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Introduction

The usual metric space (A4,d) is a set A with a map d from A2 into the set R, (of
non-negative reals) satisfying d(x,y)=0<x=y, d(x,y}<d(x,z)+d(z,y) and
d(x,y)=d(y,x) for all x,y,zeA. Inspired by Quilliot’s [21] combinatorial results,
Jawhari et al. [ 13] extended in 1986 the concept of a metric space in several directions.
Firstly, (R, ; <, +,0,) is replaced by V=(V;<, +,0, —) where (i) (V; +,0, <) is an
ordered monoid (not necessarily abelian) whose neutral element 0 is the least element
of (V; <), (ii) the self map v =7 is an involutive order automorphism of (V, <) such

that (v+w)=w+7 for all v, we V. Secondly, the map d from A? to V satisfies the same

axioms as above, except that the third axiom is replaced by d(y, x)=d(x, y). A natural
model for V' is the set of all binary reflexive relations on a set E, where < is <, + is the
composition o of relations, 0 is the diagonal (that is the set {(v,v): veV'})and — is the
inversion, usually denoted ~!, of binary relations (that is p~:={(y,x): (x,y)ep}).
The latter paper developed certain aspects of the category of such spaces and
contractions, and showed that graphs, directed graphs and ordered sets may be
viewed in this context. It also extended absolute retracts, injective envelopes and fixed
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point properties to the more general spaces, linking these infinistic concepts to discrete
structures provided V has special properties. In such cases a V-space is called hyperconvex.

In this paper we go a step further. We do not require the neutral element O to be the
least element of (V, <) and we replace the first axiom by d(x, y) <0 < x=y (a model
for such Vis the set of all binary relations on E). This seemingly innocuous change has
significant consequences leading to a more complex theory.

The paper is divided in four sections. The first one relates the category of such
spaces and contractions to the category of relational systems and relational
homomorphisms. This is done in a more general setting for (A, d), where d maps A" to
(V, <) (for a positive integer n). In Section 2, for a join-semilattice we define m-ary
contracting operations on A linking these n-ary spaces to universal algebras. In this
context, we discuss the preservation of n-ary relations on 4, the n-interpolation
property and the extension property. In Section 3, we develop the proper theory of
generalized V-metric spaces mentionned earlier. In particular we study the elements of
IV appearing as the values of d for at least one V-space (A, d). The central notion of
hyperconvexity takes a more complex form but is still equivalent to the one-point
extension property. Special }’s may themselves be turned into metric spaces (V,dy)
and in this case we can embed every V-metric space into a power of (V,dy). This
happens when V is an Heyting algebra i.e. satisfies an infinite distributive law (for
+ and A). In this case, the notions of injectivity, absolute retracts, retracts of powers
of (V,dy) and hyperconvexity coincide. Moreover, we can say something about the
relations compatible with all contracting operations. Next, we look at the special case
of a meet-semilattice with least element 0. A F-metric space is called then an
ultrametric and the contracting operations form exactly the sets of terms of a congru-
ence affine algebra on A. In Section 4, we first extend an arbitrary binary space V into
an Heyting algebra and we proceed to show that an arbitrary V-space embeds
isometrically into a power of ( V, dy ). We apply this to binary relational systems and to
automata. A further application to the structural theory of automata studies the
composition of an automaton from given building blocks which are themselves
automata. Limiting ourselves to feedback-free compositions, but allowing an infinite
number of states, we can describe the situation in terms of a hyperconvex ultrametric.

1. Valued spaces and relations

1.1. Spaces

Let V'=(V, <) be an ordered set and »n be a nonnegative integer. An n-space over
Vis a pair A =(A,d) where A is a set and & is a map from A" to V. If A=(4,4) and
A'=(A’,8') are such n-spaces over V, a map f from A to A’ is a contraction from A to
A’ if the following inequality holds

o' (f(ay),....f(an))<d(ay, ..., a,) (1.1)

for all ay,...,a,cA.
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If n=1,a map ffrom A to A’ is a contraction provided &'( f(a))<d(a) for all acA.
The contractions for n>1 may be perceived as unary ones if we consider the 1-spaces
(A", 6) and (A", &) and the natural extension f® from A" to A™ defined by setting
™ (ay,...,a,)=(f(ay), ..., f(a,)) for all ay,...,a,eA. Trivially the composition of
contractions is a contraction and the identity map on every n-space over } is a contrac-
tion. Thus the n-spaces over V, equipped with the contractions form a category which

will be denoted S,y. In what follows we give another description of S,y
1.2. Relations

Let D be a set, let n be a positive integer and, for each deD, let p, be an n-ary relation
on A (i.e. a subset of 4"). We call A=(A,(p,: deD)) an n-ary relational system on A of
type D. A map f from A to A’ is a relational homomorphism from A=(A,(p,: deD)) to
A'=(A,(ps: deD)) if for all deD we have f(ps)<=py (ie. (f(ay),..., f(a,))ep; for all
(ay, ..., a,)€p,). The n-ary relational systems of type D and their relational homomor-
phisms form also a category which will be denoted R,p.

1.3. Correspondence between spaces and relations

Let A=(A4,8) be an n-space over V. For veV put (8),={(ay,...,a,)eA™:
d(ay,....,a,) <v}. For DSV put Aps=(4, ((8),: veD)). For D, ES V we say that D is
meet-dense in E if each ve E\ D is a meet of a (possibly infinite) set of elements of D (i.e.
v is the greatest element of the set {xeE: x<y for all yeD, y>v}). We have the
following.

Lemma 1.3.1. Let A=(A,6) and A'=(A4',8') be n-spaces over V;, let DSV and let f be
amap from Ato A'. If fis a contraction from A to A’ then fis a relational homomorphism
Jrom Aps to Apy. If, moreover, D is meet-dense in Im & then every relational homomor-
phism from Ap; to Apsis a contraction.

Proof. Let (ay,...,a,)e(d); (ie. d(ay,...,a,)<d). Since [ is a contraction,
d(f(ay) ..., f(a,))<éb(ay,...,a,)<d, proving (f(a;),..., f(a,))e(d');, and thus fis
a relational homomorphism. Conversely, let D be meet-dense in Imé and let f be
a relational homomorphism from A4,; to 4’ps. Consider (ay,...,a,)e A" For every
deD we have &'(f(ay),..., f(a,))<d whenever d(ay,...,a,)<d and, since D is meet-
dense in Imd, we obtain the required &'(f(ay),..., f(a,))<d(ay,...,a,). U

Let T denote the functor assigning Aps to 4=(A, §) and mapping each contrac-
tion into itself.
We have the following proposition.

Proposition 1.3.2. If D is meet-dense in V then Ty, is a faithful functor from S,y into R,,,.
In other words, the category of n-spaces over V is isomorphic to a full subcategory of
n-ary relational systems of type D.
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Moreover, if V is a complete lattice then Ty, has a left inverse, namely the functor
U,y from R,p into S, which to every A=(A, (p,: deD)) associates the n-space (A, 5 4)
over V where J 4 is the map from A" to V defined by setting  ,(a)=1Inf{deD: aep,,}f(;r
every acA". i
Proof. The first statement is just the lemma above. For the second, first we show that
U,y is a functor. Let a map ffrom A to A’ be a relational homomorphism. Then for
every a=(ay,...,a,)eA", we have

{deD: aepys} = {deD: f™(a)epy},
where f®(a):=(f(a,), ..., f(a,)). Hence
04 (f™(a)):=Inf{deD: f™(a)ep,;} <Inf{deD: acp,}=:34(a),

proving that f'is a contraction. We show U,y Tp=1s,,. Let (4,0)eS,y and acA".
Then )

04,,(a)=Inf{deD: ae(d),} =Inf{deD: é(a)<d} :=0d(a)

because ae(d); means d(a)<d and D is meet-dense. []

For a particular ' we can prove more. Let @(D) denote the family of all
subsets of D.

Proposition 1.3.3. Let D be a set, V=(gp(D),=) and n an integer. Then the category
R.,p is isomorphic to the category S,y .

Proof. Put D":={{d}:deD}. The set D’ is meet-dense in ¥, which is a complete lattice,
so by Proposition 1.3.2 we obtain that the functor 7 from S,y to R,p has a left
inverse U,y. We show that Tp cU,y = 1g,p . Indeed, with

A=(A,(pa: d'eD'))eR,p

the functor U,y associates (4,9 ) where d,(a)=Inf{d'eD’: acp, } for ac A". Now to
(A,0,4) the functor T associates the relational system B=(4,((d,)s: d'eD’)). Let
d’eD' and ae A", by definition ae(d 4), means d,4(a)<d, that is 6 ,(a)=2d'. Since d' is
a singleton and d,(a)=Inf{t'eD: acp,,,} =Inf{teD: aep,,,}, this inclusion means
a€py, thatis (6 4), = p,. This gives A= B and thus R, =S,,. However, the difference
between R, and R, is purely notational and so the proposition is proven. [J

Remark 1.3.4. For V=(g@(D), 2}, the isomorphism between R, and S,y is explicitly
given by the maps U from R,j to S,y and T from S,y to R, defined as follows: to
A=(A,(py:deD)) associate U(A4):=(4, ) where the map J, from 4" to V is defined
by setting 6 4(a)={deD: aep,} for all ac A". Conversely, to an n-space 4=(4, 6) over
V associate the relational system T(A4):=(A,((d);4): deD)).
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Summing up, for a given V, the category S, of n-spaces over Vis a full subcategory
of the category R, provided that the poset ¥ embeds into the poset V'=(p(D), =
(as this embedding induces an embedding of S,y into S,y where the latter is isomor-
phic to R,p). Here the minimum size of such a set is what Kelly and Trotter [15] call
the 2-order-dimension of V. On the other hand, for a given set D, each ordered subset
V of ((D), 2) leads to a category of n-ary spaces, namely S,y,, and thus to a full
subcategory of R,p. This provides a classification of relational systems by the category
S, to which they belong. We have as many structurally different categories as there
are non-isomorphic subposets of (¢ (D), =2).

Proposition 1.3.5. Let V and V' be two posets. The categories S,y and S,y have exactly
the same contractions if and only if V and V' are order-isomorphic.

Proof. Ifi is an order-isomorphism from ¥ onto ¥, then we have the functor F which
to the object (A, 8) of S, associates the object (A, ¥ » 5) of S,- and which maps each
contraction onto itself. Conversely, suppose that F is an isomorphism from S, onto
S,- mapping each contraction of S, onto itself. The image of an object (A4, §) of 8, is
of the form (A, (d)) (because id, is a contraction of (A, ) onto itself). For a given
A this defines a map ¥ from V4" onto "*". These sets being ordered componentwise,
¥ is an order-isomorphism: indeed, the fact that id 4 is a contraction from (4, §;) onto
(4,8,) means §,<6,. Thus for a one element set 4 this map ¥ induces an order-
isomorphism from V onto V. []

Remark 1.3.6. For an isomorphism F from S,y onto S,y mapping each contraction of
S, onto itself, there need not exist an order-isomorphism Y from V onto V' such that
F(A,8)=(A,y - 9) for every (A, ) in S,y. Indeed, let n=2 and V= }" be an antichain.
Let © be a fixed permutation of V; given an object (4, §) of S, define F(4,8)=(A4,d")
by setting d'(ay,a,):=0(ay,a,;) if é(a;,a;)=0(ay,a,) and §(ay,a,) =n(d(ay,a,))
otherwise. Since V is an antichain, in S,, a map f'is a contraction from (A4, d,) onto
(As,0,)1ff 85(f(ay), f(as))=0(ay, a,) holds for all a,,a,€A,. With this fact one can
show that F is an isomorphism preserving the contractions. For a nontrivial n there is
no ¥ such that §'=y <4 for all é.

1.4. Products of relations and spaces

Recall that in R,p, for an index set I and relational systems A;=(A4;,(p4: deD)),
(iel), their product A=(A,(p;: deD)) is defined by (1) A:==[]{A;: iel} (the
cartesian product), (2) for fy,...,f,€A, and deD we put (fy,..., f,)Eps Whenever
(f1(i), ..., fy(i))epy; for all iel. Concerning S, we have the following.

Lemma 1.4.1. The category S,y has finite (resp. arbitrary) products if and only if V is
a join-semilattice (resp. a complete lattice). In this case, for a finite nonempty (resp.
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arbitrary) index set I, the product of n-spaces (A;,d;) over V, (i€l), is (A, d), where

A:=T]{A;: iel} (the cartesian product) and for aii fi, ..., f,e A:
O(f1s-ees fu)=Sup{8:( f1(i), ..., fuli)): il }.

Proof. If V' is a join-semilattice (resp. a complete lattice) then a routine verification
shows that (A, d) defined in the lemma is a product of the (A;,d;)’s. Conversely, if
S, has finite (resp. arbitrary) products then each nonempty finite family (resp. an
arbitrary family) of one-element spaces has a product in §,y. This insures that } is
a join-semilattice (resp. a complete lattice) and these products are one-element spaces.
Indeed, let W be a nonempty subset of V' and B:={b} a one element set; for ve V'
put B,:=({b},d,), where 8,(b,...,b)=v. Let 4:=(A,5) be a product of the family
{B,: weW}; taking into account the contractions p,, from 4 to B, we obtain
w=30,(b,...,b)<d(ay,...,a,) forall a,...,a,€ A and we W, In particular, the set U of
upper bounds of W is non-empty. For ueU the map idp is a contraction from B, onto
B, for all weW and so by definition of the product, there is a unique contraction
A from B, into 4 such that p,, » A=idp; that is for ue U there is a unique element x,, in
A such that ¢(u):=06(x,, ..., x,)<u. Let u,u'e U, the existence of a product of B, and
B, insures similarly that v and «’ have an upper bound. Let v be such an element.
Since veU, we get x,=x,=Xx,; thus ¢(u) is the supremum of W, and 4 is a
singleton. [

Example 1.4.2. If '=(R,, <), the non-negative reals with the natural order, and if
the (A;, d;) are ordinary metric spaces then their product is endowed with the so-called
Sup-distance or £*-distance.

2. The clone of contracting operations
2.1. Operations and clones

Let 4 be a set. For a positive integer n, an n-ary operation on 4 is a map ffrom 4" to
A. We denote by O the set of all n-ary operations on 4 and put Q4:=(J{0%:
1 <n<w}. We consider special subsets of O, called clones, which are closed under the
composition of operations, the permutation and identification of variables, and contain
the projections. A clone is a direct multivariable analog of a monoid of transforma-
tions of A4, or more specifically, a permutation group on A, whereby the projections
play the same role as id ,. (Note that in universal algebra, ‘nullary operations’ are used
to provide distinguished constants, e.g. 0 and 1 in a ring or a lattice; for our purpose
they present notational difficulties and constants are introduced via constant unary
operations (i.e. constant selfmaps of A)).

There are several formal definitions of clones in the literature. We briefly present
one due to Mal'tsev [16] which is conceptually simple, algebraic, and easy to apply.
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Composition (also called substitution or superposition) of operations parallels the
composition of seifmaps. However, the presence of several variables makes the
description more complex. To capture the replacement of a variable in an operation
by the value of another operation on other variables, we postulate it only for the first
variable. For this we define the following binary operation on Q.

Let feO% and geOP. Put p=m+n—1 and define h:=f*ge0FP by setting
h(ay,...,ap)=f(g(ay,.... ) Ans1,...,a,) for all a,,...,a,eA. The operation * is
associative with neutral element id ,.

In universal algebra, logic and applications, often it is desirable to manipulate
variables in one operation by introducing all operations obtained from it by
permuting or fusing its variables. To describe this succintly we introduce self-maps
{, 7 and 4 on O, which reduce to the identity on O’ whereas for m>1 and
feO™ both (ftfe0% are defined by setting ({f)(a):=f(as,...,am, a1),
(tf)(a):=f(ay, a,,as,...,a,)foralla=(ay,...,a,)e A™ while A fe O~V is defined by
4 aq,...,qm-1): f(al, ai,dy,...,am—y) forall ay,...,a,-,€A.

