic-conuex iffor all families r = {riE V: i<lc}, {XiEA: 

i<tc}, and aEV,, the intersection “{B,(xi, ri): i<rc} is non empty if and only if 
d(xi, xj) < ri +fr+(a) + Fj holds for all i, j < K. 

(3) If, moreover, the set ((01~) of elements below 0 is a complete lattice satisfying the 
distributivity conditions (R2), (R3) from Lemma 3.3.7 then 

f;(a)+ A((fi+ri)ALZ: i<K}l. 

Proof. (1) From our assumption V has a least element 0’. This element is small and 

belongs to T,. From Lemma 3.2.4 and T,G V, we get that f;(a):=Sup T, exists and 

belongs to V,. Now for Te T, and i< JC, applying the fact that u++r u 1 is order 

preserving, we obtain 

t<fi+r ri+t+Fi l+ri<Fi+r ri+fT(a)+Fi l+ri 

and SO fT(a)<Fi+r ri+fy(a)+Fi l+ri for all i<rc proving f;(a)ET,. 
(2) Sincef;(a)dFi+r ri+fT(a)+Fi l+ri, a K-convex metric space must satisfy the 

condition of the lemma. 
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Conversely, given Xi~A, riE V (i < rc) suppose a small t satisfies 

t<fi+r vi+t+r, l+ri and d(xi,yj)dri+t+Fj for all i, j<ic. 

Then t<fT(t) and thus d(xi,Xj)<ri+fT(t)+fj for all i, j<K. 

The condition of the lemma implies that n{Br(xi,ri): i<K} #$I and thus A is 

K-convex. 

(3) Immediate from Lemma 3.3.7(ii). 0 

3.3.9. A family {tie V: i < K} is a subzero family if ti 60 for some i < K. Call _V a weak 

Heyting algebra, or briefly weakly Heyting if: 

(1) The set ((01,~) of elements below 0 is a complete lattice. 

(2) For every subzero family {gin V: i < K} and all u, UE V, the following equality 

holds: 

U+ A {pi: i<Ic}+V= A {U+ti+U: i<lc}. (3.19) 

For example, if 0 is the least element of 41 then trivially v is weakly-Heyting. 

Forv~Vandn~odefineinductivelyu~nbysettingo~O=Oandv~(n+l)=u~n+v. 

We have the following. 

Lemma 3.3.10. If _V is weakly Heyting then for all u, UE V and all subzero families 

{tiEI’: i<lc} and {qjeV: j<A} we have: 

(i) r u ]= A (u.n: n<o} (3.20) 

(ii) A{ri: i<iC}i- A{qj:j<A}= A{(si+y]j: i<lC,j<l} (3.21) 

PrOOf. Put 5~ A{(i: i<rC}, q= A{ylj:j<A}. 

(ii) Applying (3.19) twice we get 

= A{A{5i: i<K}-k~j:j<n}= A{A{5i+?j: i<K}:j<~} 

= /\{9i+?j: i<K,j<L). 

(i) Putu’= A {u~n:n<o}.From(3.19)above,wegetu’+v’= r\{u.n+u.m:n<o, 

m<o}.Sinceu.n+u~m =u~(n+m)foralln,m<o,thisgivesu’+u’=u’,thusu’~Z(u). 

For UEZ (u) we have u = u . n < u . n and so u < A {v . n: n <co} = u’. Consequently v’ is the 

largest element of Z(u), that is u’=r u 1. 

(iii) We have r 5 ]= A (5.n: nto} thus 

U+rr; J+u= A(u+t.n+u: n<w}. 
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It suffices to show that 

u+t.n+u= A 
i 

u+ 1 &,+u: CJ’EJC? (3.23) 
j<n 

The proof goes by induction on n. For IZ = 0, we have Cj< ,, &,, = 0 thus both sides of 

(3.23) reduce to u+v and the result follows. Suppose (3.23) holds for n- 1 and all U, 

VE V. Applying (3.19) and (3.23) we have 

u+5.n+v=u+5.(n-l)+<+v= A 
i 

u+ c &,+<+v: rTEIC”-’ 
j<n-1 I 

= A U+ C 5,“,+ A {pi: i<K}+v: 6EK~ 
j<n-1 

= A 

i 

U+ c &,,+U: ZEK” 

j<n 1 

so (3.23) holds for n concluding the induction and the proof. 0 

Lemma 3.3.11. Zf _V is weakly Heyting then it satis$es (R2) and (R3) of Lemma 3.3.7. 

Proof. Applying (3.19) to tO:=6+b and tl:=O we get 

(v+(i;+b)AO+v)AO=(6+6+b+v)A(i?+u)hO 

proving (R2). 

Put tl =(v+ ii) A 0. Applying twice (3.19) we get 

cC+Cr=cC+((V+Z?)A~)=(~+V+7?)Ar\ 

=((~+V+~+V)A(~+G))A~=(~+V+V+$AM, 

thus proving (R3). 0 

Theorem 3.3.12. If v is weakly Heyting then a Y-metric space 4 is K-convex $and only 

if it satisfies the following condition: 

(HC,) For all XiEA, TiE V (i<K) and all tE V,, the intersection r){B,(x,,r,): i<lc} is 

nonempty if and only if d(xi, Xj)dri+ t+Fj for d i,j<K. 

Proof. Let Xi~~, riE V for i <K and let tE V,. Put r= {ri, i< K}. According to 

Lemma 3.3.8 it suffices to prove the following. 

Claim. If d(xi,Xj)<ri+t+rj for all i,j<K then d(Xi,Xj)<ri+f,‘(t)+Fj 

Proof of the Claim. Put K’ + 1 = KU{ K} , 5i = fi + ri for i < K and ti = t for i = K. Since 

V is weakly Heyting, from Lemma 3.3.11 and Lemma 3.3.8, we get 

f;(t)=r A{(ri-t-ri)At:i<K} 1. 
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Since t<O, the family (pi: i<lc+ l} is subzero, thus from Lemma 3.3.1O(iii) we get 

and so we only need to prove that for every n CO 

d(xi, xi) G li + C <o(l) + rj (3.24) 
Zin 

holds for all (TE K’“, i, j < IC. 

We proceed by induction on n. From d(xi, yj) <ri + t +rj and t 60 we deduce 

d(Xi, Yj) 6 li + Fj and SO (3.24) holds for IZ = 0. 

Suppose (3.24) holds for n - 1. Let (TEK’“-. We have two cases: 

(1) &,C1,= t for every l<n; in this case 

ri+ 1 56(1)+Y;.=Ti+tn+~j=ri+t+rj~d(Xi,Xj). 
I<n 

(2) 5c(b~ = fgcfo) + r,(l,) for SOme LJ. 

We write 

ri + 1 L(r) + rj= ri + C h(r) + ‘b(r,) +r~(f,) + 1 50(r) + rj. 
I<#3 1 <io f,<l<?l 

The induction hypothesis ensures that 

ri + C Lq) + fouo) > d(xi, x0& and rock,) + C L(r) + fja ~(XO(~,)T xj). 

1 <i0 I,<l<lI 

From the a-inequality we get 

ri + C to(l) + rja d(xi, XCT(I,)) + d(Xo(l,), xj) 2 d(xi9 xj). 

I-=?8 

This concludes the inductive proof of the claim, and of the theorem itself. 0 

33.13. A collection B of sets has the 2-Helly-property if nY is nonempty whenever 

Y GB consists of pairwise intersecting sets; equivalently n{Xi: Xi~B, iEZ} #@ when- 

ever XinXj#s for every i, jEZ. 

Proposition 3.3.14. Let I( be a weakly Heyting algebra, K> 1 be a cardinal and 4 be 
a v-metric space. Then 4 is Ic-convex $and only $4 is 2-convex and for each small tE _V, 
every rc-collection of t-balls has the 2-Helly property. 

Proof. (=z-) Let te V be small and x,EA, riE V (i< IC) be such that for all i, j< K there 

exists ZijEB, (xi, ri)nBt(xj, rj). Then 

d(xi,xj)~d(xi,zij)+d(zij,zij)+d(zij,xj)~ri+t+rj. 
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The rc-convexity insures the existence of an ZEA such that d(z, z) d t and d(xi, z) < ri for 

all i < K. NOW ZE r){B,(xi, ri): i < IC} as required. 

(e) Let TV V be small and x,EA, YiE V’(i < JC) be such that d(xi, xj) < ri + t + Fj holds 

for all i, j<tc. By 2-convexity there is zijEB,(xi,ri)nB,(xj, rj). From the 2-Helly 

property there is zEn{B,(xi, ri): i < tc}. Clearly z has the required property. 0 

3.4. Retraction, injectivity and hyperconvexity 

3.4.1. Let E and E be Y-metric spaces. A contraction f :E-*F is a coretraction 

(retraction) provided g of= idE (fo g = idr) for some contraction g:F-+E. Call E a re- 

tract of F and write EaF if there is a coretraction from E to E (or, equivalently, 

a retraction from E to E). 

Coretractions from E to F are isometric embeddings from E into &‘. For an 

arbitrary E the converse is in general false. Spaces E for which this holds true play an 

important role. Formally they are defined as follows. 

Let M be a class of V-metric spaces. Call EEM an absolute retract with respect to 

M (and with respect to the isometries between the members of M) if every isometry 

from E into FEM is a coretraction. (In this paper the absolute retracts, abbreviated 

AR, are all with respect to the isometries but in other contexts they may refer to other 

morphisms (cf. [13]). Next EEM is injective with respect to M (and with respect to the 

isometries between members of M) if for all E, F, GEM, every contraction f: E--+F and 

each isometry h: E-+G we havef=g 0 h for some contraction g:G-+F. 

Absolute retracts and injectives are linked by the following fact. 

Theorem 3.4.2. With respect to M, every injective is an absolute retract and every 

retract of an injective is an injective; moreover, every product of injectives is an injective. 

This fact is purely categorical and has not much to do with metric spaces. 

Nevertheless, in our content, we can derive it from the following lemma. 

Lemma 3.4.3. If M is closed under isometric subspaces (i.e. if (A, d)EM, and X c A, then 

(X,d rX)~M), then (A,d) is injective with respect to M if and only if (A,d) has the 

one-point extension property for M. 

Proof. Transfinite induction. 0 

Lemma 3.4.4. Let M be a class of metric spaces, and tc be a cardinal. The class of 

(A,d)EM which have the one-point n-extension property is closed under retracts, and 

under products (where such products exist). 

Proof. (a) Let AEM, A’ be a retract of A, BEM, D be an isometric subspace of B, f: 

D+A’ be a contraction and let UGB\D. In order to show that f extends to u, select 
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h: A’+& k: &A’ so that ko h= l,.. Since hof: D-4 and 4 has the one-point 

K-extension property, there is g extending h of on Du{u>, but then k 0 g is a contrac- 

tion extending f to Du { u} . 
(b) Let (Ai: ill) be a family of members of M having the one-point K-extension 

property. Assume that the (categorical) product P=Il{&: ill} is defined. For each 

ill, let pi: P~Ai be the ith projection. Let BEM, D be an isometric subspace of B, 

f: D-p, and let UEB\D. For each ill, the space Ai has the one-point K-extension 

property, thus the map piof: D~Ai has an extensionfi to D’:=Du{u}. Since p is the 

product of the Ai’s, there is a map g:LJ ‘+P such that piog=fi for all ill. This map 

extendsf: 0 

A similar result holds for V-metric spaces (A, d) satisfying the following convexity 

condition (HC,) (cf. Theorem 3.3.12): 

For all x,EA, Z)iE V’, (i < K) and all TV I’,: the intersection n {B,(xi, ri): i < K} is 

non-empty if and only if d(xi, xj) < ri + t +‘j for all i, j < K. 

Lemma 3.45. Let K be a cardinal. The class C, of V-metric spaces satisfying (HC,) is 

closed under retracts and under products (where such products exist). 

Proof. Let A =(A, d)EC, and let B:=(B, 6) be retract of A. Without loss of generality 

we may assume that BGA and 6 is the restriction of d to B. Let t, xiEB and ri(iEK) be 

such that d(xi,xj)<ri+ t +<, for all i, j<rc. Since 4 satisfies (HC,) there is ZGA such 

that d(z, z)< t and d(xi,z)dri for all i< tc. Let f: A+B denote the corresponding 

retraction. Put z’:=f (z). We have d(z’, z’) < d(z, z) < t and similarly d(xi, z’) 6 ri for all 

i<~ proving that BEC,,,. 

Let Aj=(Aj,dj)ECYE for all jEJ. Let A:=(A,d) denote the direct product of the Aj 

(jgJ). Let t be small, let Xi~A and TiEI’ (i<K) be such that d(xi,xj)dri+t+rj 

for all i, j< K. For a fixed ~EJ, from the definition of d we get dc(xi(e), 

(~~(8)) < d(xi, xi) < ri + t + 6 for all i, j < K. Now from the HCk property in A, we obtain 

the that there is z(~)E& such that d(z(Q, z(/))<t and d<(xi(L), z(e))<ri for all i<K. 

The element ZEA thus defined satisfies d(z,z)=Sup {d,(z(e), z(6)): ~EJ } d t and 

d(xi,z)<ri for all i<tc. 0 

3.5. Metric spaces over a Heyting algebra 

3.5.1. Let _V=(V; 6, +, 0, -) be as in 3.1.1. For p, q~Vput 

D,,:={xEV: p+x>q, q+X>p}. (3.25) 

If the set D,, has a least element we denote it by d,(p, q) and say that dY(p, q) exists. We 

say that d, exists if d,(p, q) exists for all p, qE V. We have the following. 

Lemma 3.5.2. If d, exists then (V, dr) is a V-metric space. 
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Proof. For every PE V we have OED,, and so d,(p,p)<O. Conversely if d,(p, q)60, 

then OED,, and so p 3 q >p proving (dl ‘). To prove (d2) it suffices to note that - being 

an order automorphism, we have 

D,,={xeV: q+x>p, p+X3q}={X~V: q+X>p, p+x>,q}=&,,, 

thus proving (d2). Finally let p, q, YE V and x:=d,(p, r), y:=d,(p, q), z:=d,(q, r). By 

(3.25) we have p+y>q, q+j3p, q+z>r, r+z>q, and SO p+y+z>q+z>r, 

r+F+j>q+jap, proving that y+z~D,, and the required x=d,(p,r)<y+z. 0 

The V-metric space (V, d,) is related to an arbitrary V-premetric space by the 

following formula. 

Lemma 3.5.3. Let d, exist and let (A, d) be an arbitrary F/-premetric space. Then: 

d(x> Y) =d,(d(x, x), d(x, Y)) = Sup{d,(d(z, x), d(z, Y)): zeA} (3.26) 

for all x, YEA. 

Proof. Let x, y, ZEA and 

a:=d(x, y) b:=d(z, x), c:= d(z, y), e:=d(x, x). 

From (d2) and (d3) we have cd b + a, b d c + 5 proving aE DbC and hence d,(b, c) < a. 

Thus a is an upper bound of the set S:= {d,(d(z, x), d(z, y)): ZEA}. On the other hand, 

from (3.25) and e:=d(x, x)dO we get a<e+d,(e, a)dd,(e, a) whence d,(e, a)~,$. Thus 

Sups exists and equals both a and d,(e, a). 0 

Remark 3.5.4. Suppose d, exists. Its companion JK) is defined by setting JY (p, q) = 

d,(q, p) for all p, qE V. Under the assumptions of Lemma 3.5.3 we have 

4x> Y)= a,Mx, Y), 4y, Y))=~uP{ dy(d(x, 4, 4y, 4): =A}. (3.27) 

Example 3.5.5. Let I/=( V; 6, v, 0, id,,) where (V; v, A, ‘, 0, 1) is a boolean 

algebra. Then D,,:= (XE V: p v x 3q, qvX>p}={xEV: x>p+q} where 

p+q=(pr\q’)v(qr\p’)andsod,(p,q)=p+q.If Visa booleanalgebraofsets then 

d,(p, q) is the symmetric difference pdq. (If we put 6(p, q):=IpdqI we obtain an 

[W.-metric space (V, 6) related to the Hamming distance and widely used in combina- 

torial applications). If V consists of sentences then d,(p, q) measures how far the 

sentence p is from being logically equivalent to the sentence q, e.g. d,(p, q) = 0 iff they 

are logically equivalent. Distances over boolean algebras were considered in [S]. 

3.5.6. Call _V solid if (V, <) is a complete join-semilattice and d, exists. Recall that for 

(V, <) a complete join-semilattice, A:=(A, d) a V-metric space and I a set, the power 

A’ is (A’, d) where d(f, g):=Sup{d(f(i), g(i)): iEZ} for allJ; gEA’. 
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Proposition 3.57. Let _V be solid. Then every y-metric space embeds isometrically into 

a power of (V, dy). 

Proof. Let A and B be V-metric spaces and let H= Hom(A, J3) denote the set of 

contractions from A to B equipped with the v-distance of B* (i.e. d(f; g):= 

Sup{d(f(a)Y s(a)): aeA}. Denote by G the set Horn@, B) equipped with the _V- 

distance of @. For a fixed aEA define (p,:H+B by setting ~,(f):=f(a) for everyf&. 

Now (P=EG (because d(q,(f), cp,(g))=d(f(a), g(a))<d(f, g). Finally define (p:A+G by 

setting cp(a):=cp, for all aEA. Again cpEHom(A, G) as for all x, yeA we have 

d(cp(x), &))=d(cp,, ~,)=Sup{d(~U)~ cp,(f):f# 

=Sup{d (f(x),f(~)):f~H) <d(x, Y). (3.28) 

The above is a true for any B. Choosing B:=(V, dK) we show that cp is the required 

isometrical embedding. Indeed, (for given x, yeA) define f: A+B by setting 

f(a):=d(x, a) for all aeA. By Lemma 3.53 the mapfis a contraction and by (3.26) we 

have d(x, y)= d,(d(x, x), d(x, y))= d,(f(x),f(y)) and so (3.28) is an equality. Since all 

our spaces are V-metric, this proves that cp is an isometry. 0 

Remarks 3.58. Let Y be solid and A =(A, d) a Y-metric space. For YEA define 6,: 

A+ V by setting &(x):=d(x, y) for all XEA. Further let 6: A-V* be defined by 

6(y):=& for all YEA. Now 6 is an isometry from 4 into (V, d,)*. Indeed, applying the 

definition of sup-distance and Lemma 3.5.3, for all y, ZEA we obtain 

d@(y), 6(z)) = d(&, a,)= SUP &(&(4, U-4): XEA > 

= SUP &44x, ~1, 4x, 4): =A} = d(y, 4. 

Here the maps 6, need not be contractions. However, proceeding in a similar fashion 

we get an isometrical embedding of A into (V, JK)* (cf. Remark 3.5.4) whose images 

are all contractions. We list a few facts relating the image of d, and r 1 (introduced 

in 3.2.5). 

Lemma 3.5.9. Let d, exist, let PE V and q:=d,(p, p), r:=r p+p 1. Then: 

(1) q is the least selfdual element of V such that p + q =p. In particular, q = p if and 

only ij-fp is small. 

(2) d,(r, r+p)=r+p and 

(3) r+p is the largest element of Imd, below p. 

Proof. (1) From (3.25) and q <O we get p <p +q <p proving p+ q=p. Let w be 

selfdual and satisfy p + w = p. Since p + W = p + w = p, from (3.25) we get WED,, and 

w 2 q. We know that q is small by Lemma 3.2.2. If p = q then p is small. Conversely, let 

p be small. Since p + p =p, by the first part of the proof we have q bp. However using 

pd0 we get p=p+qQq. 
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(2) By its definition (cf. 3.25) the element r is idempotent and r<(p +F) A 0. Since 

p +p is selfdual, by Lemma 3.2.4, the element r is also selfdual. Put e:=d, (r, r+p). 

First we prove edr+p. Indeed, r+p=r+r+p and r=r+r+rbr+p+p+r=r+p+ 

(r+p) whence r+pED,,,+r and so edr+p. By definition eED,,,+, and so 

r+p<r+e<e due to r<O, proving e=r+p. 
(3) By r21 we have r+pEImd, and r+p<p inview of rb0. To prove that r+p is 

the largest element with this property let b:=d, (x, y)<p and c:=d,(x, x). We have 

cbb+b<p+p and in particular cGrp+p]=r so b=c+bdr+p. 0 

In the preceding sections the existence of d, has been postulated. A sufficient 

condition for its existence is based on the following well-known concept [2, Ch. 14, 

Section 51. 

3.5.10. Let (V; <, +) be an ordered groupoid and p, qE V. If the set R,,:= {rE V: 

p <q + r} has a least element, it is called the right residual of p by q and is denoted p: q. 

The groupoid is right-residuated if all right residuals exist. The left-residual p: q, 
left-residuation and residuation, (meaning the both-sided one) are defined in a similar 

way. For _V= (I/; <, +, 0, -) one can show easily that p: q exists if and only if p:q 
exists and p: q=@ :q). 
We have: 

Lemma 3.5.11. Zf both q :p and p :q exist and s:=(q :p) v (p :q) exists then d, (p, q) 

exists and equals s. In particular, if” _V is residuated and (q :p) v (p :q) exists for all p, qE V 

then d, exists and d,(p, q) =(q :p) v (p :q) for all p, qE V. 

Proof. Putu:=q:p,u:=p:qandw:=u v ti.Wehavep+wap+u>q,q+waq+tiap 

and so WED,,,. On the other hand, for XED,, from (3.25) we have x>q :p=u and 

X>p:q=u and so x>w proving d,(p,q)=w. 0 

3.512. The following property will play an important role in the sequel. As usual, we 

say that (V; <, + ) is left K-distributive if whenever PE V and Q 5 V are such that 

IQ1 <K and either A Q or A {p+q: qEQ} exists, then both exist and 

p+ AQ= A {p+q: qEQ>. (3.29) 

The right tc-distributiuity and tc-distributiuity are defined in a similar way. Note that in 

(3.29) we could replace = by>(as d is automatically true). 

Remark 3.513. A routine verification shows that ( If; 6, + ) is left 2-distributive ifand 
only if it is left n-distributive for all n < co. 

For our _V these properties coincide. 

Lemma 3.5.14. The following are equivalent: 
(i) V is left rc-distributive, 
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(ii) _V is right tc-distributive, 

(iii) _V is n-distributive, 

(iv) _V has the following property: if P, Q c V 

are such that (a) 1 PI < IC, 1 Q 1 d tc and (b) all three injima in (3.30) exist whenever at least 
two exist, then 

AP+AQ=={p+q: P~V> qEQ). (3.30) 

The straightforward proof is omitted (to prove (i)*(ii) use the properties of the 

involution - ; in particular, the fact that it is an order automorphism). 

Call _V fully distributive if it is rc-distributive for all the rc> 1. We relate right 

residuation and full distributivity. 

Lemma 3.5.15. (a) Zf _V is residuated then it is fully distributive. (b) 1f (V, <) is 
a complete meet-semilattice and _V is fully distributive then _V is residuated. 

The somewhat technical proof is omitted. We give a sufficient condition for the 

rc-convexity (cf. 3.3.3) of (V, d,). 

Proposition 3.5.16. If (i) (V, <) has all injima of subsets of cardinality Q IC, (ii) _V is 
tc-distributive and (iii) d, exists, then (V, d,) is tc-convex. 

Proof. Let t, xi, ri (i < tc) be as in 3.3.3. Put z:= A {xj+ rj + t: j < K}. We show that 

tED,,. Note that for t selfdual the conditions in (3.25) reduce to z + t >z. Applying 

(3.29) and noting that t is idempotent we have 

Z+t=A{Xj+rj+t: j<K}+t=//{Xj+rj+t+t: j<iC}=Z; 

hence tED,, and d, (z, z) < t. Similarly we prove that r;ED,,, for all i < tc. Indeed, from 

d,(xi,xj)<ri+ t+rj and the second condition of(3.25) we get xj+rj+ t+c>xi for all 

j < K. Applying the K-distributive law 

Z+<=A{Xj+rj+t: j<K}+<=A{Xj+rj+t+<: j<K}>Xi. (3.3 1) 

On the other hand, in view of t <O we have 

z=A\xj+rj+t: j<tc}<xi+ri+t<xi+ri. (3.32) 

NOW (3.31) and (3.32) show that riED,$, proving the required d, (xi,z)<ri. 0 

3.5.17. We say that _V= ( V; d, + , 0, - ) is a Heyting algebra (or shortly _Vis Heyting) 

if (V, <) is a complete lattice and _V is fully distributive. 

Now for Heyting algebras we relate hyperconvexity, absolute retracts and injectiv- 

ity (with respect to the class of F-metric spaces and their isometries) and d,. 

Theorem 3.5.18. The following are equivalent for a Heyting algebra _V and a V-metric 
space A. 

(i) A is injective, 
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(ii) A is an absolute retract, 

(iii) 4 is a retract of a power of (V, d,) 

(iv) A is hyperconuex. 

Proof. (i) = (ii) A general categorical fact proved here for the reader’s convenience. 

Letf: 4-B be an isometry. By injectivity idA=g offor a contraction g:B-+A, i.e.fis 

a coretraction. 

(ii) * (iii) By Proposition 35.7 the space A, embeds isometrically into a power of (V, 

d,). Since A is an absolute retract, A is a retract of this power. 

(iii) * (iv) From Lemma 3.5.1.5(b) we know that _V is residuated. Now d, exists by 

Lemma 3.5.11. From Proposition 3.5.16 we see that (V, d,) is hyperconvex. Since, in 

our case, hyperconvexity amounts to the satisfaction of the condition (HC,) for all K, it 

follows from Lemma 3.4.5 that a power as well as a retract of a hyperconvex space is 

hyperconvex. 

(iv) =S (i) It has been shown in Theorem 3.3.4 that one-point K-extension property 

and K-convexity are equivalent and in Lemma 3.4.3 that one-point extension property 

is equivalent to injectivity. 0 

Remarks 3.5.19. For Heyting algebras _V the above proof of ‘injectivity implies 

hyperconvexity’ (i.e. (i) => (iv)) seems to be simpler than the proof given in 3.3. 