A subset P of O, closed under *,{,7 and 4 (i.e. f*g,(f,tf, AfeP for all f,geP)is
a preiterative set (also called a closed class). For 1 <i<m the ith m-ary projection e7 is
defined by €7 (ai,...,a,):=a; for all a,,...,a,€A. A clone on A4 is a subset closed
under *,{,t and 4 and containing all projections (or equivalently just e?).

2.2. Contracting operations

Let (A, é) be an n-space over an ordered set V. If V is a join-semilattice, then by
Lemma 1.4.1 an m-ary operation fon A is a contraction from (A, )" into (4, 8) if for
every n X m matrix X over 4

O(f(Xia) o [(Xp)) SO(Xuy) V- v O(Xom) 21

where X;» and X.; denote the ith row and jth column vector of X.

If ¥ is not a join-semilattice then we can embed it into a join-semilattice V7 as
a meet-dense set (e.g. via the MacNeille completion [17]). Condition (2.1) then reduces
to the following requirement:

MX.p)<v (j=1,...,m) implies 0(f(X.),.... f[(Xp))<0 2.2)

for every n x m matrix X over 4 and every ve V. We say that fsatisfying this condition
is a d-contraction over V.

Lemma 2.2.1. For an n-space (A, 8) the set Cyy of all d-contracting operations is a clone.
Proof. Direct verification. [J
Remark 2.2.2. Even on a join-semilattice there are other possibilities to define

contractions which are not based on the join operation. For example, for n=2 and
V:=(R,, <), the nonnegative reals with the natural order, the Sup-distance is not the
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only one used; in fact the Euclidian /2, and the I! or Hamming distances are much
more common. This suggests that we may try to replace (2.1) by

O(f(X1a)yooos, [( X ) S Gm(0(Xeq), ..., 6(X o). 23)

where g,, are appropriate m-ary operations on ¥ (m=1,2,...). More generally one can
suppose each 4™ to be endowed with a map 4, from (4A™)" to V, and consider the
contractions f from the n-spaces (A™,d,,) to (A, d); they satisfy:

S X 1) oo, (X)) SOm( X pay ooy X ) (2.4)

One can observe that if the projections satisfy (2.4) then the §-contractions (defined
by (2.1) or (2.2)) do as well. Consequently, if the set of operations satisfying (2.4) (for
m=1,2,...) is a clone, then it contains the clone of all é-contracting operations.

Problem. Do they coincide? Concerning this problem, note that if we consider the
collection C of maps satisfying (2.3) (rather than (2.4)) then it contains the projections
provided the g,, are extensive (that is to say vy, ..., Uy <gm(Vy, ..., U)); if the g, come
from an associative binary operation + (thatis g,,(vy, ..., V) =0y + - +v,) then C is
closed under composition provided that + is order-preserving (that is vy + v, <v) + v}
whenever v; <v} and v, <v,) whereas it is closed under taking all operations obtained
via identification of variables provided + is subidempotent (that is v+ v<<v}). Under
these conditions C=Cjy; indeed, if the ordered set V is endowed with a binary
operation + which is associative, order preserving, extensive and subidempotent,
then it is, in fact, a join-semilattice and + is the join operation. (Indeed, by extensivity,
v+w is an upper bound of v and w, while for v<x and w<x the fact that + is
order-preserving and subidempotent yields v+ w < x + x < x, proving that v+w is the
join of v, w.)

2.3. Preservation

Let m and n be positive integers. A partial m-ary operation fwith domain D is a map
from a subset D of A™ into A. As defined in Section 1.2 an n-ary relation on A is
a subset p of A". We say that f preserves p if (f(X1s), ..., f(X,.))ep whenever X is an
nxm matrix whose row vectors X;. belong all to D and whose column vectors
X.;belong all to p. In particular, if fis a full operation (i.e. D= A™) f preserves p iff fis
an homomorphism from (A4, p)™ to (A4, p) or, equivalently, p is a subuniverse (i.e. the
carrier or domain of a subalgebra) of the nth power of the algebra 4=(A4,f). This
concept is more imporant than it seems at first glance. For example, if fis a full
operation and p is unary, thus a subset of A4, then f preserves p means f(p™)<p,
whereas if p is an equivalence relation then f preserves p iff p is a congruence of
A=(A,f), similarly if ¢ is a map from A into itself and p is the graph of ¢, that is
{(a,¢(a))y. ac A}, then fpreserves p iff ¢ is an endomorphism of 4. For an ordering
< on A, the fact that the operation f preserves < has the usual meaning of
order-preserving map (also called isotone or monotone in the literature):
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F Xty s Xm) <S(XYs ..., (X)) whenever x; <X, ..., X < Xp,. Several names are used for
‘f preserves p’: f compatible with p or p-invariant, stable or homomorphic with respect
to p, etc.

We will need the immediate extension of this concept to possibly infinite m and n.

For an ordinal k let k denote the set of all ordinals less than k (e.g. 2={0,1},
w=1{0,1,...,n,...}, in fact one could suppose k=k as well). Let m be an ordinal; as
usual A™ denotes the set of all maps from m to A4; we identify A” and A™ for m finite.
For D<= A™ a map ffrom D to A is a partial m-ary operation with domain D (it is a full
operation if D=A™). A subset p of A" is an n-ary relation on A. For an application
X from m xn into A,i<n and j<m, put Xu(j)=X.{(i)=X(i,j). For f:DSA™ = A,
and X such that all X,.eD, let fye A" be defined by setting fx(i)=f(X;.) for alli<n.
We say that f preserves p if fyep whenever all X;.eD and all X.;ep.

For an ordinal m let 0%, resp. O™, denote the set of operations on A with arity m,
resp. with arity less than m (and nonzero). Let R'Y denote the set of n-ary relations on
A and R;" the set of relations on A with arity less than » (and nonzero). Given
a relation p on A, let Pol™ p, resp. Pol<™p, denote the set of €0, resp. feO5™,
preserving p. Given a set R of relations put Pol™ R:= (") {Pol®™p: peR} and define
Pol“™R in a similar way. If in these definitions we replace operations by partial
operations, we obtain successively the sets P and P5™ Polp™p and Polp="p,
Polp™ R and Polp =" R. For a set F of partial operations on A4, put Inv®” F :={ pe R}":
every feF preserves p} and define similarly Inv =" F. In all these notations, we omit
the exponent ‘<m’ if m=ow.

The relation of preservation induces a Galois connection between various sets of
operations and sets of relations. For instance, the sets of the form Pol™ R, Inv®™ F are
the Galois closed subsets of O, R'Y, induced by f preserves p. Some of their general
properties as well as intrinsic characterizations are in [19] for A finite, and in [25] for
A infinite. We mention just the fact that all Pol R are clones and conversely each clone
on A is of the form Pol R where R is a countable set of finitary relations if A4 is finite
and R={p} where p is an m-ary relation on 4, with m=| 4|, if 4 is infinite.

Finally a clone C on A has the n-interpolation property if C contains each fe O
(m=1,...) such that for every subset B of A™, with size at most n, there is some ggeC
which coincides with fon B. In other words, to test whether fbelongs to C it suffices
to verify that for every B:={q,,...,a,} S A™ we have f(a;)=gg(a;), (i=1,...,n) for
some ggeC. We mention in passing that clones with the n-interpolation property for
all finite n, called local clones, play an important role in universal algebra.

2.4. The clone of contracting operations

Let L be a lattice; let us recall [12] that an element vel is compact if v<
Sup{u;: iel} implies v < Sup{v;: ieJ } for some finite subset J of I; denote by ¢(L) the
set of compact elements of L. The lattice L is algebraic if it is complete and every
element is a supremum of a set (possibly infinite) of compact elements; it is trivial if it
has one element.
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Let ¥ be an ordered set and let (A, §) be an n-space over V. As in Section 1.3, for
ve V we put (9),:={aeA": §(a)<v}. Clearly the map ¢:v —(J), is an order-preserving
map from V into (RY), =). We say that (4, §) is algebraic if: (al) V is a nontrivial
algebraic lattice, (a2) ¢(¥) contains §(A") and is finitely sup-generated by 6(A4"), and
(a3) ¢ is injective.

Proposition 2.4.1. The following are equivalent for C<= 0, and a positive integer n:
(i) C isthe set of 3-contracting operations of an n-space (A, 8) over an ordered set V;
(ii) C is the set of d-contracting operations of an algebraic n-space (A, 5);
(iii) C=PolR for a set R of n-ary relations on A,
(iv) C is a clone with the n-interpolation property.

Proof. We prove (ii) =(i)=>(iii}=(iv)=-(ii). The equivalence of (iii) and (iv) is known
(cf. [27]), but for reader’s convenience we prove it here.

(i))=>(i) Evident.

(i)=>(iii) Evident: take R:={(J),: veV}.

(iif)=>(iv) Let fe O%" be such that on every subset B of A™ with size at most n, the
operation agrees with some ggeC. We prove that feC. Let pecR and let X be annxm
matrix with X.;,...,X.,€p and let B be the set consisting of X;.,...,X,.. By
assumption there is ggeC<Polp such that (f(Xi.), ..., (Xu))=(gs(X1s),...,
gp(X,.))€p proving that fePol p. Thus fe(){Polp: peR}=C.

(iv)=(ii) Put ¥V:=Inv® C and V:=(V, ). It is well known and easy to see (cf.
Section 2.3) that V'is the set of subuniverses of the nth power of the algebra (4, C) and
hence a non-trivial algebraic lattice (since the empty set and 4" belong to V') (cf. [12]
Section 0.6). For ae A" put 8(a):=(){peV: aep}. Clearly é(a), called sometimes the
orbit of a, is the least n-ary relation from V (i.e preserved by all operations from C)
containing a. For ve V, by the minimality of 6(a) we have (8),:={acA™ d(a)<v}=v
whence ¢ : v —(0), is obviously injective. As it is well known, the members of ¢(V) are
exactly the finitely generated subalgebras of the nth power of (4, C). Consequently
(A, d) is algebraic.

We next show that C is the set C;, of d-contracting operations.

(a) We prove C=Cyy (even without (iv)). Let feC be m-ary and let X be an n xm
matrix over A. Put p:=6(X.1) v --- v 6(X+y) and note that X.ed(X.;)Sp for
i=1,...,m. Since feC preserves pe¥=Inv\” C, we have

(f(X1s), oo f (X ))ep

proving the required 6( f(X+), ..., f( X)) S p.
(b) To prove Csy =C let feCyy be m-ary and let X be an n x m matrix over 4. Put

o:={(g(X1-),...g(X,)): g€CNOP}. 2.5)

It is known and it may be shown easily that celnv® C. Now the m-ary projection
e} belongs to C and so X.;eo fori=1,...,m; whence 6(X.;) v ... v 8(X.,)=o. Finally
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from feCy, we get
O(f(Xia)yoo, [(Xpu))<O(Xsq) vV - VI Xup)EO

and hence from (f(Xie),.... (Xw))ed(f(X1s),..., f(X,)) and (2.5) we get
(X 1) ooo, [( Xp))=(g(X 1), ..., g(X n)) for some geC. Applying the n-interpolation
property we get the required feC and so C=C,,. O

Example 2.4.2. Consider the case n=1. The unary relation (), is a subset of 4.
According to Proposition 2.4.1, the clone C consists of all operations admitting all (),
as subuniverses (such an algebra (A4, C) with 1 <] A | < is called semi-primal in [9]).
It follows from [3] (cf. [12, 0.9 Theorem 2]]) that ¥ from Proposition 2.4.1(iv) may be
any non-trivial algebraic lattice. Examples or n=2 will be discussed in Section 3.

2.5. Invariants of the clone of contracting operations

We have seen in Proposition 2.4.1 that the clone Cy is the clone Pol R determined
by a set R of n-ary relations on 4. What can be said about the structure of Inv C,,? In
general there is not much we can say. Nonetheless, we note a sufficient condition for
a k-ary relation p to be preserved by all d-contracting maps, wherein k need not be finite.

Let (A, 8) be an n-space over a join-semilattice V. For r: k — A4 define the following
n-space (k,9,) over V by setting

Splky, .. ky)=0(r(ky),...,r(k,)) (2.6)

forall ky, ..., k, <k. Note that W := V'*" inherits the semilattice structure from V; for p,
@ € V¥ the supremum g v g’ is defined by (u v ') (x):=pu(x) v ' (x) for all xe V*". We
say that a k-ary relation p on A is J-closed if for each positive integer m,allry,...,r,ep
and all reA4®

0,<0,, v --- v 4, implies rep. 2.7

For example, if m=1 the condition (2.7) states that rep whenever §,<4,, for some
ri€p. According to (2.6) this means that

O(r(ky), ..., r(ks) <O(ry(ky), ..., r1(ka)) (2.8)

holds for all k4, ..., k, <k. We write r < r, if (2.8) holds. Note that < i1s a quasi-order
(i.e. a reflexive and transitive relation). In fact, if D denotes the map from A* to V*"
defined by D(r) =4, for all re A%, then this quasi-order is the inverse image of the order
on V*" discussed above. Let W denote the semilattice consisting of V'*" equipped with
this order. Recall that a subset I of a join-semilattice L is an ideal if x<y and yel
implies xel and x, yel implies x v yel. First we slightly reformulate the definition of
d-closure. To a set I of maps from k" to V associate D~ !(I):={reA4*: é,el}.

Lemma 2.5.1. A k-ary relation p on A is §-closed if and only if p= D~ () for some ideal
Iof V¥
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Proof. Necessity. Put J:={6,: rep} and let I be the ideal of W generated by J. We
show that p=D"!(I). Indeed, let reD~*(I). Then there exist a positive integer m and
r1,...,Fm€p such that 3, <45, v --- v 3, (in W), whence rep by (2.7). Conversely, if
rep then d,eJ<I and reD~1(I).

Sufficiency. Let I be an ideal of W, m>0, and r4, ...,r,eD~1(I). Let r be such that
8,<6,, v - v, . Then §,,...,8, €l, hence ,el and reD *(I), proving that
D~ 1(I)is é-closed. O

The o-closed relations are described in the following very special case. For
reA® put (r]:={reA* r<r} (where < is the quasi-order defined above), that is
(r1=D""((3,]), where (8,]:={pe V*": y<3,}.

Corollary 2.5.2. Let V be a complete join-semilattice in which every element is compact
(e.g. the chain of negative integers). Then a k-ary relation p is d-closed if and only if
p=(r] for some r: k —A.

We show that peInv® C,y for a d-closed p.
Propesition 2.5.3. If p is d-closed then every d-contracting operation on A preserves p.

Proof. Let f be an m-ary J-contracting operation on A, let ry,...,r,ep and
ky,...,k,<k. Define the map r:=f(r(,...,rm)ed® by setting r(k'):=
f(ri(k),...,ru(k)) for all kK’ <k. Let X denote the nx m matrix (r;(k;));. Since fis
d-contracting, we have:

5(r(ky), ..., r(ka))=8(f(X12), oo, f(Xp))SO(Xuy) V -+ v O(X o)
=06(r1(k1), s ri(ka)) v oo v O(rm(ke)s oo Tml(Kn))

proving by (2.6) that 6,<4,, v --- v 4,
Now (2.7) yields the required rep. [

In a special situation Inv® Csy may be the set of 6-closed relations. We describe this
in terms of the following extension property. A partial m-ary operation fon A with
domain B is §-contracting if it is a contraction from the n-ary space induced on B by
the m-power of (4, 8), that is to say: for every n x m matrix X whose rows are all in
Bwe have 8(f(X14), .., [( X)) (X 1) Vv ... v §(X.y) Let k be a cardinal. We say
that (4, §) has the k-extension property if for every m>0 each J-contracting partial
m-ary operation f: B — A with | B| <k extends to (or equivalently, is a restriction of)
a full é-contracting operation. We have the following.

Proposition 2.5.4. Let (A, 8) be an n-space over a semilattice V; let k>0 be a cardinal
and let k be an ordinal such that |k|=x.
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(i) if all relations in Inv® Cyy, are 5-closed, then (A, 6) has the k-extension property;
and
(i) if n>1, (A, 8) has the k-extension property and there is an element OV such that

oay,...,a,)<0 iff ay=---=a, forallay,...,a,€A, (2.9)

then all relations in Inv® C,y are d-closed.

Proof. Write C for Cgy.

(i) Let f be a partial m-ary J-contracting operation on A with domain B, where
| B| <. If B is empty, then any projection, e.g. €7, extends f. Thus, let B be nonempty,
let ¢: k —B be surjective. Put 6:={go ¢: geCnOY}. As mentioned in the proof of
Proposition 2.4.1 (cf. [2.5]) it is known, and may be checked easily, that the k-ary
relation ¢ belongs to Inv C and so g is 6-closed. Put r:= fo ¢ and r;:=e7 o ¢ where €] is
the jth m-ary projection (j=1,...,m). Taking into account that e?eC we have
Iis....'m€a. We verify that 6,<4,, v --- v 4,,. Indeed, let k' =(ky, ..., k,)ek", and let
X be the nxm matrix with rows ¢(ky),...,¢d(k,). According to (2.6)
O (ky=0(r(ky),...,r(k,))=0(f(X1s), ..., f(Xe)). Similarly for j=1,...,m we have
O, (k')y=0(ri(ky),...,7;(k,))=06(X.;). Since f is J-contracting, we have &,(k')<
O, (K'Y Vv .- v 4, (K)andso 6,<d,, v---Vv J, .Asgisd-closed and ry, ..., r,e0, from
(2.7) we get rea, hence fo ¢ =f-¢ for some feC where fis the required extension of f.

(ii) Let peInv® Cyy, let ry,...,ruep and 6,<6,, v -+ v 5, . Define y: k >A™ by
setting Y(k'):=(r (k'),...,ru(k’)) for all kK’'ek. Further put B:=im. We show that
Kery =Kerr. Indeed, let y(k')=y(k"). Setting a;:=ri(k'y=ry{k") for j=1,...,m and
using the assumption we get o(r;(k'),r;(k"),....r;(k"))=6(qa;,...,a;)<0 for all
j=1,...,m. From 6,<d,, v --- v §,_ we get o(r(k'),r(k"),....,r(k"))<0 v --- v 0=0.
Again from the assumption we get the required r(k')=r(k").

Now we define a partial m-ary operation f: B — A by setting f oy =r. We show that
f1s d-contracting. Indeed, let X be an n x m matrix whose rows are all in B. Then
Xp=y(k;) for some kick (i=1,...,m),and from foyy=rand §,<é,, v --- v §,, we get
the required

S (X ya) s (X)) =0(f (Y lky))s .., f(Y(ka)))=0(r(ky), ..., r(ky))
g5("1”{1)7"'arl(kn)) Vo v 5(rm(kl)9"'9rm(kn))
=6(X1) V - v O(Xum).

In view of | B| <k and the assumption, the partial operation fhas a full §-contracting
extension f Since pelnv®C, we have f(r,...,rn)ep proving the required
r=f0|//=1(r1’---:rm)ep' U

2.6. The extension property

The following property is stronger than the x-extension property. We say that (4, 8)
has the extension property if every partial d-contracting operation extends to a full
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d-contracting operation (i.. (4,9) has the x-extension property for all x). We give
equivalent conditions for the extension property. Let f: B —A be a partial m-ary
d-contracting operation. If for some ze A™\B there is a é-contracting extension f':
BU{ z) > A of fwe call /' a one-point extension of f. We say that (A, J) satisfies the
condition (*) provided:

if n>1, then ¢ is totally symmetric (invariant under all exchanges of variables) and
there is OV such that §(ay,...,a,)=0 whenever a; =a,.

We have the following.

Proposition 2.6.1. The following are equivalent for an n-space (A4,6):

(i) (A, ) has the extension property,

(ii) each partial d-contracting operation with a proper domain has a one point
extension;

(iii) for every partial m-ary d-contracting operation f:B — A and each ze A™\B there
is a d-contracting extension f':B{ J{z} —»A.

If, moreover, (A,5) satisfies the condition (*) then the above conditions are also
equivalent to:

(iv) for every partial m-ary S-contracting operation f: B — A, for each ¢:B" ' -V
and every ze A™\ B such that

O( X)) Vo VX)) SO(X e, oo, Xpa) (2.10)

holds for every n x m matrix X with first row z and the other rows in B, there exists te A
such that

5(taf(x2),-"7f(xn))<¢(x2’“'9xn) (211)
holds for all x,,...,x,eB.

Proof. (i)=(iii)=>(ii) is obvious. (ii)==(i). Let f:B —A a partial m-ary S-contracting
operation. We can well order the set A™\B and, by transfinite induction, we can easily
extend fto 4™

Let (4,0) be such that the condition (*) holds.

(i)=>(iv). Let £, ¢ and z be as in (iv) and let fbe a 5-contracting extension of f Put
t:=f(z), let x,, ..., x,eB and let X be the n x m matrix with rows z, X3, ...y X, SInce
f is d-contracting and (2.10) holds, we have

5(t’f( x2)s"~’f(xn))=5(f(X1*)5""f(Xn*))sa(X‘l) Voo V 5(X*m)

SO(Xgn, oo, X)) = (%3, -..,X,)
proving (2.11).

(iv)=>(iii). Let fand z be as in (iii). Given an n x m matrix X with the first row z and the
other rows in B put ¢(X 5., ..., Xps):=8(X+1) vV -+ V 8(X4n). Then (2.10) holds and so
by assumption there is ¢ satisfying (2.11) for all x5, ..., x,€B. Extend f to f": B J{z} -4
by setting f'(z):=t. We verify that f is contracting; due to (*) it suffices
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to consider an n x m matrix with first row z and the other rows in B. The required
inequality is then a consequence of (2.10) and our choice of ¢. O

We have the following sufficient condition for one-point extensions.

Lemma 2.6.2. Let (A, ) satisfy the condition (*). Let B be a subset of A™, ueB and
ze A™\B be such that

(X)) vV oo VO X)) <O(Yay) vV - v 6(Yap) (2.12)

Jor allm x nmatrices X and Y with X 1.:=u, Y «:=zand X;»=Yp€B(j=2,...,n). Then
every d-contracting f with domain B extends to a 6-contracting [’ with domain BU{Z}‘

Proof. Extend f to f” by setting f'(z):=f(u). To prove that f’ is §-contracting
consider two mxn matrices X and Y with X,.:.=u, Y,.:=z and X,.=Y.eB
(j=2,...,n). As fis d-contracting and (2.12) holds, we have

O (X1a), s fHXu))=6(f(Y1a)y ooy [(Yne))SO(Xuy) V o0 v 6(X o)
KO (Yey) V - vV (Y, O

2.7. The extension property and the invariants of partial operations

For a set K of ordinals and a set R of relations put Pol* R:=| J,.x Pol* R and
Polp* R:={ Jy.x Polp® R. For a cardinal «, let Polp®<*R denote the set of all
fePolp*R with domain of size <x.

Note that Inv® Pol* R consist of the k-ary relations on R preserved by every
operation on A of arity [eK which in turn, preserves all peR. Since Pol R=Polp R we
have always

Inv® PolX R 2Inv® PolpX R. (2.13)

We relate the extendability of all partial operations on A to the equality in (2.13).

Proposition 2.7.1. The following conditions are equivalent for a set R of relations on A,
a set K of ordinals and a cardinal i
(i) every operation from PolpX-<* R, is a restriction of a ( full) operation from Pol R,
(ii) Inv® PolX R =Inv* PolpX-<*R,
(iii) Inv® Pol®* R =Inv® Polp* R.

Proof. Put C:=Pol* R and E:=Polp*R.

(iii)=() Let fePolp®<* R have domain D <A™ We may assume D nonempty; as
| D|<k, there is surjection s from k onto D. Put p:={ge°s: geCnO%}. Clearly p is
a x-ary relation on A. We show that peInv® C. Let geC be p-ary and let r,, ..., r €p.
Then r;=g;os for m-ary g;eC (i=1,...,p). Define heOY’ by setting
h(a):=g(gi(a),...,g,(a)) for all aeA™ As C is a clone, we have heC and
g(ry,...,rp)=hesep proving our claim. By (iii) we have peInv® C = Inv™ E. Since the -
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projections ef* belong to C, we have s;:=ef'osep (i=1,...,m). Now the partial
operation feE preserves p and therefore f(sy,...,s,)€p. By the definition of p, we
have f(sy, ...,5m)=f o sfor some feC. It is easy to verify that fagrees with fon D and
so, fis the required extension.

(i)=(ii) As remarked in (2.13) we have always 2 in (ii). To prove <, let pelnv® C.
Suppose feE has domain DeA™ such that | D|<k. Applying (i), extend f to fec.
Suppose ry,...,rmep are such that (ry(k),...,rn(k))eD for all kek. In view of
h=f(rq, ...,rp)=f(r1, ....Tm)Ep We get the required pelnv® E,

(i)=(iii) Again only < is needed. Let pelnv® C. Let feE be m-ary with domain
D and let ry,...,r,ep be such that D":={(r,(k), ..., r,(k)): kex} = D. Denoting by f’
the restriction of f to D', clearly f'ePolp..R. By (i) we have f(ry,....rm)=
f(ri,....rm)ep, proving pelnv® E. [

3. Metric and ultrametric spaces
3.1. Metric over an ordered monoid

3.1.1. Let V=(V; <, +,0, —) be such that

(i) (V; +,0,<)is an ordered monoid (i.e. the binary operation + is associative and
0 its neutral element and p<p’ and ¢ <q' implies p+g<p'+¢’; note that + need not
be commutative).

(i) v —»v is an automorphism of < which is involutive and reverses + in the sense
that 5=v, (v+w)=w+70 holds for all v, weV.

Note that 0=0 follows easily from (i) and (ii).

A V-predistance on A is a map d: A2 — V satisfying:

(d1) d(x,x)<0;

(d2) d(x,y)<d(x,z)+d(z,y) (the triangle inequality or A-inequality);

(d3) d(y,x)=d(x,y)
for all x,y,zeA.

The pair (A4,d) is called a V-premetric space. A pair (A, d) satisfying (d1') d(x, y) <0
< x=y and (d2) and (d3) is called a V-metric space or shortly a V-metric and d is
referred to as V-distance. As usual, the same letter d may represent different V-
distances provided there is no danger of confusion.

3.1.2. Let A=(A,d) and A'=(A’,d’) be binary spaces. Recall that f:4 —A4"is a con-
traction from A to A' provided d'(f(x),f(y))<d(x,y) holds for all x, yeA. The map
fis an isometry if it is injective and

d(f(x),f(y)=d(x,y) forall x,yeA. 3.1

Observe that for a V-metric space 4 and a V-premetric space 4’ a map f satisfying
(3.1) is injective (indeed, if f(x)=f(y), then 0=d'(f(x),f(y))=d(x,y) implies x=y).
In real metric spaces contractions are usually termed non-expansive maps.
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For a V-metric space A=(4,d) and B< A let d |5 denote the restriction of d to B (i.e.
d|z maps B2 into V and (d[g)(x, y):=d(x,y) for all x, ye B). Call (B, d|) the subspace
induced by B (or an induced subspace). Usually we write (B,d) instead of (B, dp).

The spaces considered in [13] are distinguished among V-metric spaces by the fact
that the neutral element O (of the operation +)is also a least element of (¥, <). In this
case the Property (d1) reduces to the standard property d(x,y)=0 < x=y. Such
spaces are discussed in detail in [13] together with several combinatorial and other
applications.

The V-premetric and the V-metric spaces are closely related: Given a V-premetric
space (B, ) define a binary relation ~ on B by setting b=~ b" whenever d(b,b')<0. It is
completely straightforward to verify that, modulo =, the V-premetric space (B,d)
becomes a V-metric space.

Lemma 3.1.3. The relation ~ is an equivalence relation on B. The map § is constant on
each product C, x C, of blocks (i.e. equivalence classes) C, and C, of =. If DS Band &
and =’ are the restrictions of § and ~ to D and f a contraction from (D,d') into
a V-metric space (A,d), then f(x)=f(x") whenever x~X'.

In view of Lemma 3.1.3 we concentrate on V-metric spaces. The F-premetric spaces
are needed only in the proof of Theorem 3.3.4.

3.2. The possible values of a distance

3.2.1. For the main result of this section we need the following rather technical
concepts. Let ve V. Call v idempotent if v+ v=v, selfdual if =0 and small whenever v is
simultaneously idempotent, selfdual and v<0; we denote by V, the set of small
elements of V. Call v a distance value if v=d(x, y) for some V-metric space (A4,d) and
x,yeA. We have:

Lemma 3.2.2. An element veV is small if and only if v=d(a, a) for some V-metric space
(A,d) and acA.

Proof. (=) Consider ({v},d) where d(v,v)=v. The axioms of a V-metric space are
satisfied due to v <0, v=v+v and v="0.
(<) The element v=d(aq, a) satisfies v <0 by (d1). Next

vi=d(a,a)<d(a,a)+d(a,a)=v+v<v+0=0

by (d2), isotony and v<0. Moreover, i=d(a,a)=d(a,a)=v. Thus v is small. [

Lemma 3.2.3. An element veV is a distance value if and only if
v+oza, v+v=b, atv=v=v+b (3.2)

for some small a,beV.
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Proof. (=) Let (A4,d) be a V-metric space and v=d(x,y) for some x,yeA. Put
a=d(x,x) and b=d(y,y). By Lemma 3.2.2 both @ and b are small. We have

a=d(x,x)<d(x,y)+d(y,x)=v+70
and similarly b<¢+v. Using a<0 we obtain
v=d(x,y)<d(x,x)+d(x,y)=a+v<v

proving a+v=u. The equality v=v+b is derived in a similar way.
(=) Let v,a,b satisfy (3.2) and let a,b be small. We have two cases:
(1) Let v 0. Put A={0,1} and define d: {0,1} -V by setting,

d(0,0):=a, d(0,1):=v, d(1,0):=75, d(1,1):=b.

Using (3.2) and q,b small, it may be verified directly that d is a predistance. For
example, d(0,0)=a<0, d(1,1)=b<0. Now, if d(x, y)<0, then d(x, y)e{a,b} due to
v%0, and 5£0=0 and so (d1) holds.

(2) Let v<0. Then also <0 and from (3.2) we have:

v=a+v<a+0=a<v+o<v

proving v=a. Thus v is small and so a distance value by Lemma 3.2.2. O

Put I'={ueV: u+u=u<0}. Note that uel implies @iel, hence I<I=I<T shows
I=1. We have the following.

Lemma 3.24. Let T be a non empty subset of I. If s:= Sup T exists then sel. If,
moreover, T=T then § is selfdual.

Proof. Clearly s<0. For each teT we have t=t+t<s+s and hence s<s+s. As
s<0, we also have s+s<s+0=s. Now, — being an order automorphism, we have
§=Sup{t: teT}=SupT=SupT=s. O

3.2.5. For veV, put I(v):={uel: u<v} and let [v]:=SupI(v) provided it exists.
Suppose [ v] exists. According to Lemma 3.2.4 the element [ v | is the greatest element
of I(v). We show that [ 7] exists and [ #]=[ v} Indeed, since ~ is an order automor-
phism, we have:

[v]=Sup{a: uel, u<v}=Sup{wel: w<v}=Sup{wel. w<i}=[7]

In particular, for v selfdual we have [v]=[5]=[v]and, as [ v]el, the element [v] is
small. Note that b<[v| whenever b<v and b is small.