For a Heyting algebra I! we can slightly reformulate the condition for 

hyperconvexity. 

Lemma 3.5.20. Let _V be a Heyting algebra. Then a I/-metric space (A, d) is hyperconvex 

if and only iffor every small tE V and each map f: A+ V such that 

4x> y)df(x)+t+f(y) 

holds “for all x, YE A there is ZE A satisfying d(z, z) d t and d(x, z) =f(x) for all XE A. 

Proof. (3). Write A={xi; i<rc} (where rc=IA() and put ri:=f(xi) for all i<K 

(-=). Let tE V be small and let xiEA and riE V(i< K) be such that 

d(xi,xj)<ri+t+rj 

holds for all i,j< IC. For XEA put D,= {ri: xi=x} andf(x):= AD,. Note thatf(x) is the 

greatest element 1 of (V, 6) whenever D, = 0. Applying the distributive law we have 

for all x, ycA. 

d(x,y)d r\{ri+t+rj: riED, and rjED,,}= r\D,+t+ ~D,=f(~)+t+f(y). 

NOW by the assumptions and the definition off we have d(xi,z) ~f(xi)=ri for all 

i<tc. 0 
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For a Heyting algebra _V and the metric d, the sets U,:= {XE V: dr(x, x)<t}, 

B(x, r) = (YE I/: d,(x, y) d r} (x, t, rE V) have a simple form. 

Lemma 3.521. Let t, x, IE V. 

(a) If (V, <) is a (complete) join-semilattice then both U, and B(x, r) are (complete) 
join-subsemilattices of (V, G). Moreover, B(x, r) is convex. 

(b) Zf _V is Heyting then U, is a complete nonempty sublattice of( V, <) and B(x, r) is 
either empty or an interval of (V, <). 

Proof. (a) By (3.25) 

U,:={xEv: x+t>x, x+i>x}, (3.33) 

B(x,r)={y~V: x+r8y, y+F>x}. (3.34) 

Let XCU,, M:= VX and aE{t,t}. Then M+u>x+u~x for each XEX and so 

M + a 2 M proving ME U,. The proof for B(x, r) is quite similar. Let u, w~B(x, r) and 

udv<w. From (3.34) we have x+r>w>v and v+Gu+Gx and so v~B(x,r). 
(b) Let XGU,,m:= AX and ag{t,t}. Then 

m+u= A{x+u: xEX)b r\X=m 

and so rnE U,. The proof for B(x, r) is similar. Clearly the least element 0’ of (V, <) 
belongs to U,. 0 

3.6. Ultrametrics 

3.6.1. In the section we consider special y-metric spaces. Put V*:= V\(O). Let (A, d) 

be a y-metric space. For XEA and VE V a closed bull is the set 

B(x, v):={u~A: d(x, a)<~}. 

For a subset X of A the v-hull and the hull of X are the sets 

[Xl,:= UxsxBk 4, [xl:=r){[xlo: uE~*). 

As usual, a down-directed ordered set (each pair of elements in the set has a lower 

bound) is a jilter. A self map X+X’: of the set B(A) (of subsets of A) is a closure if 

XGX’, X’S Yv, Xv=Xv holds for all Xc YGA. A closure is topological if 

(Xu Y)’ =Xvu Yv holds for all X, Y&A. We have the following. 

Lemma 3.6.2. Let (V; + ) be idempotent and 0 the least element of (V, <). Zf (A, d) is 
a V-metric space then X+[X] is a closure on A. This closure is topological provided 
(V*, <) is a Jilter. 

Proof. Let X E Y c A and Z:= [Xl. Note that d(x, x) = 0 < v and so XE B(x, v) for all 

XEA and DE V. Clearly we have X c [Xl” for all VE V and so X G 2. Let ZEZ and 
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UE Ir*. From Z G [XIV we see that z~B(x,v) for some XEX E Y whence ZE[Y], and 

ZE[ Y] proving [X] = Z E [Y]. We prove [Z] z Z. Let t E[Z] and let UE V*. From 

[Z] c [Z], we have t~B(z, u) for some ZEZ. By the same token we have z~B(x, u) for 

some XEX. From d(x, z) < u, d(x, t) < u and the idempotency we obtain: 

d(x,t)dd(x,z)+d(z,t)<u+v=v 

i.e. t~B(x, u) and t~[Xl”. Since UE V* was arbitrary, we get t~[Xl =Z. Thus [Z] E Z 

and [Z] = Z. 

Finally, let (V*, <) be a filter and Xi, X2 E A. Let ZEA\( [Xi] u [X,]). Then there 

are UiE I’* such that Xi is disjoint from B(z, ai) (i= 1,2). Choose DE I’* SO that u< u1 

and u < ~2. NOW B(z, U) n Xi E B(z, Vi) n Xi = 0 for i = 1,2. Setting X:= Xi u X, we have 

B(z, u) n X = 8 whence z.$ [Xl0 and z# [Xl. Altogether [X] E [Xi] u [X,]. The con- 

verse inclusion being evident, this proves that the closure is topological. q 

We turn to very special V-metric spaces. 

3.6.3. Let (I’; v ) be a join semilattice and 0 the least element of the associated order 

<. Let id, denote the identity selfmap on I’. It is easy to verify that 

I’:= ( V; <, v , 0, id”) satisfies the assumptions of Section 1.1. Call such a r-metric 

space (A, d) an ultrametric. The axioms of an ultrametric are: 

(dl’) d(x,y)=O o x=y 

(d2) d(y, 4 =4x, Y), 

and 

(d3) 4x3 Y) <4x, z) v 4z, Y). 

In the particular case of V= R, (with the usual order and x v y=max(x, y)) an 

ultrametric is also called a non-archimedian metric. It is well known that this 

ultrametric is quite different from the euclidean metric. This is true in general. As an 

example consider the following property. Let x, y, ZEA. Setting a:= d(x, y), b:= d(x, z) 

and c:= d( y, z) from (d3) we obtain a < v c, b d a v c and c < a v b. It follows that 

avb<avavc=avc<avavb=avb, 

and by symmetry, 

avb=avc=bvc=avbvc. (3.35) 

For example, if a < b then b = b v c shows c < b and b = a v c. In particular, if (V, <) is 

a chain (i.e. a totally or linearly ordered set), from a < b we get b = c and so among the 

elements a, b and c always at least two are equal. On account of this we call (3.35) the 

isosceles property. 
We describe ultrametrics in terms of the relations 

(d),:={(x,y)EA’: d(x,y)<u) for UEV. 

Put AA:={(a,a): UEA}. 
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Lemma 3.6.4. Let (_V, <) be a join semilattice and 0 its least element. Then (A, d) is an 

ultrametric space if and only if all relations (d)” (UE V) are equivalence relations on A and 

(d), =A*. 

Proof. (=s-) (d), = AA follows from (dl’). Let VE V. Then (d), 2 (d), = AA show that (d), 

is reflexive. Clearly (d), is symmetric due to (d2) and transitive by (d3). 

(-=) We have AA =(d)O proving (dl’). Let x, y, ZE A and r:=d(x, y). Now (x, y)~(d), 

implies (y, x)E(d),, i.e. d( y, x) < d(x, y) and (d2) follows by symmetry. Finally, put 

s:=d(x,z), t:=d(z,y) and u:=s v t. From SGU, t<u we get (x,z)~(d),, (z, y)E(d), 
proving (d3). 0 

Note that, according to Lemma 3.6.4 for a fixed UE V, the closed balls B(x, u) (xEA) 

partition A. 

3.6.5. A clone C on A is congruence afine if C = Pol R where R is a set of equivalence 

relations on A (cf. 2.1 and 2.3 for the definitions). Thus Lemma 3.6.4 states that for 

a l!-ultrametric space (A, d) the clone CIV of d-contracting operations is congruence 

affine. Let Eq A denote the set of equivalence relations on A. For an algebra 

A = (A; F) the set Con A:= Eq AnInv* F (ordered by G) is the congruence lattice of A. 

Note that D:={(d),: UE V> G Con (A; C,,“). The set Con (A; Cpv) is closed under 

arbitrary intersections and directed unions and so it contains all the intersections and 

directed unions of members of D. In general, it may contain other equivalences 

constructed in different ways from equivalences in D [31]. Note that the map u+(d), is 

an order preserving map from _V into the set (Eq A, E) such that 0 H A,., . There is not 

much we can say in the general case and so we turn to special cases. 

3.6.6. We consider rc-convex y-ultrametrics (cf. Section 3.3). For our _V we have 

V, = {0}, hence t = 0 and all (3.1 li) (i < K) as well as (3.13) are trivial assertions. Hence 

a _V-ultrametric is Ic-conuex whenever to all xiEA and riE V(i< K) satisfying 

d(xi,xj)<rivrj 

for all i, j < IC, i #j there is ZE A such that 

(3.36ij) 

holds for all i < K. For example, (A, d) is 2-convex if for all x0, x1 E A and ro, rl E V such 

that d(xo, xI)dro v rl we have d(xo,z)dro, d(xI,z)drl for some ZEA or,equivalently, 

B(xo, ro) meets B(xi, rl). 
Two equivalences E and YI are permutable (or commute) if E~V=~JO E. We say that 

D G Eq A is permutable if the equivalences in D are pairwise permutable. It is well 

known (cf. [6, 2-6.61) and easy to check E v q =E o q if and only if E and q are 

permutable (here v is in (Eq A, G)). We describe the 2-convex ultrametrics in terms 

of permutability. 
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Proposition 3.6.7. A _V-ultrametric space (A, d) is 2-convex $and only ifall (d)” (VE V) 

are pairwise permutable and (d), 0 (d),. =(d), v (d),, =(d), v vI holds for all v, V’E V. 

Proof. By Lemma 3.6.4 in every ultrametric 

(&o(d),, c (d)v v (d),, g(d),,,, 

holds for all v, U’E V. Now 2-convexity is equivalent to (d),,,. G(d)” o (d),. for all 

v, V’E V. 0 

Note that for a 2-convex _V-ultrametric space the map v +(d)” is a join-semilattice 

homomorphism (from (V; v ) into (Eq A; v )). 

3.6.8. We can translate rc-convexity into the following property. A family F of sets has 

the rc-Helly property if the intersection n Y is non-empty for every YG F of cardinality 

< IC consisting of pairwise intersecting sets. 

Consider the closed balls B(x, u)= {uEA: d(x, a)bv} (xEA, VE V) introduced in 3.6.1. 

For a 2-convex _V-ultrametric space the condition (3.36ij) is equivalent to B(xi, ri) 

meets B(xj,rj) and SO we obtain: 

For tc > 2 a V-ultrametric space (A, d) is tc-convex if and only ifit is 2-convex and 

the family {B( x v XEA, DE V} has the tc-Helly property. , ): 

Remark 3.6.9. Let (V; v, A ) be a lattice, (A, d) a V-ultrametric space, 

D:= {(d),: DE V} and let v b(d), be meet-preserving. Directly from the definitions and 

Proposition 3.6.7 it follows that the &,-convexity is just the condition of the Chinese 

remainder theorem (cf. Cl]). It is known (cf. [12, p. 211 ex. 681) that this condition is 

equivalent to (D, G) arithmetical (i.e. permutable and distributive). 

3.6.10. We need the following lattice-theoretical concept. Let ~>2 be a cardinal, 

L:= (L; v , A ) be a lattice and let D c L be a sublattice of L closed under infima (in L) 

of subsets of cardinality <K. The set D is rc-meet-distributive if 

A{vvy:y~Y}=vv A Y (3.38) 

holds for each VE D and Y c D with 1 YI d K. 

Note that 2-meet-distributivity means that the familiar distributive law 

(0 V JJ) A (V V y’)= V V (y A y’) (3.39) 

holds in D. It is immediate that D is then no-meet-distributive for all n <co: (cf. 3.5.14, 

cf. also [2g]) The condition (3.38) may be strengthened: 

Lemma 3.6.11. Let K, Land D be as in 3.6.10. Then D is K-meet-distributive ifand only if 

A{XVJ’:XEx,yEY)=AxV AY (3.40) 

holds for all X, YG D with 1x1, 1 YI <K. 
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We have the following. 

Lemma 3.6.12. Let K > 2 be a cardinal and (A, d) a K-convex _V-ultrametric space. Then 
D:= {(d),: VE I’} is a x-meet-distributive subset of (Eq A, G). 

Proof. Let 1~ K, rOE V and riE V (0 <i < 1). Since (A, d) is 2-convex, by 

Proposition 3.6.7 and the last remark in 3.6.9 we must prove 

Let (x,,, y)~a. Then there are xiEA such that d(xo, xJ<ro and d(xi, y)Qri for all 

O<i<k For all O<i, j<n we have 

d(xi, Xj)<d(xi, Y) V d(y, Xj)<ri V rj, d(xo, Xi) d r. d r. v ri 

By rc-convexity (cf. 3.6.6) we have d(xi, z)<ri for some ZEA and all i<l. 