We return to the distance values characterized in Lemma 3.2.3. Note that from (3.2)
we get the necessary condition v <a+v < v+ 0+v. The question is when the condition
v<v+0+v is also sufficient (for v to be a distance value). We start with a technical
lemma. For brevity put 1°:=v+4.
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Lemma 3.2.6. Consider the following statements:
(i) both[ v° Jand [ ° |exist and [ v° |+v=v=v+[ 7°;
(ii) both [ v° ] and [ #° Jexist and [ v° +v+[ 7° |=1;
(iii) v is a distance value.
We have (i)=(ii)=>(iii) for each ve V. Moreover, if V is such that [ v° 7| exists whenever
v<v+ 0+, then (i), (ii) and (iii) are equivalent.

Proof. (i)=(i)) v=[ v° J+v=[v® J+v+[ °

(i)=(iii) Put a:=[v°7 and b:=[ ] From v=a+v+b and a idempotent
a+v=a+a+v+b=a+v+b=v and similarly v+b=v. This proves (3.2) and (iii).

Suppose [ v° ] exists whenever v<v+7+v. We prove (iii)=>(i).

Let v be a distance value. Then we have v<v+0+v. Applying — to this we get
#<7+7+17. Consequently both [ +° Tand [ ¢° T exist. By Lemma 3.2.3 the relation
(3.2) holds for some small a and b. Then we have a<[ v° ]<0 and therefore
v=a+v<[ ® J+u<o.

The equality v+[ #° ]=v follows in a similar fashion and so (i) holds. [J

In the sequel we adapt the standard notational convention: u+uv A w stands for
u+(vaw) and v*:=vA0. In the next lemma we consider V such that (V, <) is
a meet-semilattice satisfying:

(D) u+v**=un(+o°) for all u,veV. (3.3)
Note that this law is equivalent to:
(D,) v +u=(w"+u)aru for all u,veV. 34

(Indeed, it suffices to replace u by # in (3.3) and apply the order automorphism — to
both sides). We have the following lemma.

Lemma 3.2.7. Let (V, <) be a meet-semilattice and let V satisfy (3.3). The following are
equivalent for veV:
(1) v is a distance value,

(il) v<v+0+v,

(i) [ v° ] exists and [ v° J+v=v0.
If one of (1)—(ii1) holds then

(iv) v°* is idempotent.
Moreover, (iv) implies

(v) [ v° exists and [ v° [=0"~

Proof. (i)=>(ii) As noted in 3.2.5, (ii) follows from (3).
(i)=(v) Put r:=0°",

O+ =v+i+v+izv+0=2°, OAr=0"A1°A0=0"A0=r. (3.5
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Applying (3.3) (3.5) we get:
r+r=r+02=(r+1)Ar=0+ ) A’ Ar=0"Ar=r,

(iv)=(v) Follows from (iv) and r<0, r <v°.
(i))=(ii1) From (v), (3.5) and (ii) we get

[0 l+o=0""4v=("+v)Av=(v+T+0)Av=0.

(ii)=(ii) v=[ v° |+ov<t®+v=v+i+v.

(ii))=(i) Applying ~to v<v+0T+v, we get 5<i+7+7 and so 7 also satisfies (ii). It
follows that (iii) holds for both » and ©. Now the hypothesis as well as (ii) in
Lemma 3.2.6 hold and so (i) holds. [

Remarks 3.2.8. (1) The implication (iii)=(ii) in Lemma 3.2.7 holds in every V. We do
not know whether (ii)=(iii) holds under other assumptions than those of Lemma 3.2.7.
(2) Suppose

[ v° ]exists and v=a+v, a<v® (3.6)

holds for some small ae¥. Then a small and a<v° implies a<[ v° <0, hence
v=a+v<[ v° J+v<v proving [ v° ]+ v=v. Let the assumptions of Lemma 3.2.7
hold. Since v=[ v° J+v<v+7+v, from (ii)=(iv)=(v) we get that v** is idempotent
and so [ v° ]=1v"% To see that an element a with the above properties may exist,
consider V such that (¥, <) has a least element O’ and let v= 0’ + ¢ for some ce V. It is
easy to see that O’ is small and O’ +v=v, O'<v°. For every 0'<a<[ v° ], we have

v=0"+v<a+v<[ v® J+ov=0, a<[ v° |<0°

and so all small a in the interval (0’,[ v° ) satisfy (3.6). For an example of such non
trivial interval, let I be the set of languages over a finite alphabet 4 and v be the set of
all non-empty words over A (cf. 4.3). Then[ v° is the set of words of length different
from 1. Such an example shows that we may have d(a,b)=d(a,b’), without
d(a,a)=d(a',a’) and d(b,b)=d(b", V).

Motivated by (iii) in Lemma 3.2.7 for ue V put

A, ={veV:v<u, [ 1° Jexists and [ v° |+v=0}.

We have the following.

Lemma 3.2.9. Let | v° exist. Then[ v° (+v is the greatest element of A,. If, moreover,
V satisfies the assumptions of Lemma 3.2.7, then [ v° (+v is the largest distance value
<v. Finally, if [ ° ] also exists then

[0 J+v=v+[ 2 )=[ 0° J+v+[ 7°] (3.7)

Proof. Put r:=[ v° Jand w:=r+uv. By 3.2.5, the element r is selfdual and so r is small.
Next w=0+r and

r=r+r+r<r+ov+o+r=w+w<v+7o (3.8)
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The set I(u) has been introduced in 3.2.5. From (3.8) we get rel(w+w)<I(v+7).
Moreover for everyxel(w+ w) we have x<[ v+7 ]=rand [ w+w Jexists and equals
r. We have:

[ w+w |[+w=r+r+v=r+v=w

and w=r+v<v due to r<0. Thus we 4,. Let xe 4, be arbitrary. Then| x+ X 7exists;
from x<v we have[ x+x <[ v+0 |=rand x=] x+X |+ x<r+v=w proving that
w is the largest element of A,. Let the assumptions of Lemma 3.2.7 hold. From (i)<>(iii)
in Lemma 3.2.7 we see that w is the largest distance value <v. Finally suppose that
[ &° Jalso exists. From what has just been shown, [ #° ]+ & is the largest distance value
<. Noting that [ #° ] is selfdual and applying — we obtain that z:=v+[ &° ]is the
greatest distance value below v. Thus w=z proving the first equality in (3.7). By
Lemma 3.2.7 the element [ v° ] exists whenever v<v++v. Applying Lemma 3.2.6
(ii)=>(iil) we obtain the second equality in (3.7). U

Remarks 3.2.10. (1) Even under the assumptions of Lemma 3.2.7 we do not know
whether the existence of [ v® Jimplies the existence of [ #° | Suppose that [ v° Jexists.
By Lemma 3.2.9 the element w:=[ v° ]+uv is a distance value, whence w is a distance
value and [ w+w | exists by Lemma 3.2.7. However, we do not know whether
[ WH+w =040

(2) We can prove the following: Let [ v° ] and [ ° ] be defined and let

[ )<o+[ 80 +5, T[&°0<i+ [0 )+o (3.9)

Then w:=[ v° J+v+[ ° |is the largest distance value below v.
Indeed, put r:=[ v° Jand s:=[ #° | Noting that both r and s are small and using
(3.9) we get

r=r+r4+r<r+v+s+o+r=r+v+s+s+ot+r=u+ti. (3.10)

We have u=[ v° J+v+[ #° J<v and so [ v° |=r<u+id<v+i=0° Thus [ u+i |
exists and equals r. Now from wu=r+v+s and r idempotent we get
[ u+u ]+u=r+u=u. Proceeding in a similar fashion we get [ u+u |=s, and
u+[ d+u |=u. From (i)=(iii) in Lemma 3.2.6 we obtain that u is a distance value. As
shown above u<v. Let x be a distance value and let x<v. Let a and b be the
corresponding small elements from (3.2) then a<x+x<[ v° ] and b<[ #® ] and
x=a+x=a+x+b<[ v° |+v+[ #° ]=v. Thus u is the largest distance value <u.

3.3. Extension property, convexity and hyperconvexity

3.3.1. Let M be a class of V-metric spaces and k a cardinal. 4 space 4eM has the
one-point k-extension property for M if for every B=(B, d)eM, each contraction from
a subspace (D,d) of B into A such that |D|<k, extends to a contraction from
(Du{u},d) into A for every ue B\D. If A has the one-point x-extension property for
every k we say that 4 has the one-point extension property for M. For instance, if V' is
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a join-semilattice and M is the class of finite powers of a fixed V-metric space 4 we get
the extension property defined in Section 2.
Let (4,d) be a V-metric space, xe A4, reV and teV small. Put

U,:={acA: d(a,a)<t}, B(x,r):={aeA: d(x,a)<r}
and call B,(x,r):=B(x,r)nU, a t-ball. We have:
Lemma 3.3.2. Let A=(A,d) and B=(B,d) be V-metric spaces, D={e;: i<k}<B,
ueB\D and f a contraction from the induced subspace (D, 6) into A. Put t:=6(u, u) and
ri:=0d(e;,u), x;:=1(e;) (i<xk). Then
(1) The contraction f extends to a contraction from (Du{u},d) into A if and only

if (\{Bi(x;,r;):i<x} is nonempty.
(2) Let [ v+ exist for all veV. Then[ ri+t+r; |exists and

t<ri+ ridt4r (3.11))
d(xi, X)) <ri+1+7; (3.12y)

holds for all i,j<x.
Proof. (1) (=) Let g be the extension of f to Du{u}. For all i<k we have d(g{e;),
g(u)) < d(e;,u)=r; proving that z:=g(u)e B(x;, r;). Moreover, d(z,z) <é(u,u)=t and so
zeB,(x;,r;) for all i<k.

(<) Let zeB,(x;,r;) for all i <k. Put g(u):=z and g(e;)=f(e;) for all i <. It suffices

to show that g is a contraction from (Du{u},d) into (4, d). For this we only need to
verify

d(g(e;), gw))=d(x;, z)<ridles,u),  d(gu), gw))=d(z,2) <t=05(u, u).
(2) For i<k, we have
ole;, e;)<d(e;, u)+o(u,uy+6(u, e))=r;+t+r;.
By Lemma 3.2.2, both the elements t and d(e;, ¢;) are small. Setting v:=r;+t we have
WOi=v+D=ri+t+t+r=r;+t+7.

By assumption | r;+t+7; |exists and by 3.2.2 also é(e;,e;))< [ ri+t+7; |
Now

ti=0(u,u) <(u, e;)+ (s, e) +d(e, W <+ [ ri+t+r; |47
thus proving (3.11;). Since f is a contraction,
d(x;, x;)=d(f(e;), f(e;))<O(e;, e;) < bles,u)+0(u,u)+(u, e;)=r;+t+7,

proving (3.1.2;;). O



M. Pouzet, 1.G. Rosenberg [ Discrete Mathematics 130 (1994) 103-169 125

3.3.3. In the remainder of this section we assume that [ v+7 ] exists for all veV.
Motivated by Lemma 3.3.2, we say that a V-metric space (A, d) is k-convex if for all
x;€A, rieV (i<k) and all te V, satisfying

t<ri+ [ ri+t+r )+, (3.11)

d(x;, x;)<ri+t+r; (3.12))
there is ze(){B,(x;,r;): i<k} ie. satisfying

d(z,z)<t, (3.13)

d(x;,z)<r; (3.14))

for all i<k. If 4 is k-convex for all k, we call A hyperconvex.
The main result of this section is the following theorem.

Theorem 3.3.4. A V-metric is k-convex if and only if it has the one-point k-extension
property in the class of V-metric spaces.

Proof. (=) Lemma 3.3.2.

(<=) Let (A, d) be a V-metric space with the one-point x-extension property and let
x;€A, r;ieV (i<x)and teV, satisfy (3.11;) and (3.12;;) for all i, j < k. For each i <x put
sp=[ ri+t+7r; ] and w;i=s;4+r. Put k:={i: i<x} and B:=xu{u} where u is an
element outside k. Finally define :B*—V by setting

ou,uy:=t, oG, i):=s;, O(,u)=u;+t, o(u,)=t+u;,
8(i,j)=u;+t+u; for all i, j<k, i#].

We need the following.
Fact 1. The space (B, ) is a V-premetric space.

Proof of Fact 1. Recall that each s;e ¥V, by 3.2.5. From this and reV, we see that
6(b,b)<0 and d(b,b)=3(b, b) holds for all beB. Next for i, j <k, i #j we have

S(j D =ustt+u=u;+1+u =+t +1;) =5(. ),

S, )=t+u;=t+u;=u;+t=05(i,u).

It remains to check the validity of the A-inequality 8(i,j) <d(i, k) + d(k,j) for all i, j,
keB. First note that for i, jex we have 6(i, /) <u;+t+u;. Indeed, if i #j we have even
equality while for i=j taking into account s;=[ r;+t+7; JeV, we have

O, )=s;=s5;+5;+5;<S;+r+t+ri+s;=u;+t+u;.
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Note that due to (3.11;) and ¢, s,e V,, we have
t=t+t+t<t+rg+sp+rtt=t+ i+ s+ spHri =+ u +u+t,
hence
<t Ut u+t

We distinguish the following cases.
(1) Let i, j, kex.
(a) Let i#k+#j. Then from (3.15;)

0, =w;+t+u;<u;+t+up+u+t+u; =00, k) +6(k, j).
(b} Let i=k+#j. We have
uitt=s;+ri+t=s;+s;+ri+t=s;+u;+1t
and so
8G, y=u+ 1 +uy=s;+u+t+u;=0(, i)+ 6(i, )
(c) Let i#j=k. Applying  to (3.16;) we get
t+uj=t+u;+s;
leading to
o, j)=u;+t+u;=u;+t+u;+5;=3(,j)+6(j, /).
(d) Let i=j=k. Then
O(i, iy=s;=s;+5;=0(, 1)+ 0(, i).
(2) Let exactly one of i, j and k equal u
(a) Let k=u. Then, since i, j <k, we have
0, )=u;+t+u;=u;+t+t+u;=00, u)+(u,j).
(b) Let j=u. Then by (3.15;)
O, wy=u;+t<u;+t+up +u +t=0(i, k) + 0(k, u).
(c) Let i=u. Apply  to (3.17;).
(3) Let exactly two of the elements i, j and k equal w.
(a) Let i<xk. Then
o, y=u;+t=u;+t+t=00, u)+o(u, u).
(b) Let j<x. Apply ~ to (3.18;).

(3.15)

(3.16;)

(3.17)

(3.18;)
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(¢) Let k<k. Then by (3.15;).
O(u,uy=t <t + 0 +u+t=056(u, k) + o(k, u).
(4) Finally let i=j=k=u. Then
ou,u)y=t=t+t=>0(u, u)+ o(u, u). [

Fact 2. The map f(iy:=x{i <k) is a contraction of (k, ) into (A, d).

Proof of Fact 2. Let i, j<x. Note that by (3.12;) we have d(x;,x;)<r;+t+r;. Since
d(x;, x;) is small, by Lemma 3.2.4 we have d(x;, x;)<s;=[ r;+t+7r; | Now by (3.12;;)
we have

dif@), f()=d(x;, x;))<ri+i+r;.
Thus for i#j we have

d(xg, x;)=d(x;, x;)+d(x;, x;)) +d(x;, x;)) <8+ riHt+7+5;=w;+ t+u;=0(, j)
whereas

df (), f()y=d(x;, x;)<s;=6G, ). O

Let =~ be the equivalence on B defined in Section 3.1. By Lemma 3.1.3 it is an
equivalence. Let B° denote the set of blocks of ~. Also by Lemma 3.1.3, we may define
a map 6°:B°2—V assigning to C,, C,eB° the element 3(c,,c,) where c;eC; are
arbitrary (i=1,2). For D= B put D°:={CeB° : CnD #0} (the hull of D in =). Letf be
the map from Fact 2. Define f°: D°— A4 by setting /° (C):=f(c) for all CeB° and any
ceC. We have the following.

Fact 3. (B°,0°) is a V-metric space and f° is a contraction from (D°,8°) into (A, d).

Proof of Fact 3. In view of Lemma 3.1.3 it is clear that (B°,6°) is a V-premetric. Let
0°(C,,C,)<0. Then 6(cy,c3)=08%C,, C,)<0 for some ¢;€C; (i=1,2) whence c;xc,
and C;=C,.Thus (B d°) is a V-metric space. The other statements follow from
Fact2. [

Proof of Theorem 3.3.4 (conclusion). Put D:=x and let f denote the map from Fact 2.
Consider the contraction f° from the metric subspace (k°, 6°) of (B°, 8°) into the metric
space (A, d). By the one-point k-extension property f° extends to a contraction g from
(B°,6°) into (A4,d). Let Z denote the block of ~ containing u and put z:=g(2).
Similarly for i< let ie X;e B°. Taking into account Lemma 3.1.3. we obtain

d(z,2)=d(9(2), 9(Z2))<5°(Z2,2)=6(z,2) =1,
d(xi,2)=d(g(X;),9(2))<O°(X;, Z)=d(x;, u)=ri+1<7;

for all i< k. This proves that (A4, d) is k-convex. [J
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3.3.5. The following special case provides an illustration of the meaning of 2-
convexity. Let (4,d) be a V-metric space. Recall that

(d),:={(x, y)e 4% d(x, y)<v}

for all ve V' (cf. 1.3). Let p and o be binary relations on A. The composition ( relational
or de Morgan product) and the inverse (converse) relations are

pea:={(x, y)eA%: (x, uep, (u, y)ea for some ueA}

and p~1:={(y,x): (x,y)ep}. The relations p and o permute (commute) if pca=00p.

Finally p is symmetric if p=p~! and reflexive if p=2{(a,a):acA}. Recall that
(peo) t=c""ep™t.
The following is immediate.

Fact. (d), ' =(d);, (d),(d), =(d),+, holds for all u, veV.
We have the following.

Lemma 3.3.6. Assume that 0 is the least element of (V, <); let (4,d) be a 2-convex
V-metrix space and u, ve V. Then (d), is reflexive and (d), > (d),=(d),+,. Consequently,
(d), and (d), permute whenever u+v=v+u.

Proof. The relation (d), is reflexive on account of d(x,x)<0<u for all xeA. Let
(x1,x2)e(d)y+, hence d(x,,x,)<u+ (7). By 2-convexity d(x;,z)<u and d(x,,z) <o for
some ze A, proving (x;, x,)e(d), > (d),. Combining this with the Fact above, we have
(@uo(d)y S(d)usoS(d)uo(d)y. O

Lemma 3.3.7. Let V be such that [ T+v | exists for all veV.
(1) The following are equivalent:
() [ d+u]=[ a+[ u+ia |+u | for every u.
(1) t<a+uif and only if t<u+[ u+t+ua |+u for every u, and every small t.
(2) If moreover, w A O exists for every self-dual element w and for all v, beV
(R2) G+B+b)A0+0)AO=({F+b+b+0)A(T+D) A0,
(R3) w+0)A0+(w+D)A0=(w+0+v+D) A0+ D) AO,
then the above conditions (i) and (i) are satisfied.

Proof. (1) (ii)=>(i) Since [u+u ]<0, we have @+[ u+a |+u<a+u, and thus
I(@+[ u+ua |+uycI(@+u). For the converse, let t=[ #+u | Then ¢ is small and
t<ii4+u, thus from (i) we have t<u+[ u+t+u |+u<iu+[ u+ua |+u, giving
Ia+uwe<l (@+[u+u]+u). From I(@+u)=1(+[ u+ia |+u) and the existence of
[ u+4 | the equality in (i) follows.

(i) =(ii) We only need to prove that if t<#+u then t<u+[ u+t+u |+u (the
converse follows from the fact that 4+ u+t+u |+ u<ua+u for all small t). Applying
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(i) to u' =u+t, we get: [t+ia+u+t |=[ t+id+[ u+t+t+a J+u+t ] Using the fact

that ¢ is small (i.e. t<0, t+t=¢, t=1), from t <d+u we get t<t+i+u+t and thus
t<[t+a+u+t]=[t+a+[u+t+ia J+ut+t <[ d+[u+t+d |+u ]

(2) For a small t such that t(<u+u, let a=(u+t+a)A0 We claim that
[ u+t+i |=o. It suffices to show that o is idempotent. Applying (R3) to v=u+t and
using t=t+t=t+t we get

at+o=(u+t+iatutt+aAu+t+a)A0.
Since t <#+u, it follows
utttia=ut+t+t+t+a<u+tt+utu+t+u,

yielding a +a=a.
We claim that for every small t, t <#i+u implies t <ui+(u+¢+it) A0+ u. Indeed,
from (R2) we get

(fA+u+t+DA0+u)AO=(@+u+t+ia+u)A(d+u) A0 and t<ia+u implies
t=t+t4+t+t<utut+t+utu

From the fact that (u+¢+d) A O=[ u+t+1 | we get condition (ii). []

Lemma 3.3.8. Assume that every subset X of V,, has a supremum in V. Then
(1) For every family r={r,eV: i<k} in V and each acV, the set

T,={teV, t<a, t<F+[ ri+1+7 |+r; for all i<x}

has a largest element ;" (a).

(2) A V metric space (A,d) is x-convex if for all families r={r,eV: i<k}, {x;€A:
i<k}, and aeV,, the intersection N{B(x;,r;): i<x} is non empty if and only if
d(x;, x;)<ri+f7 (@) +7; holds for all i, j<x.

(3) If, moreover, the set ((0] <) of elements below 0 is a complete lattice satisfying the
distributivity conditions (R2), (R3) from Lemma 3.3.7 then

fr@=[ A{Fi+ryrai<e}’]

Proof. (1) From our assumption ¥ has a least element O'. This element is small and
belongs to 7,. From Lemma 3.2.4 and T,< V, we get that f"(a):=Sup T, exists and
belongs to ¥,. Now for teT, and i<k, applying the fact that v—] v | is order
preserving, we obtain

tSf,+|- ri+t+fi _}+r,<77,+|- r,-+f,_'(a)+f,- 1+ri

and so f7 (@) <F+[ ri+f7(a)+F; +r; for all i <k proving ;" (a)eT,.
(2) Since f7(a)<F+[ ri+f; (a)+7; |+r;, a k-convex metric space must satisfy the
condition of the lemma.
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Conversely, given x;e A, r;eV (i <x) suppose a small ¢ satisfies
t<f,+[_ ri+t+fi -|+r,- and d(xl,y1)<r1+t+fl fOr all i,j<K.

Then t< f;(t) and thus d(x;, x;)<r;+f7()+7; for all §, j<x.

The condition of the lemma implies that (\{B,(x;,r;): i<x}#¢ and thus 4 is
K-convex.

(3) Immediate from Lemma 3.3.7(i). [

3.3.9. A family {&;eV: i<k} is a subzero family if & <0 for some i <x. Call V' a weak
Heyting algebra, or bricfly weakly Heyting if:

(1) The set ((0],<) of elements below 0 is a complete lattice.

(2) For every subzero family {{;eV: i<k} and all u, veV, the following equality
holds:

U+ A{&i<k}+v=nA{u+&+uv i<k} (3.19)

For example, if O is the least element of I then trivially I is weakly-Heyting.
For veV and n< w define inductively v - n by settingv-0=0and v-(n+1)=v-n+vo.
We have the following.

Lemma 3.3.10. If V is weakly Heyting then for all u, veV and all subzero families
{&eVii<k} and {n;eV: j<A} we have:

i) Tvl=a{v-nn<o} (3.20)
(i) A{&ri<kl+ almpi<At=a{li+nii<k j<i} (3.21)
(i) w4 A{&ri<k} THv=A {u+ Y E,ptv oext, n<w} (3.22)

j<n

Proof. Put ¢= A {&;: i<k}, n=A{n;j<i}.
(ii) Applying (3.19) twice we get

E+n=C+ Alng <= A{l+n i<l
=A{n{&i<k}+nij<ii=a{a{&+npi<c}ij<i}
= A{&+n; i<k, j<A.

(i) Putv'= A {v-n:n<w}. From (3.19) above, we get v’ +v'= A {v-n+v-m:n<ow,
m<w}. Since v-n+v-m =v-(n+m)for all n, m<w, this gives v’ +v'=v’, thus v'€l (v).
Foruel (v)wehaveu=u-n<v-nandsou< A {v-n:n<w}=v". Consequently v’ is the
largest element of I(v), that is v’ =[ v7].

(iii) We have [ £ J= A {{-n: n<w} thus

ut[ ¢ T+v=A{u+é n+v n<wj.
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It suffices to show that

u+é-n+v=/\{u+z &gyt oex“} (3.23)
j<n

The proof goes by induction on n. For n=0, we have } ;. £, =0 thus both sides of

(3.23) reduce to u+v and the result follows. Suppose (3.23) holds for n—1 and all u,

ve V. Applying (3.19) and (3.23) we have

u+é-nt+v=u+é&-m—)+&é+v= A{u+ Y Lt Eto aex";‘}

j<n—1

= /\{u+ Yo Lt A{&i<k) o o—ex”“}

j<n—1

= /\{LH- Y &t ‘EEK"}

i<n

so (3.23) holds for n concluding the induction and the proof. [
Lemma 3.3.11. If V is weakly Heyting then it satisfies (R2) and (R3) of Lemma 3.3.7.

Proof. Applying (3.19) to y:=b+b and £,:=0 we get
@+B+bD)AOF)AO=({@+b+b+0)A(G+1)A0D

proving (R2).
Put a=(v+ ) A 0. Applying twice (3.19) we get

ata=a+((v+0)A0)=(x+v+D) A
=((v+i+v+0)A@+o)Aa=(v+0+v+D) A0,
thus proving (R3). [0
Theorem 3.3.12. If V is weakly Heyting then a V-metric space A is k-convex if and only
if it satisfies the following condition:
(HC,) For all x;€A, rieV (i<k) and all teV,, the intersection ﬂ{B,(x,-, r) i<ic} is

nonempty if and only if d(x;, x;)<ri+t+7; for all i, j<x.

Proof. Let x;cA, reV for i<k and let teV,. Put r={r, i<k}. According to
Lemma 3.3.8 it suffices to prove the following,

Claim. If d(x;, x;)<ri+t+r; for all i, j<x then d(x;, x;)<r;+f7(t)+F;

Proof of the Claim. Put x' +1 =KU{K}, ¢i=F;+r; for i<k and &;=r for i=k. Since
V' is weakly Heyting, from Lemma 3.3.11 and Lemma 3.3.8, we get

fiO=[ A{F+r)ati<k} ]
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Since ¢ <0, the family {&;: i<x+1} is subzero, thus from Lemma 3.3.10(iii) we get

ri+f7 O +7= A {rﬁ- Y 4‘,(,,+r_j:vex'5‘,n<w}

l<nmn
. I<n J

and so we only need to prove that for every n<w

d(x;, x;)<ri4 Y, &gyt 75 (3.29)

I<n

holds for all gex™, i, j<x.

We proceed by induction on n. From d(x;,y;)<r;+t+r; and t<0 we deduce
d(x;,y;)<r;+7; and so (3.24) holds for n=0.

Suppose (3.24) holds for n—1. Let sex™ We have two cases:

(1) &, =t for every I <n; in this case

ri+ 2 faa)+fj=r,-+tn+Fj=ri+t+fj>d(xi,xj).

I<n
(2) fa(,DJ=f,(,0)+ra(10) for some lo.
We write
ri+ Y Satfi=nit Y S tantrant X Lot
I<n I<jo lo<l<n
The induction hypothesis ensures that
rit Y, Eot oy Zd(xi, Xoq,) and  rygn+ Y & +FiZd(Xa, X))
I<jo h<l<n
From the A-inequality we get
ri+ Z Eony T2 d(Xs, Xouy)) F A (Xou,), X5) Z d (x4, X;).
I<n

This concludes the inductive proof of the claim, and of the theorem itself. [J

3.3.13. A collection B of sets has the 2-Helly-property if ﬂY is nonempty whenever
Y =B consists of pairwise intersecting sets; equivalently (\{X;: X;eB, icl } #0 when-
ever X,;()X;#0 for every i, jel.

Proposition 3.3.14. Let V be a weakly Heyting algebra, k>1 be a cardinal and A be
a V-metric space. Then A is x-convex if and only if A is 2-convex and for each small te V,
every x-collection of t-balls has the 2-Helly property.

Proof. (=) Let teV be small and x;e A, r;e V (i <x) be such that for all i, j <k there
exists z;;€ B, (x;,r;)(Bi(x;,r;). Then

d(x;, x;) <d(xi, 2i5) + (235, i)+ d(zij, X)) ST+ LT
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The k-convexity insures the existence of an ze 4 such that d(z, z) <t and d(x;, z) <r,; for
all i<xk. Now ze(\{B,(x;,r;): i<k} as required.

(<) Let teV be small and x;e 4, ;e V (i <x) be such that d(x;, x;)<r;+t +; holds
for all i, j<x. By 2-convexity there is z;;€B,(x;, ri)ﬂB,(xj, r;). From the 2-Helly
property there is ze(}{B,(x;,r;): i<k}. Clearly z has the required property. []

3.4. Retraction, injectivity and hyperconvexity

34.1. Let E and F be V-metric spaces. A contraction f:E—F is a coretraction
(retraction) provided g o f=idg (f > g=idf) for some contraction g:F—E. Call E a re-
tract of F and write E<aF if there is a coretraction from E to F (or, equivalently,
a retraction from F to E).

Coretractions from E to F are isometric embeddings from E into F. For an
arbitrary E the converse is in general false. Spaces E for which this holds true play an
important role. Formally they are defined as follows.

Let M be a class of V-metric spaces. Call EeM an absolute retract with respect to
M (and with respect to the isometries between the members of M) if every isometry
from E into FeM is a coretraction. (In this paper the absolute retracts, abbreviated
AR, are all with respect to the isometries but in other contexts they may refer to other
morphisms (cf. [13]). Next EeM is injective with respect to M (and with respect to the
isometries between members of M) if for all E, F, GeM, every contraction f: E—F and
each isometry h: E—G we have f=go h for some contraction g:G—F.

Absolute retracts and injectives are linked by the following fact.

Theorem 3.4.2. With respect to M, every injective is an absolute retract and every
retract of an injective is an injective; moreover, every product of injectives is an injective.

This fact is purely categorical and has not much to do with metric spaces.
Nevertheless, in our content, we can derive it from the following lemma.

Lemma 3.4.3. If M is closed under isometric subspaces (i.e. if (4,d)eM, and X < A4, then
(X,d[x)eM), then (A,d) is injective with respect to M if and only if (A,d) has the
one-point extension property for M.

Proof. Transfinite induction. [

Lemma 34.4. Let M be a class of metric spaces, and x be a cardinal. The class of
(A,d)eM which have the one-point k-extension property is closed under retracts, and
under products (where such products exist).

Proof. (a) Let 4eM, A’ be a retract of A4, BeM, D be an isometric subspace of B, f:
D— A’ be a contraction and let ueB\D. In order to show that f extends to u, select
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h: A'> A4, k. A—>A’ so that koh=1,.. Since hof: D—A and A has the one-point
k-extension property, there is g extending h<fon Du{u}, but then ko g is a contrac-
tion extending f'to Du{u}.

(b) Let (4;: iel ) be a family of members of M having the one-point k-extension
property. Assume that the (categorical) product P=1IT{A;: iel } is defined. For each
iel, let p;: P— A; be the ith projection. Let BeM, D be an isometric subspace of B,
f: D—P, and let ueB\D. For each iel, the space 4, has the one-point k-extension
property, thus the map p;of: D—4; has an extension f; to D':=Du{u}. Since P is the
product of the A4;’s, there is a map g:D’— P such that p;o g=f; for all iel. This map
extends f. [

A similar result holds for V-metric spaces (4, d) satisfying the following convexity
condition (HC,.) (cf. Theorem 3.3.12):

For all x;e4, v;eV, (i<x) and all teV,: the intersection () {B(x;,r;): i<k} is
non-empty if and only if d(x;, x;)<r;+t+7r; for all i, j<x.