Thus (x0, z)E(d),, and taking into account that (d),, are equivalences also (z, y)@d),, 

for all O<i<k It follows that (x,,, y)~r. 0 

3.7. Clones of contracting operations for convex metric spaces 

3.7.1. Let (V, <) be a join-semilattice and (A, d) a y-metric space. Recall that in 2.2.1 

an n-ary operation fon A (i.e. a map from A” into A) has been called a d-contraction 

(on A) provided 

d(f(x,> . . ..xJ. 0~1, . . ..y.))dd(xl.~,) v ... v d(x,,~.) (3.42) 

holds for all xi, . . . . x,, yl, . . . , ~,,EA. The set CIV of all d-contractions on A is a clone 

(i.e. it is composition closed and contains all projections, cf. 2.2.1). Let rc>O be an 

ordinal number; put K:= {i: i < K}. A subset p of A” (i.e a set of maps ~c +A) is a K-ary 

relation on A. For rl, . . . , r,EAK let f[rI, . . . , r,] denote the map hEA” defined by 

setting h(i):=f(r,(i), . . . , r,(i)) for all i<lc. Recall (cf. 2.3) that f preserves p if 

fCr 1, . ..> r,]Ep whenever all rl, . . . . r,Ep. For a set F of (finitary) operations on A let 

Inv, F denote the set of rc-ary relations p on A preserved by all fe F. In this context, it 

suffices to consider only K < 1 Al for A infinite and rc <o for A finite (cf. [19,25]. 

Let W c V, let B be a set such that rc c B and let {a,: WE W} be a family of binary 

relations on B. Put 

T:= {gEAB: (x, Y)ECI, =>d(g(x), g(y))dw}. (3.43) 

The set ~1, (of restrictions of gEr to E) is called a derived relation. It is straightforward 

to verify that a derived relation belongs to Inv, CIV. From the general theory, (cf. 

[19,25]), it follows that Inv, CIV consist of the directed unions of derived relations. In 

certain cases we may improve (3.43). Let 6 : BZ + V be such that 6(b, b) d 0 for all b E B. 
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Let B =(B, 6) be the corresponding binary space and denote by D the set Horn (B, A) 

(of contractions from B into ,4). Call ~1, a quasi-metric K-ary relation. We have: 

Lemma 3.1.2. (1) A quasi-metric tc-ary relation is a derived tc-ary relation. 

(2) Zf (V, <) is a complete meet-semilattice, then a tc-ary relation is derived ifand only 
if it is quasi-metric. 

Proof. (1) Let p be a quasi-metric rc-ary relation on A, B = (B, 6) the corresponding 

binary space and 0: = Horn@, A). Put W:= Im 6 and a,,,:= 6- l(w) for each WE W. We 

claim that r given by (3.43) equals p. Let g~a. Then g is a contraction from B to 4. Let 

(x,y)~cz,,, for some WE W. Then 6(x, y)=w and d(g(x), g(y))bS(x, y)=w proving gEr 

and (T CZ. The proof of z c CJ is quite similar. 

(2) Let the assumptions of (2) hold and let a derived rc-ary relation be given by 

(3.43). For x, DEB with x fy put U._,:= {WE W: (x, y)~tl,} and 6(x, y):= A U,,. Further 

put 6(x,x):=0 for all XEB. Put B=(B,6) and a:=Hom(@,A). Let ger and x,y~B, 

x # y. From (3.43) we have v:= d(g(x), g(y)) < w for every WE U,, and hence 

v< A U,,=6(x,y). Clearly d(g(x),g(x))=0=6(x,x) for all XEB proving gEa and 

zca. For the converse let hea and (x, y)~u,,, for some WE W. Then WE UXy, hence 

d(h(x), h(y))<6(x,y)dw proving hez and (TGZ. 0 

Lemma 3.7.3. Let (V, <) be a meet-semilattice, B=(B, 6) a binary space and (A, d) 

a V-metric space. For a, UEB put 6’(u, v):=~(u, v) A 6(v, u) and LJ’:=(B, 6’). Then B 

satisfies (d3) and Horn@, A) = Horn@‘, A). 

Proof. Let fEHom (B, A), u, IJEB and a:=d(f(u), f(u)). Then 

a6@,u), a=d(f(v), ~(u))<~(u,u) 

and so ad 6(u, u), and therefore 

a < S(u, v) A qv, u) = S’(u, u). 

Conversely, let gEHom(B’, A) and u, VEB. Then 

Mu), g(u)) e d’(n, v) dS(u, a). 

It is easy to verify that 6 satisfies (d3). 0 

3.7.4. In the sequel (V, <) is a complete lattice. Let A = (A, d) be a V-metric space. 

Combining Lemmas 3.7.2. and 3.7.3 we obtain that each derived rc-relation is the 

restriction to K of Horn@, ,4) where B=(B, 6) is a suitable binary V-space satisfying 

6(b, b) < 0 for all bE B, the axiom (d3) and B 2 rc. In general, B need not be a premetric 

(cf. Section 1.1) i.e. satisfy the A-inequality. We construct a binary V-space B^=(B, $) 
which under special assumptions is a _V-premetric. Under additional strong assump- 

tions we may replace B by B (and even assume s to be a V-metric space on K). 
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For U, VEB denote by P(u, v) the set of finite sequences p = (b,, . . . , b,) over B with 

bI:=u, b,=v and b,~B. In 3.7.5 we use the obvious bijection from P(u, v) onto 

P(v,u) assigning the reverse sequence p’:=(b,,...,b,) to p=(bI,...,b,). For 

P=<b i, . . ..b.) put: 

p#:=@b,, b,)+...+@b,-,, b,), 6^(& v):= /j pcP(u, “,P#. (3.44) 

Since (u, v)EP(u, v), we have: 

&(u, v) < 6(U, v) (3.45) 

for all U, VEB. Put B^:=(B, 8). We start with the following lemma. 

Lemma 3.7.5. Let _V be a complete lattice, @ = (B, 6) a binary F/-space and Iz? = (B, 8) as 
in 3.7.4. Then: 

(i) Horn@ 4) = Horn@, A), 

(ii) 6^(b,b)<O provided s(b,b)dO (bEB), 

(iii) g satisfies (d3) provided B does. 
(iv) Zf _V is Heyting (cf: 3.5.18) then 8 satisfies the n-inequality (d2). 

Proof. Put a:=Hom@, 4) and 6:=Hom(& A). 

(i) By (3.45) we have Bca. For the converse, consider f EC, u, VEB and 

p=<&, . . . . b,)EP(u, v). Put ci:=f (bi) (i= 1, . . . . m). Taking into account that f is 

acontraction,wehaved(ci,ci+l)~6(b,,b,+,)fori=1,...,m-1.Inthe~-metricspace 

4 we have 

d(f(u),f(u))=d(c,,c,)d C d(ci,ci+l)B C 6(bi, bi+l)=p#, 
O<i<m @<i-Cm 

4 f(4, f(u)) d /j S(P) =&, 0) 
PEP@, v) 

proving YES and cr c 8 

(ii) Apply (3.45). 

(iii) Let 6 satisfy (d3). Let U, VEB and p=(bI, . . ..b.)EP(u, v). Then 

p#=6(bl, bJ+...+6(b,_1, b,)=6(bz, b,) +...+6(b,, b,_,) 

=6(b,, b,-1)+...+6(bz, bl)=p’# 

where p’:= (b,, . . . . bI)EP(v, u). Taking into account that V-+V is an order automor- 

phism of (V, <) and p-+p’ a bijection of P(u, v) onto P(u, U) we get the required 

&w)= fj p"= /j p’#= /j P’#=pE;” uP#=&v,u) 
PGP(U, 4 PSPOG u) peP(u, 0) 

(iv) Consider U, v, WEB and put 

c:= P(u, II), D:= P(v, w), E:= P(u, w). 
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For ~=(br, . . . . b,)EC and q=(b,, . . ..b.+, )ED denote the concatenation 

(b 1, . . ..b.+,) (of p and q) by p oq. Obviously p oqeE and (p<>q)#=p#+q#. 

Applying full distributivity we get the required 

cqu,v)+&v,w)=/jpp”+~g#= /j (p#+q#) 
PFC 9tD PEG IIED 

=pEPjD(P<>9)* d /Jr#=&v4 0 

As usual, for f:g+A put Ker f:={(.~, y)~g’: f(x)=f(y)}. For an equivalence 

relation E on 6 put dE:= (j’~At: Ker f 2s) (i.e. d, consists of all maps of g into 

A constant on each block of E). We have the following. 

Proposition 3.7.6. Let v be Heyting (cf 35.18) and A =(A, d) a _V-metric space. Then: 

(i) a rc-ary relation o on A is derived if and only if 

o={f~A~: flLS=gll(,for some gEHom(B,.4)} (3.46) 

where tc’ < rc, E is an equivalence on g and B = (B, 6) is a y-metric space with B 2 tJ, and 

(ii) For a rc-ary relation p on A the clone Polp contains all the d-contracting 

operations if and only if p is the union of a directed family of derived relations. 

Proof. It suffices to prove (i). From Lemmas 3.7.2, 3.7.3 and 3.7.5 we know that 

0 = {f IK: fEHom(@, A)} where B=(B, 6) is a _V-premetric space (cf. 3.1.1) such that 

Bz~. Recall that in 3.12 and 3.13 we have defined an equivalencezon B by setting 

u z v whenever 6(u, v) < 0. As in Fact 3 of a 3.3.4 let B”:= B/z. According to Fact 3 the 

space B” is a v-metric space. It is easy to see that an operation f on A preserves 

r:= Hom(& A) if and only if it preserves r”:= Hom(B’, A) (use the fact that each tar is 

constant on each block of z). Denote by K the set of blocks of z meeting the subset 

K of B. Clearly IC’:= (K 1 <IC and it suffices to index K by 6’ to obtain the statement of(i) 

(where E is the equivalence z). 0 

In 3.7.6 (i) we determined the general form of a derived rc-ary relation. If we are 

interested in Polo only we can simplify (3.46); in particular, the use of A, is superflu- 

ous. This is based on the following general lemma whose easy proof is omitted. For 

a Ic-ary relation p on A and cp : g’-+~ put pcpJ:= {r 0 cp: rEp}. 

Lemma 3.7.7. Let p be a rc-ary relation on A. cp : E’ +g and E an equivalence relation on 

g such that im cp meets each block of E exactly in a singleton. Then, 

(i) Pol p c Pol pcqp,; 

(ii) Pol p = Pol pcVp) if p G d,, or rc=tc’ and cp is a permutation of E. 

Corollary 3.7.8. Let A and v be as in 3.7.6 and a a derived tc-ary relation. Then 

Pol cr= Pol p with p = Hom(B, A)\,, where K’ < IC and B = (B, 6) a p-metric space such 

that BztJ. 
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3.7.9. Call a rc-ary relation (T on A non-expansive if it is of the form (3.46) for B = K’ 

(instead of Bz g’) i.e. if there exist K’ <rc, an equivalence E on K and a y-metric space 

B=(&, 6) such that, 

cr={f~d~: fl,, EHom(B, ,4). (3.47) 

In other words, each f~a is exactly an extension to K of a contraction from B to 

A such that f is constant on each block of E. The following interpretation of 

non-expansive relation is perhaps worth mentioning. For simplicity let rc = K’ and E the 

least equivalence. Then r~:= Horn@, 4) may be interpreted as the set of the solutions 

(xi: i<lc) of the inequality system: 

d(Xi, Xj)<S(i,j) (Vi,j<lc). (3.48) 

In the more general case of B I> JC, we may also interpret Hom(& 4) in terms of the 

solutions (xb: bEB) of the system 

d(xb, xb,)<B(b, b’) (Vb, b’EB); (3.49) 

however in 0 we only monitor the part (xi: i< K) of a solution of (3.49) and so 

CJ consists of (Xi: i < K) for which there exist xb (bEB\K) so that the inequalities (3.49) 

hold. This hidden part makes things more complex; eg. the congruence problems in 

universal algebra are due to this fact. In an extreme case it suffices to use non- 

expansive relations only. This is the main result of this section. 

Theorem 3.7.10. Let y be Heyting, 4 =(A, d) a hyperconvex Y-metric space and p a K- 

ary relation. Then all d-contracting operations on A preserve p if and only if p is the 

directed union of non-expansive relations. 

Proof. From Proposition 3.7.6 we know that each derived operation is of the form 

(3.46). Denote by K’=(K), 6) the restriction of B to g’. By Theorem 3.3.4 the metric 

space 4 has the extension property. Consequently, each hEHorn@‘, 4) extends to 

some h’EHom(B, 4) and so rr may be replaced by the non-expansive relation 

{fed,: fl,,EHom(K’,A)}. 0 

In 4.4.14, we shall need the non-expansive relations (cf. 3.7.9) in a very special case. 

3.7.11. Suppose (V, G) is a chain with a least element 0. Denote by v the correspond- 

ing join (i.e. v v u’:=max(u, v’)) and put I/:= (I’, <, v , 0). Let 4 =(A, d) be a hyper- 

convex _V-ultrametric on A. According to 3.7.10 and 3.7.7 we have Pol (T= Pol p for 

p = Hom(& 4) where B =(rJ, 6) is a V-ultrametric space. We give a better description 

of p. By the definition of a contraction (cf. 3.1.2) we have: 

p={f~B~‘:d(f(i),f(j))<6(i,j) for all i<j<lc’}. (3.50) 
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Recall (cf. 3.6.4) that for DE V the binary relation (d),:= {(x, y)eB*: d(x, y) d U} is an 

equivalence relation on B. We show that the clone Pol p (of all operations preserving 

P) equals nvE1 Pol (d), where I = im 6. For i < j call 

Pij PI= {(f(ik f(j)): .fEPl 

the (i, j)th projection ofp. We need the following. 