Lemma 3.4.5. Let k be a cardinal. The class Cy,_of V-metric spaces satisfying (HC,) is
closed under retracts and under products (where such products exist).

Proof. Let A=(A4, d)eCy,_and let B:=(B, §) be retract of 4. Without loss of generality
we may assume that B< A and ¢ is the restriction of d to B. Let ¢, x;e B and r;(iek) be
such that d(x;, x;)<r;+t+r;, for all i, j<x. Since A4 satisfies (HC,) there is ze 4 such
that d(z, z)<t and d(x;,z)<r; for all i<k. Let f: A—B denote the corresponding
retraction. Put z":=f(z). We have d(z',z')<d(z, z2) <t and similarly d(x;, z")<r; for all
i<k proving that BeC, .

Let A;=(A;,d;)e C,,_ for all jeJ. Let A:=(A4,d) denote the direct product of the 4;
(jeJ). Let t be small, let x;64 and r;eV (i<x) be such that d(x;, x;)<r;+t+7;
for all i, j<k. For a fixed /eJ, from the definition of d we get d,(x;(£),
(x;(£))<d(x;, x;)<r;+t+7;for all i, j<x. Now from the HC, property in 4, we obtain
the that there is z(£)e 4, such that d(z(¢), z(£)) <t and d,(x;(£), z(£))<r; for all i <x.
The element zeA thus defined satisfies d(z,z)=Sup {d,(z(¢), z(¢)): £eJ } <t and
d(x;,z)<r;forall i<x. [J

3.5. Metric spaces over a Heyting algebra

35.1. Let V=<V; <, +,0, "> be as in 3.1.1. For p, geV put

Dyi={xeV:p+x=>q,q+X=p}. (3.25)
If the set D, has a least element we denote it by d(p, q) and say that d,(p, g) exists. We
say that d, exists if d,(p, q) exists for all p, ge V. We have the following.

Lemma 3.5.2. If d, exists then (V, dy) is a V-metric space.
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Proof. For every peV we have 0eD,, and so d,(p, p)<0. Conversely if dy(p,q) <0,
then 0eD,,and so p>q>p proving (d1’). To prove (d2) it suffices to note that ~ being
an order automorphism, we have

Dy,={xeV:q+x>=p, p+x>q}={XeV: q+X2p, p+x=q}=D,,

thus proving (d2). Finally let p, q, reV and x:=dy(p,r), y:=dy(p,q), z:=dy(q,7). By
(3.25) we have p+y=q, q+y=p, q+z=r, r+z2q, and so p+y+z=q+z=r,
r+zZ+3y=q+y=p, proving that y+zeD,, and the required x=d,(p.r)<y+z [

The V-metric space (V,d,) is related to an arbitrary V-premetric space by the
following formula.
Lemma 3.5.3. Let d, exist and let (A, d) be an arbitrary V-premetric space. Then:
d(x, y)=dy(d(x, x), d(x, y))=Sup{d,(d(z, x), d(z, y)): ze A} (3.26)

for all x, yeA.

Proof. Let x, y, ze 4 and
a:=d(x, y) b:=d(z, x), c:=d(z, y), e:=d(x, x).

From (d2) and (d3) we have c<b+a, b<c+a proving aeD,, and hence d,(b, c)<a.
Thus a is an upper bound of the set S:={d,(d(z, x), d(z, y)): zeA}. On the other hand,
from (3.25) and e:=d(x, x) <0 we get a<<e+dy (e, a)<d,(e, a) whence d, (e, a)eS. Thus
Sup S exists and equals both a and d, (e, a). O

Remark 3.5.4. Suppose d, exists. Its companion d,) is defined by setting d, (p, q)=
dy(q,p) for all p, ge V. Under the assumptions of Lemma 3.5.3 we have

d(x, y)= dy(d(x, y), d(v, y))=Sup{ d,(d(x, 2), d(y, 2)): zeA}. (3.27)

Example 355. Let V'={V; <, v, 0, id, > where <V; v, A,’, 0, 1> is a boolean
algebra. Then D,;={xeV: pvx>q, qvizp}={xelV: x>=p+q} where
p+q=(prq’)vigap’)and sod, (p,q)=p+gq. If Vis a boolean algebra of sets then
dy(p, q) is the symmetric difference pAq. (If we put 8(p, q):=|pAq| we obtain an
R, -metric space (V, §) related to the Hamming distance and widely used in combina-
torial applications). If V' consists of sentences then d,(p, q) measures how far the
sentence p is from being logically equivalent to the sentence g, e.g. d,(p, g)=0 iff they
are logically equivalent. Distances over boolean algebras were considered in [5].

3.5.6. Call V solid if (V, <) is a complete join-semilattice and d, exists. Recall that for
(V, <) a complete join-semilattice, 4:=(A, d) a V-metric space and I a set, the power
A" is (A", d) where d(f, g):=Sup{d(f(i), g(i)): iel} for all f, ge A"
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Proposition 3.5.7. Let I be solid. Then every V-metric space embeds isometrically into
a power of (V, dy).

Proof. Let 4 and B be V-metric spaces and let H=Hom(d4, B) denote the set of
contractions from A4 to B equipped with the V-distance of B* (ie. d(f, g):=
Sup{d(f(a), g(a)): acA}. Denote by G the set Hom(H, B) equipped with the V-
distance of B¥. For a fixed ae 4 define ¢,: H— B by setting ¢,( f):=f(a) for every feH.
Now ¢,eG (because d(p,(f), ¢.(9))=d(f(a), g(a)) <d(f, g). Finally define ¢: 4— G by
setting @(a):= o, for all acA. Again peHom(4, G) as for all x, ye A we have

d(o(x), 9(y))=d(@x, ¢,)=Sup{d(@.()), @,(f): feH}
=Sup{d (f(x), f(»)): feH} <d(x, y). (3.28)

The above is a true for any B. Choosing B:=(V, d;) we show that ¢ is the required
isometrical embedding. Indeed, (for given x, yeA) define f:A—B by setting
f(a):=d(x, a) for all ac A. By Lemma 3.5.3 the map fis a contraction and by (3.26) we
have d(x, y)= dy(d(x, x), d(x, y))= d,(f(x),f(y)) and so (3.28) is an equality. Since all
our spaces are V-metric, this proves that ¢ is an isometry. []

Remarks 3.5.8. Let IV be solid and 4=(4,d) a V-metric space. For yeA4 define J,:
A—-V by setting 6,(x):=d(x, y) for all xeA. Further let 6: A— V4 be defined by
d(y):=9, for all ye A. Now § is an isometry from 4 into (V, dy)*. Indeed, applying the
definition of sup-distance and Lemma 3.5.3, for all y, ze A we obtain

d(8(y), 6(z))=d(8,, 8,)=Sup {d(J,(x), J,(x)): xeA}
=Sup(d,(d(x, y), d(x, 2)): xe A} =d(y, z).

Here the maps J, need not be contractions. However, proceeding in a similar fashion
we get an isometrical embedding of 4 into (¥, d,)* (cf. Remark 3.5.4) whose images
are all contractions. We list a few facts relating the image of d, and[ | (introduced
in 3.2.5).

Lemma 3.59. Let d, exist, let peV and q:=d(p, p), r:=[ p+p | Then:

(1) q is the least selfdual element of V such that p+q=p. In particular, q=p if and
only if p is small.

(2) dy(r,r+p)=r+p and

(3) r+p is the largest element of Imd, below p.

Proof. (1) From (3.25) and q<0 we get p<p+q<p proving p+qg=p. Let w be
selfdual and satisfy p+w=p. Since p+w=p+w=p, from (3.25) we get weD,, and
wq. We know that g is small by Lemma 3.2.2. If p=g¢ then p is small. Conversely, let
p be small. Since p+ p=p, by the first part of the proof we have g <p. However using
p<0 we get p=p+qg<gq.
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(2) By its definition (cf. 3.2.5) the element r is idempotent and r <(p+ p) A 0. Since
p+p is selfdual, by Lemma 3.2.4, the element r is also selfdual. Put e:=d, (r, r+p).
First we prove e<r+p. Indeed, r+p=r+r+pandr=r+r+r<r+p+p+r=r+p+
(r+p) whence r+ peD,,,, and so e<r+p. By definition eeD,,., and so
r+p<r+e<e due to r<0, proving e=r+p.

(3) By [ 27 we have r+pelmd, and r+p<p inview of r <0. To prove that r+p is
the largest element with this property let b:=d, (x, y)<p and c:=d,(x, x). We have
c<b+b<p+p and in particular c<[ p+p |=rso b=c+b<r+p. [

In the preceding sections the existence of d, has been postulated. A sufficient
condition for its existence is based on the following well-known concept [2, Ch. 14,
Section 5].

3.5.10. Let <V; <, +) be an ordered groupoid and p, geV. If the set R,,:={reV:
p<q-+r} has a least element, it is called the right residual of p by q and is denoted p- q.
The groupoid is right-residuated if all right residuals exist. The left-residual p-q,
left-residuation and residuation, (meaning the both-sided one) are defined in a similar
way. For V'=<{V; <, +, 0, ) one can show easily that p- g exists if and only if p:g
exists and p.qg=(p:q).

We have:

Lemma 3.5.11. If both q:p and p.q exist and s:=(q:p)v (p:q) exists then d, (p, q)

exists and equals s. In particular, if V is residuated and (q :p) v (p : q) exists for all p, qge V
then d, exists and dy(p, q)=(q:p) v (p:q) for all p, qeV.

Proof. Put u:=q:p,v:=p:qand w:=u v 0. Wehave p+w=p+u>q,q+w=q+v=p
and so weD,,. On the other hand, for xeD,, from (3.25) we have x>¢:p=u and
X=p:.q=v and so x=w proving d,{(p, g)=w. [

3.5.12. The following property will play an important role in the sequel. As usual, we
say that {V; <, + is left x-distributive if whenever peV and Q<= V are such that
|@|<x and either AQ or A{p+q: geQ} exists, then both exist and

p+ A0=nr{p+q: qeQ}. (3.29)
The right x-distributivity and x-distributivity are defined in a similar way. Note that in

(3.29) we could replace = by>(as < is automatically true).

Remark 3.5.13. A routine verification shows that {V; <, + ) is left 2-distributive if and
only if it is left n-distributive for all n<w.
For our V these properties coincide.

Lemma 3.5.14. The following are equivalent:
(1) V is left k-distributive,
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(i) V is right x-distributive,

(il) V is k-distributive,

(iv) V has the following property: if P, Q<= V
are such that (a) |P| <k, |Q| <k and (b) all three infima in (3.30) exist whenever at least
two exist, then

AP+ A\Q@=/A{p+q: peV, qeQ}. (3.30)

The straightforward proof is omitted (to prove (i)=>(ii) use the properties of the
involution ; in particular, the fact that it is an order automorphism).

Call V fully distributive if it is x-distributive for all the x>1. We relate right
residuation and full distributivity.

Lemma 3.5.15. (a) If V is residuated then it is fully distributive. (b) If (V, <) is
a complete meet-semilattice and V is fully distributive then V is residuated.

The somewhat technical proof is omitted. We give a sufficient condition for the
k-convexity (cf. 3.3.3) of (V, d,).

Proposition 3.5.16. If (i) (V, <) has all infima of subsets of cardinality <, (i) V is
k-distributive and (iii) d,, exists, then (V, dy) is k-convex.

Proof. Let ¢, x;, r; (i<k) be as in 3.3.3. Put z:=/\{x,~+rj+t:j<x}. We show that
teD,,. Note that for ¢ selfdual the conditions in (3.25) reduce to z+t>z. Applying
(3.29) and noting that ¢ is idempotent we have

z+t= N\{xj+rj+rj<k}+t=\{xj+r+t+1rj<x}=z
hence teD,, and dy (z, z)<t. Similarly we prove that r,e D, , for all i < x. Indeed, from
dy (x;,x;)<r;+t+r; and the second condition of (3.25) we get x;+r;+t +7; > x; for all
j<x. Applying the x-distributive law

2= A\ {x;+r+e <l +ri= A\ {x+r+r+r i<} =x. (3.31)
On the other hand, in view of t <0 we have

z= N\ {xj+r+e j<e} <x+r+t<x+rg. (3.32)
Now (3.31) and (3.32) show that r;e D, , proving the required d, (x;,z2)<r;. [J
3.5.17. Wesay that V=<V <, +,0, — > is a Heyting algebra (or shortly ¥ is Heyting)
if (V, <) is a complete lattice and V is fully distributive.

Now for Heyting algebras we relate hyperconvexity, absolute retracts and injectiv-
ity (with respect to the class of V-metric spaces and their isometries) and d,.

Theorem 3.5.18. The following are equivalent for a Heyting algebra V and a V-metric
space A.
(1) A4 is injective,
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(i1) A is an absolute retract,
(iii) A is a retract of a power of (V, dy)
(iv) A is hyperconvex.

Proof. (i) = (ii) A general categorical fact proved here for the reader’s convenience.
Let f: A— B be an isometry. By injectivity id,=g - f for a contraction g:B— 4, i.e. f'is
a coretraction.

(ii) = (iii) By Proposition 3.5.7 the space 4 embeds isometrically into a power of (V,
dy). Since A is an absolute retract, 4 is a retract of this power.

(iii) = (iv) From Lemma 3.5.15(b) we know that }V is residuated. Now d exists by
Lemma 3.5.11. From Proposition 3.5.16 we see that (¥, d,) is hyperconvex. Since, in
our case, hyperconvexity amounts to the satisfaction of the condition (HC, ) for all x, it
follows from Lemma 3.4.5 that a power as well as a retract of a hyperconvex space is
hyperconvex.

(iv) => (i) It has been shown in Theorem 3.3.4 that one-point x-extension property
and x-convexity are equivalent and in Lemma 3.4.3 that one-point extension property
is equivalent to injectivity. [

Remarks 3.5.19. For Heyting algebras V' the above proof of ‘injectivity implies
hyperconvexity’ (i.. (i) = (iv)) seems to be simpler than the proof given in 3.3.

For a Heyting algebra ¥ we can slightly reformulate the condition for
hyperconvexity.

Lemma 3.5.20. Let V be a Heyting algebra. Then a V-metric space (A, d) is hyperconvex
if and only if for every small teV and each map f: A—V such that

d(x, )< f(x)+1+f(y)
holds for all x, ye A there is ze A satisfying d(z, z) <t and d(x, z)=f(x) for all xe A.

Proof. (=). Write A={x;; i<k} (where k=|A41) and put r;:=f(x;) for all i<«
(«<=). Let teV be small and let x;€ 4 and r;e V(i <k) be such that

d(x, x;) <+t +7;

holds for all i, j < k. For xe A put D, ={r;: x;=x} and f (x):= A D,. Note that f(x) is the
greatest element 1 of (¥, <) whenever D,=0. Applying the distributive law we have
for all x, ye A.

dix, )< A{ri+t+r;rieD,and rieD,} = AD,+t+ ADy=f(x)+t+f(y).

Now by the assumptions and the definition of f we have d(x;,z) <f(x;)=r; for all
i<k [
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For a Heyting algebra V" and the metric d, the sets U,;={xeV: dy(x, x)<t},
B(x,r)={yeV: d,(x, y)<r}(x,t,reV) have a simple form.

Lemma 3.5.21. Let t, x, reV.

(a) If (V, <) is a (complete) join-semilattice then both U, and B(x, r) are (complete)
join-subsemilattices of (V, <). Moreover, B(x, r) is convex.

(b) If Vis Heyting then U, is a complete nonempty sublattice of (V, <) and B(x, r) is
either empty or an interval of (V, <).

Proof. (a) By (3.25)
Up={xeV:x+t=x, x+I>=x}, (3.33)
B(x,r)={yeV:x+rzy, y+r=x}. (3.34)

Let XcU,, M:=v X and ae{t,7}. Then M+a>x+a>x for each xeX and so
M +a>= M proving MeU,. The proof for B(x, r) is quite similar. Let u, we B(x, r) and
u<v<w. From (3.34) we have x+r>=w>v and v+72u+7=x and so veB(x, r).

(b) Let X< U,,m:= A X and ae{t,i}. Then

m+a=A{x+a:xeX}z2ArX=m
and so meU,. The proof for B(x, r) is similar. Clearly the least element O’ of (V, <)
belongs to U,. O
3.6. Ultrametrics
3.6.1. In the section we consider special F-metric spaces. Put V*:=¥\{0}. Let (4, d)
be a V-metric space. For xeA and veV a closed ball is the set

B(x, v):={aeA: d(x, a)<v}.
For a subset X of A the v-hull and the hull of X are the sets

[X],,:=stxB(X, U), [X]=m{[X]v ve V*}

As usual, a down-directed ordered set (each pair of elements in the set has a lower
bound) is a filter. A self map X —XV: of the set 2(A) (of subsets of A) is a closure if
XcXY, XV'=Y¥, XV=XV holds for all XS Y= A. A closure is topological if
(XuY)=XVuY" holds for all X, Y= A. We have the following.

Lemma 3.6.2. Let {V; + ) be idempotent and O the least element of (V, <). If (A,d) is
a V-metric space then X —>[X] is a closure on A. This closure is topological provided
(V*, <)is a filter.

Proof. Let X = Y = A4 and Z:=[X]. Note that d(x, x)=0<v and so xeB(x, v) for all
xeA and veV. Clearly we have X = [X ], for all veV and so X = Z. Let zeZ and
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ve V* From Z < [X ], we see that ze B(x,v) for some xe X < Y whence ze[ Y], and
ze[Y] proving [X]=Z < [Y]. We prove [Z] = Z. Let te[Z] and let ve V'*. From
[Z] = [Z], we have teB(z,v) for some zeZ. By the same token we have ze B(x, v) for
some xeX. From d(x, z) <v, d(x,t)<v and the idempotency we obtain:

dix,t)<d(x,z)+d(z,t) Sv+v=v

i.e.teB(x,v)and te[ X ],. Since ve V* was arbitrary, we get te[ X |=Z. Thus [Z] = Z
and [Z]=Z.

Finally, let (V*, <) be a filter and X, X, € A. Let ze A\([X ;] U[X;]). Then there
are v;e V* such that X; is disjoint from B(z, v;) (i=1, 2). Choose ve V'* so that v<uv,
and v <v,. Now B(z,0)n X; € B(z,v;)n X;=0fori=1, 2. Setting X:= X, U X, we have
B(z, v)n X =0 whence z¢[X ], and z¢[ X ]. Altogether [X] = [X,]u[X,]. The con-
verse inclusion being evident, this proves that the closure is topological.

We turn to very special V-metric spaces.

3.6.3. Let {V; v ) be a join semilattice and O the least element of the associated order
<. Let id, denote the identity selfmap on V. It is easy to verify that
V={V;<, v,0,idy ) satisfies the assumptions of Section 1.1. Call such a V-metric
space (A4, d) an ultrametric. The axioms of an ultrametric are:

(d1l) d(x,y)=0 < x=y

(d2) d(y,x)=d(x,y),
and

(d3) d(x,y)<d(x,2) v d(z,y).
In the particular case of =R, (with the usual order and x v y=max(x,y)) an
ultrametric is also called a non-archimedian metric. It is well known that this
ultrametric is quite different from the euclidean metric. This is true in general. As an

example consider the following property. Let x, y, ze A. Setting a:=d(x, y), b:=d(x, z)
and c:=d(y, z) from (d3) we obtain a< vc, b<avc and c<avb. It follows that

avb<avavcec=avc<avavb=avb,
and by symmetry,
avb=avc=bvc=avbve. (3.35)

For example, if a<<b then b=>b v ¢ shows ¢<b and b=a v c. In particular, if (V, <) is
a chain (i.e. a totally or linearly ordered set), from a <b we get b=c and so among the
elements a, b and c always at least two are equal. On account of this we call (3.35) the
isosceles property.

We describe ultrametrics in terms of the relations

(d)e={(x,y)e A% d(x,y)<v} for veV.
Put A g={(a,a): acA}.
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Lemma 3.6.4. Let (V, <) be a join semilattice and 0 its least element. Then (4,d) is an
ultrametric space if and only if all relations (d), (ve V) are equivalence relations on A and
(d)o=A4.

Proof. (=) (d)o=A, follows from (d1'). Let ve V. Then (d), 2 (d)o = A, show that (d),
is reflexive. Clearly (d), is symmetric due to (d2) and transitive by (d3).

(<) We have A =(d), proving (d1'). Let x,y,ze A and r:=d(x, y). Now (x, y)e(d),
implies (y, x}e(d),, ie. d(y,x)<d(x,y) and (d2) follows by symmetry. Finally, put
s=d(x,z), t=d(z,y) and u=svt. From s<u, t<u we get (x,2)e(d),, (z, y)e(d),
proving (d3). [

Note that, according to Lemma 3.6.4 for a fixed ve V, the closed balls B(x,v) (xe A)
partition A.

3.6.5. A clone C on A is congruence affine if C=Pol R where R is a set of equivalence
relations on A4 (cf. 2.1 and 2.3 for the definitions). Thus Lemma 3.6.4 states that for
a V-ultrametric space (4, d) the clone Cyy of d-contracting operations is congruence
affine. Let Eq A denote the set of equivalence relations on A. For an algebra
A=<{A; F)theset Con A:==Eq AnInv, F (ordered hy <) is the congruence lattice of A.
Note that D:={(d),: veV} = Con {4; Cy4y>. The set Con {A4; Czy) is closed under
arbitrary intersections and directed unions and so it contains all the intersections and
directed unions of members of D. In general, it may contain other equivalences
constructed in different ways from equivalences in D [31]. Note that the map v—(d), is
an order preserving map from ¥V into the set (Eq 4, <) such that 0+ A . There is not
much we can say in the general case and so we turn to special cases.

3.6.6. We consider x-convex V-ultrametrics (cf. Section 3.3). For our ¥ we have
V,={0}, hence t=0 and all (3.11;) (i <) as well as (3.13) are trivial assertions. Hence
a V-ultrametric is k-convex whenever to all x;e 4 and r;e V(i <k) satisfying

d(xi,Xj)<ri Vv r; (336,1)
for all i, j <k, i#j there is ze A such that
d(xi,Z)Sri (337,)

holds for all i < k. For example, (4, d) is 2-convex if for all x4, x; €4 and rg, r1€ ¥V such
that d(xq, x1)<ro v ry we have d(xg,z) <rg, d(x1,z)<ry for some z€ 4 or, equivalently,
B(xq, o) meets B(x,,7y).

Two equivalences ¢ and 5 are permutable (or commute) if eocn=n-e. We say that
D < Eq A is permutable if the equivalences in D are pairwise permutable. It is well
known (cf.[6, 2-6.6]) and easy to check evn=¢on if and only if ¢ and 5 are
permutable (here v is in (Eq 4, <)). We describe the 2-convex ultrametrics in terms
of permutability.
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Proposition 3.6.7. A V-ultrametric space (A, d) is 2-convex if and only if all (d), (ve V)
are pairwise permutable and (d), - (d), =(d), v (d), =(d), . holds for all v, v'eV.

Proof. By Lemma 3.6.4 in every ultrametric
(d)vo(d)v’ = (d)v Vv (d)v’ —C-(d)vvv’

holds for all v, e V. Now 2-convexity is equivalent to (d),,, =(d),-(d), for all
v,v'eV. O

Note that for a 2-convex V-ultrametric space the map v — (d), is a join-semilattice
homomorphism (from {V; v } into {Eq 4; v ).

3.6.8. We can translate k-convexity into the following property. A family F of sets has
the k-Helly property if the intersection ()Y is non-empty for every Y < F of cardinality
<k consisting of pairwise intersecting sets.

Consider the closed balls B(x, v}={ae A: d(x,a)<v} (xe A4, ve V}introduced in 3.6.1.
For a 2-convex V-ultrametric space the condition (3.36;;) is equivalent to B(x;,r;)
meets B(x;,r;) and so we obtain:

For k>2 a V-ultrametric space (A,d) is xk-convex if and only if it is 2-convex and
the family {B(x,v): xe A, ve V'} has the k-Helly property.

Remark 3.69. Let <{V; v, A)> be a lattice, (4,d) a V-ultrametric space,
D:={(d),:veV} and let v+ (d), be meet-preserving. Directly from the definitions and
Proposition 3.6.7 it follows that the ¥y-convexity is just the condition of the Chinese
remainder theorem (cf. [1]). It is known (cf. [12, p. 211 ex. 687]) that this condition is
equivalent to (D, <) arithmetical (i.e. permutable and distributive).

3.6.10. We need the following lattice-theoretical concept. Let k>2 be a cardinal,
L:={L; v, A ) bealattice and let D = L be a sublattice of L closed under infima (in L)
of subsets of cardinality <x. The set D is x-meet-distributive if

A{vvy yeYl=vv AY (3.38)

holds for each veD and Y<D with |Y|<«k.
Note that 2-meet-distributivity means that the familiar distributive law

vy Alvy)=ovv(yry) (3.39)
holds in D. It is immediate that D is then ny-meet-distributive for all n <w: (cf. 3.5.14,
cf. also [2g]) The condition (3.38) may be strengthened:

Lemma 3.6.11. Let k, L and D be as in 3.6.10. Then D is k-meet-distributive if and only if

Afxvy xeX,yeYI=AXv AY (3.40)
holds for all X, Y= D with | X|, |Y|<x.
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We have the following,

Lemma 3.6.12. Let k>2 be a cardinal and (A, d) a k-convex V-ultrametric space. Then
D:={(d),: ve V'} is a k-meet-distributive subset of (Eq A4, <).

Proof. Let A<k, roeV and rieV (0O<i<Ai). Since (4,d) is 2-convex, by
Proposition 3.6.7 and the last remark in 3.6.9 we must prove

o= () (@y,-@),)E@h,> [} @)= (3.41)
O<i<i 0<i<i
Let (xo, y)eo. Then there are x;eA4 such that d(x,, x;)<ro and d(x;, y)<r; for all
O<i<A. For all 0<i, j<1 we have

d(x;, x;)<d(x;, y)vd(y, x;)<r;vr, d(xo, X)) Sro<rovr;.

By k-convexity (cf. 3.6.6) we have d(x;, z)<r; for some ze A and all i< .
Thus (x,, z)e(d),, and taking into account that (d),, are equivalences also (z, y}e(d),,
for all 0<i< /. It follows that (xo, y)er. O

3.7. Clones of contracting operations for convex metric spaces

3.7.1. Let (¥, <) be a join-semilattice and (4, d) a F-metric space. Recall that in 2.2.1
an n-ary operation fon A4 (i.e. a map from A" into A) has been called a d-contraction
(on A) provided

d(f(x1s s X (Y150 V) SA(x1, 1) V -V d(Xp, ) (3.42)

holds for all x;, ..., X,, y1, ..., yn€ A. The set Cyyp of all d-contractions on A4 is a clone
(i.e. it is composition closed and contains all projections, cf. 2.2.1). Let k>0 be an
ordinal number; put k= {i: i <x}. A subset p of A* (i.e a set of maps k —A) is a k-ary
relation on A. For ry,...,r,eA* let f[ry,...,r,] denote the map he A* defined by
setting h(i):=f(r (i), ...,ra(i)) for all i<x. Recall (cf. 2.3) that f preserves p if
flrs...,r,]€p whenever all rq,...,r,ep. For a set F of (finitary) operations on A let
Inv, F denote the set of k-ary relations p on A preserved by all f e F. In this context, it
suffices to consider only Kk <|A| for A infinite and x < for A finite (cf. [19, 25].

Let W<V, let B be a set such that k< B and let {a,,: we W} be a family of binary
relations on B. Put

r={geA”: (x, y)ea, =d(g(x), g(y))<w}. (3.43)

The set 1|, (of restrictions of get to k) is called a derived relation. It is straightforward
to verify that a derived relation belongs to Inv, Cay. From the general theory, (cf.
[19, 25]), it follows that Inv, C,y consist of the directed unions of derived relations. In
certain cases we may improve (3.43). Let 6: B2— ¥ be such that §(b, b)<O0 for all beB.
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Let B=(B, 8) be the corresponding binary space and denote by ¢ the set Hom (B, 4)
(of contractions from B into 4). Call o], a quasi-metric k-ary relation. We have:

Lemma 3.7.2. (1) A quasi-metric x-ary relation is a derived k-ary relation.
(2) If(V, <) is a complete meet-semilattice, then a x-ary relation is derived if and only
if it is quasi-metric.

Proof. (1) Let p be a quasi-metric k-ary relation on 4, B=(B, §) the corresponding
binary space and 6:=Hom(B, 4). Put W:=Im and a,,:=51(w) for each we W. We
claim that 7 given by (3.43) equals p. Let geo. Then g is a contraction from B to 4. Let
(x, y)ea,, for some we W. Then d(x, y)=w and d(g(x), g(y))<d(x, y)=w proving get
and o =1. The proof of 1S ¢ is quite similar.

(2) Let the assumptions of (2) hold and let a derived k-ary relation be given by
(3.43). For x, ye B with x #y put U,,'={we W: (x, y)ea,,} and d(x, y):= A U,,. Further
put 4(x, x):=0 for all xeB. Put B=(B, d} and o:=Hom(B, 4). Let ge and x, yeB,
x#y. From (3.43) we have vi=d(g(x), g(y))<w for every wel,, and hence
v< AU, =6(x,y). Clearly d(g(x), g(x))=0=4(x,x) for all xeB proving geoc and
t<0. For the converse let heo and (x, y)ea,, for some we W. Then weU,,, hence
d(h(x), h(y))<d(x, y)<w proving het and sc1. O

Lemma 3.7.3. Let (V, <) be a meet-semilattice, B=(B, 8} a binary space and (A, d)
a V-metric space. For u,veB put & (u,vy:=5(u,v)Ad(v,u) and B"=(B,d'). Then B’
satisfies (d3) and Hom(B, 4)=Hom(B', 4).
Proof. Let feHom (B, 4), u, ve B and a:=d(f(u), f (v)). Then

a<o(u,v), a=d(f(v), fW)<o(v,u)

and so a<6(v,u), and therefore

a<dé(u,v) Ad(v,u)=0"(u,v).

Conversely, let ge Hom(B’, 4) and u, ve B. Then
d(g(u), g(v))<'(u,v) <S(u,v).

It is easy to verify that ¢ satisfies (d3). O

3.7.4. In the sequel (V, <) is a complete lattice. Let 4=(4,d) be a V-metric space.
Combining Lemmas 3.7.2. and 3.7.3 we obtain that each derived x-relation is the
restriction to x of Hom(B, A) where B=(B, 6} is a suitable binary V-space satisfying
o(b, b)< 0 for all be B, the axiom (d3) and B2 k. In general, B need not be a premetric
(cf. Section 1.1), i.e. satisfy the A-inequality. We construct a binary V-space B=(B, §)
which under special assumptions is a V-premetric. Under additional strong assump-
tions we may replace B by B (and even assume B to be a ¥-metric space on k).
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For u, ve B denote by P(u, v) the set of finite sequences p=<b,, ..., b, » over B with
by=u, b,=v and b;eB. In 3.7.5 we use the obvious bijection from P(u,v) onto
P(v,u) assigning the reverse sequence p'=<(b,,....,b;> to p=<{b;,...,b,>. For

p=<{by,...,byy put:

p*:=6(b1, b2)+"'+5(bm—labm)a S(us U):=/\peP(u,v)p#' (344)
Since {u, v>e P(u, v), we have:
5(u, v) < (u, v) (3.45)

for all u, veB. Put B:=(B, §). We start with the following lemma.