Lemma 3.7.12. If p is given by (3.50), i<j< K’ and v:=6(i, j) then Prijp =(d)“. 

Proof. For REP we have d(f(i),f(j))<v proving (f(i),f(j))E(d), and PrijPG(d),. 

For 3 let (x, y)~(d)” or, equivalently, d(x, y) < v. Define f: &‘-+A by setting f(m) = x 

whenever 6(i, m) < v andf(m) = y otherwise. We claim that fop = Hom(B, A). Suppose 

f$p. Then there are p, 4 <K’ such that 

K!(p), f(4) 6 GrY 4). (3.5 1) 

Since Imf= {x, y}, we may choose the notation so that f(p)=x, f(q) =y. Setting 

z:= 6(p, q) and using the assumptions on (V, G), from (3.51) we get v > z. Put r-:= S(i, p) 
and s:= 6(i, q). In view of f(q) = y we have s 3 v. From the isosceles property (for i, p 

and q) and r < v d s we get z = 6(p, q) = s 3 v in contradiction to v > z. Thus JEP and 

(x, Y)=(f($f(j))EPij P proving 2. 0 

Proposition 3.7.13. Let (V, <) be a chain with the least element 0, r = (V, <, v ,O) 
and 4 =(A, d) a v-ultrametric. If a is a non-expansive relation for 4 then: 

Pol a= fi Pol (d), 
WEW 

(3.52) 

where W:=Im 6 for a V-ultrametric 6. 

Proof. Let p be as in (3.50). Put W=Im 6 and denote by C the clone on the right-hand 

side of (3.52). It is known and easy to prove from (3.50) that CcPol a. On the other 

hand, it is known that Pal p G Pal prig p for all i <j < K’. From Lemma 3.7.12 it follows 

that Pol p c Pol (d), for all w E W and so Pol p c C. 17 

4. Relations, graphs, automata and sequential machines as metric spaces over a 

Heyting algebra 

4.1. Binary spaces revisited 

A binary l/-space (A, 6), as defined in Section 1.1, may in general seem to be far from 

a metric space; especially, if there is no Heyting structure on _V for which 6 can be 

viewed as a distance. However, as we shall see in this section, that impression is false. 

We need a few technical lemmas. 
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4.1.1. Let V=(V, <) be a poset. Put 2=({0, l}, <), Ui:={(v,u,O): OEV}, 

Uz:= ((u, v, 1): u, UE V} and VH:= U1u Uz. Clearly VH c V2 x 2 and so V, is equipped 

with the (component wise) order d inherited from V2 x 2. 

We shall turn I’, into a Heyting algebra. We start with the following (most likely 

known) extension of a semigroup. 

Lemma 4.1.2. Let ( U1; .) be a semigroup, let U, be a set disjointfrom U1, eEUz and 

T:= UIvU2. Dejine a binary operation + on T by setting a+ h:=a.b if a, bE U1, 

a+b:=e ifa, bEU2, a+b:=b+a=b ifaEU1, bEV2. Then (T;+) is a semigroup. Ix 

moreover, (U 1; . > is commutative then (T; + > is commutative. 

Proof. Let a,b,cET. If a,b,cEUI then (a+b)+c=a.bc=a+(b+c). If two of a,b,c 

belong to U 1 while the third, say CI, is in U2 then (a + b) + c = a = a + (b + c). Finally, if 

a least two of a,b,c belong to U2 then (a+b)+c=e=a+(b+c). 0 

Let (V, <) be the order of a meet-semilattice (V; A ) with a greatest element. We 

identify this greatest element with 1 and the least element, if any, with 0. Denote by 

+ the semigroup operation defined in Lemma 4.1.2 for (U1; A ) and e:=(l, 1,l). Put 

w:=(l, l,O). We have: 

Lemma 4.1.3. _T:= ( Vn; 6, +, w) is an ordered commutative monoid. 

Proof. Let a, b, CE Vn, abb. We have three cases. (1) Let a=(~, u,O)E U1 and 

b=(v,v,O)EU1. If CEU, we have a+c=e=b+c and if c=(t,t,O) then 

a+c=(uAt,ur\t,O)b(vbt,vr\t,O)=b+c. (2) Let a,bEU2. If CEU, then a+c= 

e=b+c. Thus let c~Ui. Then a+c=a<b=b+c. (3) Finally let a=(u,u,O)~U~ 

and b=(v, t, ~)EU~. If c=(r,r,O)EU1 then a+c=(rAu,rr\u,O)<b=b+c. If 

c= (r, s, 1)~ U2 we have a + c = c de = b + c. The element w is a neutral element of + . 

Indeed, WEU~ and so a+w=a for all aeU2 while for a=(v,v,O)~U~ we have 

U+W=(VAl,VAl,O)=U. t? 

In our notation A takes precedence over +; e.g. a + al A c$ stands for a -I- (x1 A a~). 

Lemma 4.1.4. [f (V, <) is a complete lattice then T (from Lemma 4.1.3) is Heyting. 

Proof. Let a E Vn, Xi~Ui (i=l,2) and X:=X~UX~. Put ai:=AXi and 

pi:= A {U+X;X~Xi} (i=1,2).WemLlst prOVea+~lACC2=/?~A/?~. 

We have two cases: (1) Let UE U1. Then p1 = A {u A x: x~Xr} and so /I1 =a A u1 if 

X, #@ and /Ii = e otherwise. Similarly j12 = ~1~ if xz #0 and /I2 = e otherwise. If X1 #8 

wehavecrlna2~U1andsoa+alA~2=aAal~cc,=~1AP2.IfX1=8theninview 

ofa,EU2 we havea+or,/\rx,=a+e/\M2=a+Cly=CIZ=e/\ffZ=B1AB2. 
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(2) Let aEUz. Note that j?r =a if X1 #@ and fir =e otherwise. Next /12=e whence 

B1~Pz=a if Xr#@ and /Ir~/l~=e otherwise. If Xr#@ we have a,r\ccz~U1 

and so a+aIr\012=a=/?IA~2 whereas for X1 =8 we have tll A QE U2 and 

a+cl, Aa,=e=fll r\fi2. q 

Let T be as in Lemma 4.1.3. For every x=(~r,x~,xs)~l’~ put X=(x2,x1,xs). It is 

immediate that XHX is an involutive order automorphism of (VH, <) fixing each 

element of Ur. According to 3.5.1 we can define the following metric: 

dT(a, b):= A {r E V,: b < a + r, a < b + f} for all a, b E VH. According to our convention, 

0 denote the least element of (I’, <). Put I:= (0, 0,l). The map dr may be easily described. 

Lemma 4.1.5. The values of dT are given by the following tables. 

m d:“; 

dT(a, b) for a # b dT(a, a) 

Proof. Let; a, bE V,, a# b. (1) Let a, bEU1. If rEU1 then f=r and the inequalities 

bda+r, adb+F (4.1) 

mean b<aAr,a<bAr and so b<a<b. Let rgUz satisfy (4.1). Then b<r and a<f 

and a v b v 1 is the least such r. (2) Let aE U1 and bE Uz. If r-E U1 satisfies (4.1) then 

b <r A aE U1, a contradiction. Now for r E U2 the system (4.1) becomes b < r, a < e and 

so b is the least solution. (3) The case aE U2, bEU1 is similar. (4) Let a,bEUZ. Were 

rE U1 a solution of (4.1) it would yield b <a d b, whereas every rE Uz satisfies (4.1) and 

so A= A Uz is the least solution of (4.1). 

Verification of the values given in right-hand Table is quite similar. 0 

Lemma 4.1.6. The map dT satisfies the triangle inequality (d2). 

Proof. Let a, b, CE VH. Put c( := d,(a, b), fi := dT(a, c) and y := dT(c, b). From the tables in 

Lemma4.1.5weseethatdT(x,y)EU2ifx#yandd,(x,x)~U,.Ifa#c#bthenwehave 

the required ade=/I+y. If a=c#b then ZEUS while a=y~U~ and so a<y=/I+y. 

The same argument applies if a # c = b. Finally, if a = b = c we have do = b = YE U1 and 

CZ<ClAff=Ct+Ct. t? 

Let 4 =(A, 6) be a binary y-space. Define 6*: A2+ VH by setting: 

6*(x, x):=(&x,x), 6(x,x), 0), (4.2) 

~*(x,Y):=wx,Y), &Y,XL 1) (4.3) 

for all x, YEA, x #y. Finally denote the binary T-space (A, 6*) by A*. We have the 

following. 
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Lemma 4.1.7. Let _V be as in 4.1.1 and let A =(A, 6) and jj = (B, 6’) be binary _V-spaces. 
Then, 

(i) A* satisfies (d 1): 6*(x, y)dO:=w ifand only ifx=y and (d 3): S*(y,x)=6*(x,y) 

for all x, yeA, and 
(ii) Horn@, B) = Hom(A*, B*). 

Proof. (i) Direct verification. (ii) Let feHom(A, B), x, yeA and u:=f(x), u:=f(y). 

Then 6’(u, u) 6 6(x, y) and 6’(u, U) < 6( y, x). If u # u then by (4.3) 

6*(u,u)=(6’(u,~),6’(u,u), l)<(~(x,y), 6(Y,X), l)=s*(x,y). 

Thus let u = u. Put a:= 0 if x = y and a:= 1 otherwise. Then 

d*(u, u) =@‘(u, u), @‘(u, u), O)<(&X, y), &Y, XI, aI= 6*(x, Y) 

proving that SEHom(A*, B*) and the inclusion c in (ii). For 2 let f z Hom(A*, &S*), 

x, YEA and u:=f(x), u:=f(y). The first coordinates in 6*(u, u) < 6*(x, y) show the 

required 6’(u, u) < X(x, y). 0 

The equations (4.2) and (4.3) define a map cp : (A, S)l H (A, 6*) from the Y-spaces into 

the metric _T-spaces. We show that cp has an inverse. As usual, pr, : V,-+ V assigns u to 

(u, u, i) E Vn. We have the following lemma. 

Lemma 4.1.8. Let (A,d) be a T-space satisfying (d l), (d 2) and let 6:=prI 0 d. Then 

6*=d. 

Proof. Let a, be A where a # b. Since by (dl) we have d(a, a) < w:= (1, LO), the element 

d(a, a) is of the form (u, u, 0) for some UE V’. Thus 6(a,a)=u and by (4.2) also 

6*(a, a)=(~, u, 0) =d(a, a). Similarly d(a, b)$ w whence d(a, b) = (u, u, 1) for some u, UE V, 

and so 6(a, b)=u. From d(b,a)=d(a, b)=(u,u, 1) we get s(b,a)=u and by (4.3) finally 

&(a, b) =(u, u, 1) = d(a, b). q 

Combining Lemmas 4.1.4 and 4.1.8 we obtain the following. 

Theorem 4.1.9. Let _V be a complete lattice. Then _V extends to a Heyting algebra T and 
there is a contraction preserving bijection cp : (A, 6) H (A, 6*) from the binary Y-spaces 

onto the metric T-spaces. 

As an example we calculate qM1(dT)=prl~dr. 

Example 4.1.10. The values of A r:= pr, odr are given in the following tables. 

@;I) ~~::pI b 1 iz;y (u’,y a 1 k~ 

dr(a,b)for afb A&, a) 
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Now we have the following result. 

Theorem 4.1.11. Let V be a complete lattice. Every binary space over _V embeds 

isometrically into a power of Y:=(VH, AT). 

Proof. Let (A, 6) be a binary space over V and as before let (A, 6*) denote the metric 

_T-space defined by (4.2) and (4.3). The Heyting algebra T is solid in the sense of 3.5.6 

and so by Proposition 3.5.7 there exists an isometry J/ from (A, a*) into a power 

(V,, dT)’ (defined in 3.5.6). For f: I-+ VH define h:=Prf by setting h(i):=pr,(f(i)) for 

all iEI. Writing (V,, dT)I as (VA, m) according to 3.5.7, for J g : I+ VH we have, 

m(fl d= v ddf(% g(i)) 
ieI 

(where the sup is in (V,, <)). From the definitions we get, 

pri (m((L g)))= V Ar(Pr(f(i)), Pr(g(i))) 
isI 

(with sup in (V, d )) showing that the map a H Pr(rl/)(a)) is the desired isometry. 0 

Remark 4.1.12. Let (V, <) be a complete lattice with a least element 0. We have seen 

in Theorem 4.1.9 the existence of a contraction preserving bijection cp : (A, 6) H (A, 6*) 

(from binary Y-spaces onto metric _T-spaces). The notions of (i) injectivity and (ii) 

absolute retracts (cf. 3.4.1) are both defined solely in terms of contractions and so may 

be identified via cp (i.e. (A, 6) has exactly the properties (A, 6*) does). We have also seen 

in Lemma 1.4.1 that powers are defined by morphisms and thus (iii) the retracts of 

powers may be identified as well. In this way the equivalence of (i)-(iii) in 3.5.19 may 

be transferred from the category of metric _T-spaces to SZV. 

In general, the concrete characterization of spaces satisfy&g any of (i)-(iii) becomes 

more exacting the smaller the category is, and so it is not surprising that for the largest 

category SZV these spaces are quite simple. There is a direct and elementary proof of 

this. Indeed, for a binary space (A, 6) over _V call an element XEA central if 

d(x, y) = d( y, x) = 0 for all yeA (where 0 is the least element of V) and call (A, 6) central 

if it contains a central element. For example, in (VH, AT) from 4.1.10 the element 

1:=(0,0,1) is central, and so (V,, AT) is central. 

Trivially the absolute retracts (with respect to the injective isometries) are central; 

for an absolute retract (A,6) extend A by a new element x, and extend 6 by setting 

6(x, y)=d(y,x):=O for all y~Au(x} obtaining in this way an isometric extension of 

(A,@ Next the central spaces are injective (extend every partial map with values in 

a central space (A, b) by sending any extra element onto a central element of (A, 8)). 

The fact that centrality is preserved under products and retracts (a consequence of the 

identity between injectivity and centrality) is in this case also trivial. In this way we 

obtain the following. 
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Theorem 4.1.13. In the category SzV the absolute retracts, the injectives (both with respect 

to the injective isometrics), the central spaces and the retracts of powers of Y coincide. 

4.2. Relational structures and graphs 

4.2.1. Let D be a set and I’=( @ (D), 2). As we saw in 1.3.3 the category SzV is isomorphic 

to the category R2n of binary relational systems of type D (cf. Section 1.2). In 4.1.10 we 

introduced the y-space V=( I’,, dr). We shall need an explicit description of the 

relational system U,:=( I’,; (pi: iED)) associated to V” (cf. 1.3.4). Let iED; according to 

1.3.4, the introduction to 1.3 and the fact that 2 is the order on P:=@(D) we have: 

Pi=(d.)cii=((~,P)EVH: i~d&,B)). 

Since D and 0 are the least and greatest element of P, we also have: 

(4.4) 

V,={(u,u,D): uEP}u{(u,v,0): u, VEP}. 

To simplify the notation put g(u, u,D):=u and g(u,v, 8): =(u, v) for all u, VEP and 

replace V, by its image U:=g(Vn)=P2uP (where P’:=P x P). Put Q:={uEP: iEa} 

(= all subsets of D containing i). Using the Tables of 4.1.10 and recalling that 

u v u’ = unu’ and 0 = D we obtain: 

g(pi)=(P2~P2)~(Q~Q)~((P~Q)~P)~(P~(QXP)). (4.5) 

Thus g(pi) consists of(i) a clique (=complete graph including all loops) on P2, (ii) a 

clique on Q (iii) all arcs (= oriented edges) going from the vertices of P x Q (members 

of P2) to the vertices of P, and (iv) all arcs from the vertices of P to the vertices from 

Q x P (members of P’). 

Example 4.2.2. Let D = {l} (‘. 1 e. our a relational system is just a binary relation pl). 

Then P={@, {l}}, Q={(l)} and pi is displayed in Fig. 1. 

The translation of Theorem 4.1.13 to relations (in terms of relational homomor- 

phisms, embeddings, products, etc.) yields the following theorem. 

Theorem 4.2.3. Every binary relational system of type D embeds into a power of CJ,. 

Moreover, the absolute retracts and the injectives (with respects to embeddings) as well 

as the central relational systems and the retracts of powers of u, coincide. 

Remark 4.2.4. Theorem 4.2.3 extends to n-ary relational systems, but so far the 

corresponding u, has been obtained by ad hoc and technical constructions (see 

[l&20]) and we do not know whether metric ideas and Heyting algebra can yield 

a more transparent construction. 

Certain Heyting substructures of I& lead to subclasses of SzV satisfying the analogs 

of Theorems 4.1.11 and 4.1.13. For _V=( p (D), 2) this produces interesting classes of 

relational systems. Some of them have already been studied, or are well known. 
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Fig. 1. 

For example, pH:= (V’ x V x (11) u { (0, 0, 0)) is obviously a subsemigroup of 

(V,, +) (i.e. closed under +) and O’:=(O,O,O) its neutral element. It is also closed 

under - and obviously a Heyting algebra in the induced order. Consider a binary 

Y-space (A, 6) such that (A, 6*), defined by (4.2) and (4.3) in 4.1.6-4.1.7 happens to be 

a I’:-space (i.e. all values of 6* are in vg). Obviously for all XEA we have 6(x, x)=0 

(where 0 is the least element of I’). In the particular case of I/:=( p(D) 2) the binary 

spaces correspond to relational D-systems of reflexive binary relations. Proceedings as 

in 4.2.1 for every LED we construct the binary relation 

or P2 U {0’) where again P:=@(D) and Q:= {LY.EP: Ida}. For D=(l) (i.e. a single 

binary reflexive relation) the lattice V$ and p1 are indicated on the upper right corner 
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symmetric 
possibly not symmetric 

reflexive 

1’ 

0” 

0’ 

0 

0’ 

possibly not 

reflexive 

0 ( 0’ 

0’ 

Fig. 2. 

of Fig. 2. For the special case of relational systems consisting of binary reflexive 

relations (or, equivalently, for (A, 6) satisfying 6(x, y) =0 if and only if x = y) a similar 

approach is explored in [13]. 

Symmetry is another important property of binary relations. In Fig. 2 the four 

possible cases of the lattice and pi for a single binary relation (with respect to 

symmetry and reflexivity) are displayed. For example, every reflexive and symmetric 

binary relation (a graph with all loops) is isomorphic to an induced subgraph of 

a suitable power of the graph with 2 consecutive edges and 3 loops (in the left upper 

corner of Fig. 2). 

4.3. Automata 

4.3.1. Let A be a fixed set called an alphabet. The elements a, b, . . . of A are letters and 

finite sequences of letters are words. The empty word is denoted by q . The word 
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a=aoal... a, _ 1 has length e(a) := n (and e( q I) := 0). Denote by A” the set of all words of 

length IZ, next put A*= uz=,, A" and identify A’ with A. For two words r=rorl . ..r._, 

and s=sosl ... s,_,denotebyr+stheconcatenationr,r,...r,_,s,s,...s,_,ofrand 

s (we prefer this notation instead of the more natural r .s). Clearly (A*; +) is 

a monoid; in fact it is the so calledfree monoid generated by A. A language is a subset of 

A*. Clearly, the operation + may be extended to the set L := @(A*) of languages by 

settingX+Y:={x+y:x~X,y~Y}forallX,YrA*(NotethatX+g=~+X=8while 

X + { q } = ( q } + X=X for all Xc A*). Let XHX be a (fixed) involutive bijection of 

A (i.e. 9 =x for all XGA). Put 0 := q and for n>O and for a=aoal~~~a,_I~A* put 

a:=a,-la,_,...ao. Clearly r+s=s+rfor all r,seA*. For X_cA* set x:=(X: XEX}. 

Clearly - is an order automorphism of (L, 2) and + is an ordered monoid with 

respect to the complete lattice L, = (L, 2) (where A* and 0 are the least and greatest 

elements). Moreover, we have full distributivity: 

X+/j X,=X+ IJ Xi=U (X+Xi)=A (x+xi) 
iel iat is1 iel 

and so the following holds. 

Fact 1. LA:=(L, 2, +,{o}, -> is an involutive Heyting algebra. 

4.3.2. Classically a non-deterministic automaton over A is a quadruple A = (Q, T, I, F) 
where Q is a set called the set of states, I E Q and FE Q are the sets of initial andjinal 

states and Tc Q x A x Q is the set of transitions. The language L(A) accepted by 0 is 

the set of a, ...a,-l~A” for which there exist poeI, pl, . . ..P_~EQ. p,,eF such that 

(pi,ai,pi+l)ET for i=O ,..., n- 1. For example, the empty word q belongs to L(A) 

exactly if ZnF #f#J. For q,q’EQ put A,,,, :=(Q, T,{q},{q’}) (i.e. 1=(q) and F:={q’}) 
and consider L(A,,,,) as a ‘distance’ from q to q’ (given T). Call the pair Q = (Q, T) 
a transition system over A. To UEA we may associate the binary relation 

Pn:=((q,q’): (q,a,q’)ET) 

on Q. (There is also the relation p q ={(q, q), qEQ)). To Q associate the binary 

relational system OR :=(Q, (p,: UEA)) of type A. We can define the category of 

transition systems over A whose objects are the transition systems over A and whose 

morphisms are defined by Hom(Q,Q’)=Hom(Q,,Q~) (where the latter are in the 

category of binary relational systems of type A). 
We have seen in 1.3.3 how to turn a binary relational system of type A over Q into 

a binary space (Q, 6) over V:=(@ (A), 2). In our situation for distinct q, q’EQ we have 

concretely 6(q, q’):= {SEA: ( x,a, y)~ T > (i.e. 6(q,q’) is the set of letters permitting 

a direct transition from the state q to the state q’). As noted above, for every qEQ we 
have 

6(q,q):={o}U{m4: (q>a>q&TI. (4.6) 
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Motivated by (4.6) we put As1 := { q } UA (considering q as an element). We intro- 

duce a particular binary operation $ on @(A”) as follows. Let X0,X1 &A”. 

(1) If q EXeAX, put Xo/Xl :=XoUX1. (2) If q EXi\X,-i for some iE{O, l} put 

XO/X1=X1/XO:=X1_i (3) If q $XouX1 put X0-i-X1:=@. We show that the 

structure thus obtained has the required properties. 

Lemma 4.3.3. &:=(@(A”), 2, i,{o}) 1s an ordered commutative monoid. 

Proof. (1) Clearly $ is commutative. (2) To prove associativity it suffices to show: 

Claim. Let X, Y, Z G A ’ I. Then W := (X -k Y) $ Z # 0 if and only if q belongs to at least 

two of X, Y,Z. If this is the case, then W=Xu YuZ whenever q EX~ YnZ while 

otherwise W equals to the one of X, Y, Z not containing q . 

Proof of the claim. Note that for U, VGA” ’ we have q E U 4 VOO E Un I’. 

(*) Let W:=(X/Y)/Z#@ If q EW then q e(X/Y)nZ and so q EXnYnZ. 

Thus let •I $ W. If W=Z then q E(X $ Y)\Z and q E(Xn Y)\Z. Finally let W= X -k Y. 

Then q EZ\(X/ Y). As Xi Y= W#@, we have either q EX\ Y and W= Y or 

q E Y\X and W=X. Note that we also verified the second part of the claim. 

(=) If q cXn YnZ clearly W= Xu YuZ #@. In the other 3 cases the sole set not 

containing q dominates the sum in W. Cl 

From the commutativity and the claim above, clearly (X 4 Y) 4 Z and X 4 ( Y$ Z) 

are equal. 

(3) Note { q } i X =X regardless whether q EX or 0 $X. 

(4) To verify the isotony, let X, Y, Z G A’ 1 and X2 Y. To verify X/Z? Y-kZ we 

have 4 cases. (a) There is nothing to prove if Y-i-Z=0 (b) If q E YnZ then 

q EXnZ and X/Z=XuZzYuZ=Y/Z. (c) If q EY\Z then q EX\Z and 

X$Z=Z= Y$Z. (d) Finally if q EZ\Y, then either q EZ\X and X-kZ= 

Xz Y=YiZ or q gXnZ and X/Z=XuZzY= Y$Z. This proves Lemma 

4.3.3. 0 

Consider a binary space (E, d) over _U,. The axiom (d 1): d(x, y) <O-x = y translates 

into •I Ed(x, y)ox = y. We show that (dl) implies the a-inequality (d2). Suppose (d2) 

does not hold for some x, y, ZEE. Then E := d(x, z) 4 d(z, y) #@ (since 0 is the greatest 

element of _U,) and so q Ed(x, z) or q Ed(z, y) proving x = z or z = y. If x = z # y then 

q #d(z, y) and e=d(z, y)=d(x, y), giving a contradiction since we supposed that (d2) 

does not hold. The same argument applies if x #z = y. Finally, if x = y =z then 

q ~d(x,z)nd(z,y) and e=d(x,z)ud(z, y)=d(x, y), giving again a contradiction. 

To (E, d) satisfying (dl) associate the transition system (E, .Q) where 

&d := {(x, a, y) : x, AGE, aEd(x, y)nA}; 
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conversely, to every transition system (E,E) assign the binary space (E,6,) over 

Q., where for all x, GEE, x #y we put: 

6,(x,y):={aEA: (X,U,Y)E&}, &(X,X):={O}~{aE‘4: (X,U,X)EE}. (4.7) 

Let - be an involution on A. We can extend it to A” by setting 0 = q and also to 

@(A’l) (by setting X:= {R: XEX} for all XGA”‘). With this involution the above 

_V, is an involutive Heyting algebra (to check X $ u is~ Xi = u ipI (X i Xi) we have to 

distinguish four cases according to q EX and q EX~). A transition system (E, E) is 

called selfdual if (x, a,y)~~+y, a, x) holds for all x, GEE and UEA. For example, if 

1 A I= 1 then a selfdual automaton can be viewed as a binary symmetric relation (i.e. 

a graph). For ) A I= 2 a self dual automaton is essentially a binary relation. For a self 

dual automaton (E,E) the binary space 6, introduced above is a metric space over 

UA [as it satisfies both (dl) and (d3)]. 

We can make a transition system (E, E) over A into a selfdual one. For this it suffices 

to duplicate the alphabet A. To each letter SEA associate a new letter a’ so that a I-U’ 

is a bijection from A onto A’ := {a’: UEA} where A and A’ are disjoint. Now it suffices 

to put B := AuA’, set Z := a’, a’:= a for all UEA and finally put E:= {(y, 5, x): (x, a, )I)EE} 

and s’:=suE. The automaton (E,E’) is clearly self-dual and so (E, a,,) is a metric 

space over &. 

The approach outlined in this section is solely based on the transition graph of an 

automaton, while the theory of automata commonly concentrates on a study of the 

language accepted by an automaton. We deal with the latter aspect in the next 

paragraph. 

4.3.4. Let A be an alphabet, let - be an involution on A and let (E, E) be a transition 

system over A. For x, GEE, denote by dE(x, y) the language accepted by the automaton 

(E>s>Cx)>ol))(h aving a single initial state x and a single final state y). Denote by 6, the 

map associated with E (defined in (4.7)). 

Fact 1. (E, d,) is a binary space on LA and d, is the largest map d: E x E+L, satisfying: 

(Dl) d(x,y)<O i$and only ifx=y; 

(D2) d(x, Y) d d(x, 4 + d(z, Y); 

(L) d(x, Y) d &(‘Y, Y); 

for all x, y, ZGE. IL moreover, (E, E) is self dual then d, satisfies: 

(D3) d& Y) = dE( y, x), 
for all x, yeE, and thus (E, d,) is an LA-metric space. 

(Recall that La, the family of subsets of A *, is ordered by the reversed inclusion and 

that + denotes the concatenation, cf. 4.3.1.) 

Proof. Observe that: 

n<o,pl, . . . . ~“-1~6 X=PO, Y=P,>. (4.8) 
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We check that d, satisfies (L), (Dl), (D2) and (D3). The inequality (L) follows 

immediately from (4.8) (for n = 1). For (Dl) observe that d,(x, y) ~0 implies that there 

exist n<o,po,..., pneE, po=x, pn=y such that G,(pi,pi+r)={EI} for all kn. By the 

definition of 6, this implies pi = pi + 1 for all i < n and thus x = y. Conversely, for every 

XEE we have q E~~(x,x)G~,(~,x) and so d,(x,x),<O. To prove (D2) let x,y,z~E. 
We have 

C be(Pi,Pi+l)+ C 6,(qj,qj+l): IZ<W m<w, 
iin j<m 

Po,...,Pn>qo,...T qrn~E, PO=X, pn=qo=z, qm=y . 

Now LA being Heyting, the distributivity guarantees that the right-hand side equals 

&(x2 z) + d,(z, Y). 

Finally, if (E, E) is selfdual then 6,(x, y) = 6,(x, y) and so d,(x, y) = d,(x, y). 
Let d: E x E-LA satisfy (Dl), (D2) and (L). From (D2) we deduce that 

d(po~P~)d~t<nd(pi,Pt+~)forpo,...~ p,,eE. From this and(L) it follows that for x, GEE 

we have 

d(x,y)G 1 d(pi,pi+l)G 1 d,(Pi,Pi+r) 
i<n i<n 

such that p. =x and p,, =y. It follows that 

dbd,. q 

for all po, . . . ,pneE 

d(x, y)dd,(x, y) for all (x, ~)EE and so 

Fact 2. A binary space (E,d) over &, is of the form (E,d,) for some transition system 
(E, E) if and only if d satisfies the following convexity condition: 

(D4) Ifu,v~A*,x,y~E, and d(x,y)<{(u) +(v) then d(x,z)<{(u) and d(z,y)<{v} for 
some zeE. 

Proof. First d, satisfies (D4). Indeed, let x, GEE, u = u. ... u,- I and v = v. ... v,_ i be 

such that d,(x,y)<{u} +{v}. Since {u} +{v} =(u+v}, we have u+v~d,(x,y). Thus 

there are po, . . . , p,,+,,,eE such that x=po, y=pn+,,, and (pi,Ui,pi+r)Ea for all i<n and 

(pn+j,Vj,P”+j+i)Es forj<m. Setting z:=p,, we have uEdC(x,z) and ued,(z,y) proving 

d,(x, z) d {u> and d&z, y)< {u). C onversely, let d satisfy the condition (D4); let E be such 

that 6,(x,y)=d(x,y)nA”‘. We prove that d, = d. Since d(x, y) < 6,(x, y) the previous 

fact shows that d < d,. For the converse d, <d, we prove by induction on the length of 

a word a that d(x, y) < (a} implies d,(x, y) < {a}. This is clear for words of length 0 and 

1. Let a=ao ... a,EA*. If d(x,y)< {a} then, since a=ao ... a,_ 1 +a,, the condition (D4) 

guarantees that d(a, z) < {a0 ... a,, _ 1 > and d(z, y) < {a,} for some ZEE. From the induc- 

tion hypothesis, d,(a, z) d {a0 ... a,_l} and by the definition of d also 6,(z, y)< {a,}. 
From the a-inequality we get 

d,(x,y)~d,(x,z)+d,(z,y)~d,(x,z)+6,(z,y)d(ao... a,-l}+{a,}={ao...a,) 

proving the induction step and hence our claim. 0 
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Fact 3. Let (E, E) and (El,&‘) be two transition systems over A. The following are 

equivalent for f: E +E’: 

(i) f is a transition system morphism from (E, E) into (E’, E’), 

(ii) f is a contraction from (E, 6,) into (E’, 6,,), 

(iii) f is a contraction from (E, d,) into (E’, d,.). 

Proof. (i) -(ii) This was already indicated in 4.3.2. As we have seen above, 

&(x,y)=A”’ v d,(x, y) holds for all x, YE E. 

(ii) *(iii) If f satisfies (ii) then, 

C ~e,(f(Pi),f(Pi+l)): ~<~,Po>*-->P~EE, PO=% Pn=Y 
icn 

< C Ge(pi>pi+l): n<o, PO, . . . ,P.E-~ PO=X, Pn=Y 
i<n 

(iii) *(ii) Let f satisfy (iii). Then, 

~,,(f(x),f(Y))=A61nd,,(f(x),f(Y))~AQ1nd,(x,Y)=~,(x,Y). 0 

Corollary 4.3.5. (i) The categories ATA and AT;, consisting of automata and of selfdual 

automata on A and equipped with the automaton morphisms are full subcategories of the 

category of binary spaces over &,. 

(ii) The category ATA is a full subcategory of the category of metric spaces over 

L, where B= AuA’ and A’ is a copy of A. In particular, the product of automata 

corresponds to the product of spaces with the sup-distance. 

Proof. The first statement is clear. For the second, duplicate A as indicated in 4.3.4 

and on B = AuA’ define - by setting Z = a’, 2 = a. Clearly ATA and AT, are, as 

categories, identical. Now, apply the first statement. 0 

Fact 4. Let A be an alphabet with an involution -. Let &(A*) :=(B(A*), yA) be the 

transition system over A dejined by 9* := {(X, a, Y): X2 Y+ {c?}, YzX+ {tl}, 

X, YEL,.,,czIzA}. Denote by dgA the corresponding distance and by dL1 the distance 

associated to the Heyting algebra 6, = (@(A*), 2, + , -). Then, 

c~~~(X, Y)=d,,(X, Y)nA”’ for all X, YEL,; in particular d,,<d,. 

Proof. Let c(EB~~(X, Y). Then, according to the definition of ZA, either ct= 0, (and 

X=Y)or~l~AandX?Y+(E}and Y~X+{a}.Inthefirstcase,sinceX=Ywehave 

0 E&,(X, Y)nA ’ ‘; in the second case the two inequalities mean that d&,(X, Y)< {u}; 

that is aed,,(X, Y). The converse is similar. 

Since dFA is the largest distance satisfying d, d ByA it follows that d,, < d,. 0 
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F. Sai’dane and the first author have identified a subset Da of B(A*) with the 

following properties: the distance induced by dLA on DA coincide with the distance 

associated with the transition system DA induced by LA on DA; moreover, every 

involutive transition system embeds isometrically into some power of DA (see 

F. Sai’dane, Graphes et Langages: une approche mttrique, Thkse, no 206-91, Lyon, 

November 199 1). 

4.4. Sequential machines 

4.4.1. In the sequel the alphabet A is a fixed non-singleton set and 5 a fixed indecom- 

posable ordinal number (that is one satisfying T + l= 5 for all z < 5; thus for example 

o is such ordinal). Denote by B the set A” (of all maps from 4[ := {z: z < 5 > into A). For 

n < o an n-ary operation f on B is a retrospective if for all b;, . ._ , &EB the value 

E=f(b;, . . . ,&) is such that for each z< 5 the restriction cIll depends at most on 

b; I?, . . . , &I,. The first case, and perhaps the most interesting, is the one with 5 =o. 

We may associate to f a black box consuming n infinite tapes and producing a 

single infinite tape. On the ith input tape is the infinite sequence 

b”i=(b;,b;, . . . ,n) while the output tape at the (discrete) time z carries the 

finite sequence yic= ‘,’ “’ , c,_ 1). At the time z the box reads (or swallows) the 

symbols bi, . . . , b:.‘ihrmachine is myopic in the sense that at the time z it may react 

only to the part b:, . . . ,bt, . . . , b t, . . . , bf already read (or swallowed). In other words, 

the machine is no oracle and so it is completely unaware what it will read (or swallow) 

in the future. Thus, if the input sequences b”’ and d”’ have identical initial segments of 

length z(i=l,...,n) then the two output sequences C:=f (b;, . . . , b”,) and 

e”:=f(d;, . . . , &) also agree on the first z terms. For A finite and 5 = o the unary 

retrospectives were introduced by Raney [22] (cf. [ll, Section 4.71). 

4.4.2. For z < 5, PEAI and X”EB := As denote by jj. I the map h” defined by setting 

h”( 2) := p( 1) for 1~ T and h(z + 1) :=x”(L) for all I < 5 (here we need the fact that z + 5 = 5 

forallz<{).Toann-aryretrospectivefon B,z<&j?‘,...,p”“~A~, ~~:=(p’,...,fj”) 

assign jF=f”~Az and an n-ary retrospectivef, on B so that 

f,(jFl.fl ) . . . ,jY.Z”)=f7.fn(l’, . . . ,5?“) (4.9) 

holds for all x” 1 , . . . , Z”EB. Note that both p” =f” and f, are unique (by virtue of the 

definition of a retrospective). Further let Qf denote the set of allf, obtained in this 

way. Note that the cardinality of Qf is at most, 

(where 1 is the cardinal sum). For <=o clearly ~~~~~,~=rnax(K~,lAl) and so E,~,,~=K~ 

for (A( <Ho. In 4.4.34.4.7 we consider only the case c$=w. As usual, ZEB:= A” is 

interpreted as an w-sequence (x0, x1, . . . ) over A, a notation used throughout 

4.4.34.4.7. 
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4.4.3. Following the ideas from [S] we show that for t = o a retrospective may be 

interpreted as a (possibility infinite) initial deterministic Mealy automaton (IDMA for 

short). As usual, an IDMA is given by a sixtuple, 

where the input and output alphabets I and 0 and the set of states Q are non-empty 

sets, the initial state qO is an element of Q and the transition function 6 and output 

function 1 map I x Q into Q and 0, respectively. In the sequel we assume that I = A” for 

some positive integer n and 0 = A (i.e. Aj has n inputs and a single output that all work 

over the same alphabet A) and refer to @ as an n-ary IDMA over A. Such an IDMA 

realizes an n-ary operation f on B:= A” provided for all II, . . . ,Z’,EB the sequence 

j7 :=f(Z:‘, . . . , 2”) satisfies 

Y*=A((x’ 7’ ... 3 -4, 4r) 

for all z <w where qZ is defined inductively by setting 

9m+1:=~((xi!I, ... TX”,), &I) 

(4.11) 

(4.12) 

for all m CO. (In the sequel we shorten the right-hand side of (4.11) to 1(x,‘, . . . ,x:, qr) 

and similarly for (4.12)). We have the following. 

Lemma 4.4.4. An n-ary operation f on B := A” is a retrospective if and only if it is 

realized by an n-ary IDMA over A with at most ~:=max(K,, 1 Al) states. 

Proof. (*) Let f be a retrospective. Put &f := (A”, A, Qf, 6, L,f) where Qf has been 

described in 4.4.2 and the transition function 6 and output function A are defined as 

follows. Let g=(a,,...,a,)EA” and ~EQ~. By the definition k=fR for some 

7r=(fi1, . . . ,p”) where j!’ ,..., /YEA’ for some O<r<o. For i=l,..., n denote by 

ri the element (pi,ai)EA7+’ and put x’:=(r’, . . . , r” ). Letf” and f”’ be the elements 

of A’ and AT+ 1 from (4.9). From the definition of retrospective we have f”’ =f”. a for 

a unique aeA. Now put 

d(g, k) :=fn,r A(g, k):=a (4.13) 

(where again&EQr is determined by (4.9)). 

A straight-forward check shows that (4.13) does not depend on our choice of rr (in 

k=f,) and so it defines an n-ary IDMA over A. Observe that this IDMA realizes f: 

(-G=) It is easy to verify that every n-ary IDMA over A realizes an n-ary retrospective 

over B := A”. 0 

4.4.5. The structural theory of automata studies the construction of new automata 

from a given set &l= { Mi: iEl} of IDMA’s over A. The &fis may be seen as small 

IDMAs available on the market (each in potentially unlimited quantity of copies). The 

copies of these IDMAs serve as building blocks for a net of IDMAs which constitutes 

a new IDMA. 
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In this paper we limit ourselves to feedback-free (i.e. tree-like) nets. Although 

feedbacks largely enhance the construction capability, already their definition is based 

on various assumptions concerning real time functioning. This and the technical 

difficulties in feedback handling largely exceed the framework of this paper. More- 

over, the feedback-free constructions directly translate into universal algebra permit- 

ting the application of clone techniques. 

4.4.6. Put ~:=max(K,,, IAl) and denote by IA the set of all IDMA’s of type (4.10) over 

A with 1 Q) GM: (i.e. with at most c( states). For a positive integer n denote by I$‘) the set 

of all &IA with exactly n inputs. To formalize the building of tree-like nets, we 

introduce Mal’tsev type operations (cf. [16]) on I,. Let 

M= (A”‘, A, Q, 4 4 qo >, N=(A”,A,Q’,6’,1’,q;,) 

(where 6 and 1 map A”’ x Q into Q and A and 6’ and 2’ map A” x Q’ into Q’ and A’). Put 

r:=m+n-1 and denote by 

&f* N= ( A’, A, Q”, LY’, 1”, q ; ) 

the IDMA obtained by joining the output of N to the first input of M. It is easy to see 

that we may take Q” :=Q x Q’, qb: =(qO,qb) and define 8’ and 1” by setting 

6”(a 1,...,a,,q,q’):=6(6’(al,...,a,,q’), a,+l,...,a,, q), 

il”(a 1,...,a,,q,q’):=~(6’(a,,...,a,,q’), a,+l,...,a,, 4) 

for all a 1, . . . , a,EA, q’EQ’ and qEQ. The IDMAs c&l, z&l and AhJ are defined in an 

analogous fashion. Finally e: EZ (2) connects the first input directly to the output. In 

this way we obtain the algebra 

I*:=(Z A; *,S,z,A,d) 

(of type C&L 1, LO)). 
For an indecomposable ordinal 5 denote by Ss the set of all retrospectives on 

B := A’. The composition of retrospectives from Sz coincides with the above composi- 

tion of the corresponding IDMAs. This is stated in the following lemma whose proof 

is omitted. 

Lemma 4.4.7. The map cp : IA-ST which to each MELA assigns the retrospective 

realized by &l is a homomorphism from iA into (Sz; *,c, z, A, e:). 

The following subclones of S2 are determined by the cardinalities of Qf (the sets of 

states of the corresponding IDMA if t=o). For an infinite cardinal K put 

T A&={f& IQII<KI. 
We have the following proposition. 

Proposition 4.4.8. For every injniinite cardinal K the set TArK is a subclone of S$. 
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Proof. Put T:= TACK. Let fET be n-ary and gE T m-ary. We show that Qsr s[(Qr). 

Indeed, let kE QFf . According to 4.2 we have k = (cf )n for some rc = (pi, . . . , fin) where 
-1 
P ,..., p”“~Arfor some 0.~7~5. Put x’:=(p* ,..., p”“,p”‘). Then for all I’,..., ~“EB 

from (4.9) we obtain: 

([f)“.([f)#i )...) a”)=(z;f)(p’*zl )..., p”-.?“)=f(j%? ,...) jn,.?)?n,j71.z1) 

=f”‘.f,@, . . . ,.C”,a’)=[(f,,)(n*, . . . ,Xl”,Z1). 

Comparing the first and last part we get k=([f)rr=i(fn,)ES(Q,) proving the above 

assertion. Now, 

(actually, the first two inequalities are equalities) proving ifsT. The proof that 

Qzfc7(Qf) is quite similar. In an analogous way for n > 1 and rc= 

(p”‘,..., d”-‘) with PI,..., ~S”-‘EA~ and n’:=(jY1,j?‘,p2 ,..., p”-‘) one can prove 

that (df),=df,, and so again IQdrl<ldQIl<IQsl<~ proving that AfET. 

It remains to consider h:=f*g. Put r:=m+n-1. Let 0~7~5, jjl,...,p”‘~AL and 

77:=(~1,..., P’). Put, 

7c1’:=(P1, . . . ,p”“), ?c’:=(g”“,ji”+‘, . ..) p”‘). 

We have the following. 

Fact. (f * g)n=fn, * gn-. 

Proof of the Fact. Let n:=SZ’, . . . ,X”‘EB. Put Z’:=g,,,(x”‘, . . . ,5Zm). Then 

h” . h,(Z l )...) E’)=h@‘.f’,..., j7.x’) 

=f(g(@‘.n’ )...) pm.q, pm+l.zm+l )...) jY.2’) 

=f(g”“.&&2’)...) Iz”), jFm+l.zm+l )...) p”‘..?‘) 

=f(gn”.~Oo,pm+l.~m++ ,..., pr.2’) 

=fn’.f~,~o,~m+l,...,~‘) 

=f”‘.(f,&&‘,..., zm),xlm+l )...) 55’) 

=f”‘.(fz,*gn,*)(x”l ).‘.) a’), 

proving the fact. 0 

FromthefactwegetQf*,cQJwQ,andfinallyIQ~,eJ~IQIIIQs)<K2=IC(asrcisan 

infinite cardinal). 

Call the clone TAwKo the clone of$nite retrospectives. Clearly it corresponds to the 

set of all finite state IDMA’s on A. For 1 < ) Al <No the single clone of the form 

T AWK different from TAoNo is SS= TAoK,. 
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4.4.9. We describe S:=S_$ in terms of the following ultrametric d on B:= A<. Put 

V=c+ l=(~: KQ~) and y: (V, >,, A ,t) where u A u’:=min(v,v’) is the join for the 

order 2 and t its least element. For distinct Z,~YEB put 

d(l,Y):=A{A: A<w: Z(A.)#J(A)}; (4.14) 

here again A is the usual inf in the well-ordered set (V, <) and d(Z,Z)= 5 for all ?‘EB. 

Thus for distinct ?? and jj the value of d(Z, j) is the least ordinal on which they differ (as 

maps from $ into A). We have: 

Lemma 4.4.10. The above map d is is a _V-ultrametric on B. 

Proof. Clearly it suffices to verify the a-inequality. Let x”,jj,I~B and 

v:=d(SZ,?)<d(f,jt). Then Z(d)=Z(A)=jj(Iz) for all A<v and so d(%,j)<v. •1 

For t = o and A finite, Csakany and Gecseg [7] (cf. [ 11, Section 4.71) used the related 

relational metric 6 defined by setting 6(X, jj) := l/(d(%, jj) + 1) for 2 #J and &a, 2) =O. 

We relate retrospectives and y-contracting operations. 

Theorem 4.4.11. An operation f on B= A5 is retrospective ifand only if f is contracting 

with respect to the above y-ultrametric on B. 

Proof. (9) Let Iz’, . . . . Z”,Jl, . . . . J”EB. Put 

zz:=f(x”’ ,...,.q,v”:=f(y’ , .., , j”), d:= /I d(l’, j’). 
i=l 

(4.15) 

First consider the case 6= 5. Then d(Z”,j’)= 5 and consequently I’=p’ for all 

i=l , . . . , n. Then 12 = v” and d(ii, 17) = 5 = 6 as required. Thus let 6 < t. Then 5 ‘(A) = g’( A) 

for all 2 < 6. Now f being retrospective, we get u”(A) = v”(A) for all A < 6 and conse- 

quently d(C, 0”) 2 6. 

(s=) Suppose an n-ary operation f on B is d-contracting but not retrospective. Then 

thereare1’,...,X”,y” , . . . ,j%Band z<c such that ~?‘(,I)=p~(A)for all Ifz while t?and 

d defined by (4.15) satisfy u”(z) # v”(z). Now d@“, 9’) 7z for i = 1, . . . , n show that 6 defined 

by (4.15) satisfies 6 > z. On the other hand z 3 d(u”, 6) and, since f is Y-contracting, also 

d(ii, i?) > 6 proving T 2 6 and leading to the contradiction 6 > T >/ 6. q 

The paper [7] (cf. [ll, Section 4.71) deals with the special case 1 Al =n and 

f permutation of B (whereby a contracting f is an isometry). We show that (B, d) is 

hyperconvex (cf. 3.3.3). 

Proposition 4.4.12. The ultrametric (B, d) is hyperconvex. 

Proof. Let K be a cardinal and M’EB and riE V for all i < K such that for all i,j < K, 

d(l’, 2’) > ri A rj. (4.16) 
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Define q : c+ V by setting cp(i):=ri for all i< K. Since both rc and (V, 6) are well- 

ordered, we may arrange the notation so that cp is isotone (i.e. cp(i) d cp(j ) whenever 

i <j < K). Put 8 := Ker cp and let { Yi : i < A} denote the equivalence classes of 0 (where 

I < 5 + 1) and the intervals Yi are arranged so that Yi precedes Yj whenever i <j <A). 

For y <A denote y(y) the least element of Y,. We have two cases: (1) Let A be an 

isolated ordinal. Put .Z:=5? where Jo Y,_ 1 is arbitrary. Now for all i< K from (4.16,) 

we get 

d(Bi,Z)=d(gi,Ij)>,ri A rj=ri 

as Yj is the greatest element of {ri; i < K}. Note that if rj= < and kE Yn- 1 from (4.16,j) 

we get d(nk,%j)>c A <=<, whence d(Zk,Zj)=t and fk=X”j proving that YA_, is 

a singleton and our choice of? unique. In particular, this happens if A = 5 + 1 (because 

then r,C5I = 5). 

(2) Let ;1 be a limit ordinal. For each y <I put p’r :=r,(,) and Z, := Zy(y)lay (recall that 

y(y) is the first element of the block Y, of 0). We have: 

Fact. If y<d<A then 2aly=Z”y. 

Proof. Put i:=pLy. By (4.1611) and the isotony of cp, we have 

d(x”y’y’, S?@)) >, pr A pLa = py (4.17) 

and therefore 5Z,y(y) and Zy(‘) agree on gy proving the fact. 

Let ZEB be such that ZJg,=Zy for all y < A. In view of the fact above, such Z exists. 

Moreover, 5? is unique whenever A= 5. It remains to prove that d(l’, 2) 2 ri for all i < JC. 

Let i < K. Then iE Yy for some y < rc. Put j := y(y). From i, jE Y, we get ri = rj= p?. NOW 

from (4.16ij) we get 

d(x”‘,Ij)>,ri A rj=ri. (4.18) 

By the definition of Z we have d(zZj, z”)>py= ri. Combining this with (4.18) and the 

n-inequality we get the required d(l i, z”) 3 d(?, S) A d(Z j, 2) > ri A ri = ri. q 

Remark 4.4.13. We have also proved: 1f the set R := {ri: i< K} is cojinal with 5 or 

contains 5 then z” is unique (in particular, this happens for 5 = o whenever R is infinite). 

Non-expansive relations were defined in 3.7.9. In our special case we have the 

following. 

Proposition 4.4.14. Let CJ be a non-expansive relation for the above V-ultrametric 

4 =(A,d). Then the clone Polo either equals Pol (d), for some VE V or it equals 

n ,,,<* Pal(d), for some limit ordinal 16 5. 

Proof. By Proposition 3.7.13 the clone Pola is of the form fiwsW Pal(d), for 

W= im 6 where 6 is a 41-ultrametric. First we characterize such IV. 
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Fact. Let WC V. Then W=im 6 for a V-ultrametric if and only if <E W and 1 WI > 1. 

Proof of the fact. (a) Evident. (-==) For w, W’E W put 6(w, w’):= 5 if w = w’ and 

6(w, w’):= w A w’ otherwise. It suffices to prove the n-inequality. Let U, u, w z W. 
Taking into account that 5 is the greatest element of V we may assume that u, v and 

w are pairwise distinct. Then, 

6(U,U)=U A Vat4 A W A W A U=@,W) A 6(W,U). 

Note that (d), is the least quivalence on A and so Pol(d& is the clone of all operations 

on A. We have two cases: (1) U:= W\{ (f has a greatest element w. Then 

Pol o = Pal(d), and we are done. (2) U is cofinal with (w: w < A} for a limit ordinal 

1~5. It is easy to see that then Polo equals nwCl Pal(d),. 0 
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