Lemma 3.7.5. Let V be a complete lattice, B=(B, d) a binary V-space and B =(B, 5) as
in 3.7.4. Then:
(i) Hom(B, 4)=Hom(B, A),
(ii) 8(b, b)<0 provided 6(b,b)<0 (beB),
(ili) B satisfies (d3) provided B does.
(ivy If V is Heyting (cf. 3.5.18) then B satisfies the A-inequality (d2).

Proof. Put o:=Hom(B, 4) and 6:= Hom(B, A).

(i) By (3.45) we have éc<o. For the converse, consider feg, u,veB and
p=<by,....,b,>€Pu,v). Put c;=f(b;) (i=1,...,m). Taking into account that f is
a contraction, we have d(c;, ¢;4+ 1) <d(b;, b; 1) fori=1,...,m—1, In the [-metric space
A we have

d( f(u), f(v))=d(cy, cw) < Z d(ci, civ1) < Z 0(b;, bis1)=p*,

o<i<m r<i<m
dfnfeN< A s(p)=8u, v)
peP(u,v)

proving fed and 6 =4

(ii) Apply (3.45).
(ii) Let B satisfy (d3). Let u, veB and p=<by,...,bn>€P(u, v). Then

p* =0(by, by)+ - +6(bp-1,bm)=08(b2, b1) + - +6(bm, byu—1)

=0(byy bu-1)+ - +0(by, by)=p'*

where p':=<(b,,...,b; >eP(v, u). Taking into account that v—7 is an order automor-
phism of (V, <) and p—p’ a bijection of P(u, v) onto P(v, u) we get the required

Swoy= N p*= A pP*= A p*= A p*=8@u)-

peP (u,v) peP (u,v) peP(u,v) peP(v,u

(iv) Consider u, v, we B and put

C:=P(u,v), D:=P(v,w), E:=P(u,w).
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For p=<(by,...,b,>eC and q=<bp,....bm+,y€D denote the concatenation
by, ...,bmsn (of p and g) by p <>gq. Obviously p <>qeE and (p<>q)* =p* +q”.
Applying full distributivity we get the required

Sw,0)+8w,wy= Ap*+ANg*= N (©*+q*)

peC geD peC, geD

= A (p<>q)* < N1 =8(u,w). J0
peC, qeD reE
As usual, for fik—A put Ker f:={(x, y)ex*: f(x)=f(y)}. For an equivalence
relation ¢ on x put 4;={feA*: Ker f2¢} (ie. 4, consists of all maps of k into
A constant on each block of ¢). We have the following.

Proposition 3.7.6. Let V be Heyting (cf. 3.5.18) and A=(A,d) a V-metric space. Then:
(i) a k-ary relation ¢ on A is derived if and only if

o={fed, fle=gle for some geHom(B, A)} (3.46)

where k' <k, € is an equivalence on k and B=(B, ) is a V-metric space with B2x', and
(ii) For a x-ary relation p on A the clone Polp contains all the d-contracting
operations if and only if p is the union of a directed family of derived relations.

Proof. It suffices to prove (i). From Lemmas 3.7.2, 3.7.3 and 3.7.5 we know that
o={f|. feHom(B, A)} where B=(B, ) is a V-premetric space (cf. 3.1.1) such that
B=k. Recall that in 3.12 and 3.13 we have defined an equivalence ~on B by setting
u~v whenever d(u, v) <0. As in Fact 3 of a 3.3.4 let B®= B/ ~. According to Fact 3 the
space B® is a V-metric space. It is easy to see that an operation f on A preserves
=Hom(B, A4)if and only if it preserves t°:= Hom(B®, 4) (use the fact that each tez is
constant on each block of ~). Denote by K the set of blocks of ~ meeting the subset
k of B. Clearly k':={ K| <x and it suffices to index K by &’ to obtain the statement of (i)
(where ¢ is the equivalence x~). U

In 3.7.6 (i) we determined the general form of a derived k-ary relation. If we are
interested in Pol ¢ only we can simplify (3.46); in particular, the use of A, is superflu-
ous. This is based on the following general lemma whose easy proof is omitted. For
a k-ary relation p on 4 and @: k' —k put p,y={ro@:rep}.

Lemma 3.7.7. Let p be a x-ary relation on A. ¢ 1 k' —k and ¢ an equivalence relation on
K such that im ¢ meets each block of ¢ exactly in a singleton. Then,

(i) Pol p=Polp,,

(i) Polp=Polp, if pcA4,, or k=«" and ¢ is a permutation of k.

Corollary 3.7.8. Let A and V be as in 3.7.6 and o a derived x-ary relation. Then
Polo="Pol p with p=Hom(B, 4)|,- where k'<x and B=(B, ) a V-metric space such
that B2k’
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3.7.9. Call a k-ary relation ¢ on A non-expansive if it is of the form (3.46) for B=x'
(instead of B2k') i.c. if there exist k' <k, an equivalence ¢ on k and a V-metric space
B=(x’, d) such that,

o={fed,: fle sHom(B, 4). (3.47)

In other words, each feq is exactly an extension to k of a contraction from B to
A such that f is constant on each block of & The following interpretation of
non-expansive relation is perhaps worth mentioning. For simplicity let k =x" and ¢ the
least equivalence. Then o:=Hom(B, 4) may be interpreted as the set of the solutions
{x;: i<k ) of the inequality system:

d(xi, x;)<8G,j) (Vi,j<x). (3.48)

In the more general case of B>k, we may also interpret Hom(B, 4) in terms of the
solutions {x,: be B) of the system

d(xp, xp ) <(b, ") (Vb,b'eB); (3.49)

however in ¢ we only monitor the part (x;: i<x) of a solution of (3.49) and so
o consists of (x;: i <x) for which there exist x, (b€ B\k) so that the inequalities (3.49)
hold. This hidden part makes things more complex; eg. the congruence problems in
universal algebra are due to this fact. In an extreme case it suffices to use non-
expansive relations only. This is the main result of this section.

Theorem 3.7.10. Let V be Heyting, A=(A, d) a hyperconvex V-metric space and p a k-
ary relation. Then all d-contracting operations on A preserve p if and only if p is the
directed union of non-expansive relations.

Proof. From Proposition 3.7.6 we know that each derived operation is of the form
(3.46). Denote by K’'=(x', ) the restriction of B to k'. By Theorem 3.3.4 the metric
space A has the extension property. Consequently, each he Hom(K’, 4) extends to
some h'eHom(B, 4) and so ¢ may be replaced by the non-expansive relation

{fEAe: flrg’EHom(Kl,A)}' U
In 4.4.14, we shall need the non-expansive relations (cf. 3.7.9) in a very special case.

3.7.11. Suppose (V, <) is a chain with a least element 0. Denote by v the correspond-
ing join (i.e. v v v:=max(v, v')) and put V:'=(V, <, v,0). Let A=(A4,d) be a hyper-
convex V-ultrametric on A. According to 3.7.10 and 3.7.7 we have Pol ¢=Pol p for
p=Hom(B, 4) where B=(x’, d) is a V-ultrametric space. We give a better description
of p. By the definition of a contraction (cf. 3.1.2) we have:

p={feB*:d(f(i), f(j))<5(,j) for all i<j<w'}. (3.50)
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Recall (cf. 3.6.4) that for ve V the binary relation (d),:={(x, y)e B?: d(x, y)<v} is an
equivalence relation on B. We show that the clone Pol p (of all operations preserving
p) equals (),c; Pol (d), where I=im 8. For i<j call

pri; p={(f0), f())): fep}
the (i, j)th projection of p. We need the following.

Lemma 3.7.12. If p is given by (3.50), i<j<x' and v:i=40(i, j) then pr;;p=(d),.

Proof. For fep we have d(f(i), f(j))<v proving (f(i), f(j))e(d), and pri;p=(d),.

For = let (x, y)e(d), or, equivalently, d(x, y) <v. Define f: k'— A by setting f(m)=x
whenever §(i, m) <v and f (m) = y otherwise. We claim that fep =Hom(B, A). Suppose
Jf#p. Then there are p, g <x’' such that

d(f(p), f(@) % 3(p,q). (3.51)

Since Im f={x,y}, we may choose the notation so that f(p)=x, f(q)=y. Setting
z:=0(p, q) and using the assumptions on (¥, <), from (3.51) we get v>z. Put r=4(i, p)
and s:=4(i, q). In view of f(q)=y we have s>v. From the isosceles property (for i, p
and g) and r<v<s we get z=4(p,qg)=s=v in contradiction to v>z. Thus fep and
(x, y)=(f@), f(j))epri; p proving 2. [

Propesition 3.7.13. Let (V, <) be a chain with the least element 0, V ={(V, <, v,0)
and A=(A,d) a V-ultrametric. If ¢ is a non-expansive relation for A then:

Polog= () Pol(d), (3.52)

weW
where W:=Im & for a V-ultrametric 6.

Proof. Let p be asin (3.50). Put W:=Im ¢ and denote by C the clone on the right-hand
side of (3.52). It is known and easy to prove from (3.50) that C = Pol 6. On the other
hand, it is known that Pol p = Pol pr;; p for all i <j <x'. From Lemma 3.7.12 it follows
that Pol p = Pol (d),, for all we W and so Polp<C. 0O

4. Relations, graphs, automata and sequential machines as metric spaces over a
Heyting algebra

4.1. Binary spaces revisited

A binary V-space (4, ), as defined in Section 1.1, may in general seem to be far from
a metric space; especially, if there is no Heyting structure on V for which & can be
viewed as a distance. However, as we shall see in this section, that impression is false.
We need a few technical lemmas.
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4.1.1. Let V=(V, <) be a poset. Put 2=({0,1}, <), U;={(v,v,0):veV},
Uy={(u,v,1): u,ve V} and Vyp:=U,0U,. Clearly V< ¥? x2 and so Vy is equipped
with the (component wise) order < inherited from V% x 2,

We shall turn V' into a Heyting algebra. We start with the following (most likely
known) extension of a semigroup.

Lemma 4.1.2. Let { Uy;-) be a semigroup, let U, be a set disjoint from U1, ecU, and

T _T7 . ofis 1 himanss amonatiai. opttin L. L L~T7T
i '—UIUUZ UCJ”“{ u otnur y U[/C’ubl(l’l 'f' on 1 U)/ dqeLLiny u"l'U—MU U ,UCUI,

at+b=eifa,beU,, a+b=b+a=bifacU,, beV,. Then {T;+ is a semigroup. If,
moreover, {U ;- > is commutative then {T; +) is commutative.

Proof Vet a b ceT Y abcell; the n(a.ll._h :n.h.r‘:n.&(b-}-c)' Iftwo of a.b.¢

A aVvie LAl b, Uy, LT H . G, U, LT U ubbidl oy Uy L

belong to U, while the third, say a, is in U, then (a+b)+c¢=a=a+(b+c¢). Finally, if
a least two of a,b,c belong to U, then (a+b)+c=e=a+(b+c). O

Let (¥, <) be the order of a meet-semilattice (¥, A ) with a greatest element. We
identify this greatest element with 1 and the least element, if any, with 0. Denote by
+ the semigroup operation defined in Lemma 4.1.2 for (Uy; A > and e=(1, 1, 1). Put
w:=(1,1,0). We have:

Lemma 4.1.3. T:={Vg; <, +,w) is an ordered commutative monoid.

Proof. Let a,b,ceVy, a<bh. We have three cases. (1) Let a=(u,u,0)eU; and
b=, v,00eU,. If ceU, we have a+c=e=b+c and if c¢=(t0) then
at+c=UArt,unt,)<(wat,oat,0)=b+c. (2) Let a,beU,. If ceU, then a+c=
e=b+c. Thus let ceU,. Then a+c=a<b=b+c. (3) Finally let a=(u,u,0)eU,
and b=(v,t,1)eU,. If c=(@r0elU; then a+c=FAu,rru,0)<b=b+c. If
c=(r,s,1jeU, we have a+c=c<e=b+c. The element w is a neutral element of +.
Indeed, weU,; and so a+w=a for all aeU, while for a=(v,»,0)eU; we have
a+w=@Aal,oal,0)=a O

In our notation A takes precedence over +; e.g. a+ o4 A o, stands for a+(x; A ay).
Lemma 4.14. If (V, <) is a complete lattice then T ( from Lemma 4.1.3) is Heyting.

Proof. Let aeVy, X;<U; (i=1,2) and X=X;0X,. Put o=AX; and
Bi= A {a+x;xeX;} (i=1,2). We must prove a+o; Ady=P1Af;.

We have two cases: (1) LetaeU,. Then ;= A {anx:xeX,}andso fi=ana, if
X,;#0 and B, =e otherwise. Similarly B, =u«, if x, #0 and B, =e otherwise. If X, #0
we have oy A 0,eU  and so a+oq Aoy =a Aoy A dy=1 A B,. If X; =0 then in view
of a,elU, we have a+a Ao, =a+era,=a+a,=a,=eAt, =01 A ;.
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(2) Let aeU,. Note that 8, =a if X; #0 and B, =e otherwise. Next ff,=e whence
BiABy=a if X #0 and B, Ap,=e otherwise. If X,#0 we have oy AaeU,
and so a+o,Aa;=a=p, AP, whereas for X;=0 we have oy A0,eU, and
atogno,=e=08,Af,. O

Let 7 be as in Lemma 4.1.3. For every x={(xy, X5, X3}V put X=(x,,x,x3). It is
immediate that x+ x is an involutive order automorphism of (Vy, <) fixing each
element of U,. According to 3.5.1 we can define the following metric:
dr(a,b)y= A {reVy:b<a+r,a<b+7} for all a,beVy. According to our convention,
0 denote the least element of (V, <). Put A:=(0,0,1). The map d; may be easily described.

Lemma 4.1.5. The values of dr are given by the following tables.

\ beU, beU, a ‘anl acU,
aelU, avbvi b dr(a,a) a (0,0,0)
ael, a A
dr(a,b) for a#b dr(a,a)

Proof. Let, a,beVy, a#b. (1) Let a,becU,. If reU, then F=r and the inequalities
b<a+r, a<b+r 4.1

mean b<aAar,a<bar and so b<a<bh. Let reU, satisfy (4.1). Then b<r and a<r
and av bv A is the least such r. (2) Let aeU, and beU,. If re U, satisfies (4.1) then
b<raael,,acontradiction. Now for re U, the system (4.1) becomes b<r, a<e and
so b is the least solution. (3) The case aeU,, beU, is similar. (4) Let a,beU,. Were
reU; a solution of (4.1) it would yield b < a<b, whereas every re U, satisfies (4.1) and
so A= A U, is the least solution of (4.1).

Verification of the values given in right-hand Table is quite similar. [

Lemma 4.1.6. The map d satisfies the triangle inequality (d2).

Proof. Leta,b,ceVy. Put a:=dy(a,b), f:=dr(a,c)and y:=dr(c,b). From the tables in
Lemma 4.1.5 we see that d(x, y)e U, if x # y and d(x, x)eU;. If a# ¢ #b then we have
the required a<e=f+7y. If a=c+#b then feU, while a=yeU, and so a<y=L4+7.
The same argument applies if a#c=>b. Finally, if a=b=c we have a=f=yeU, and
o<aAna=0+o O

Let A=(A, 6) be a binary V-space. Define 6*: 42— V;; by setting:
8*(x, x):=(8(x, x), 5(x, x), 0), (4.2)
0*(x, )=(3(x,y), 8(y,x), 1) (4.3)

for all x, ye A, x+#y. Finally denote the binary T-space (A4, 6*) by A*. We have the
following.
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Lemma 4.1.7. Let V be as in 4.1.1 and let A=(A, 6) and B=(B, &') be binary V-spaces.
Then,

() A* satisfies (d1): 6*(x, y)<O0:=w if and only if x=1y and (d 3): 6*(y, x)=0*(x, y)
for all x,yeA, and

(i) Hom(4, B)=Hom(d4*, B*).

Proof. (i) Direct verification. (ii) Let feHom(4, B), x,yeA and u=f(x), v:=f(y).
Then &' (u,v)<d(x,y) and & (v, ) <(y, x). If u#v then by (4.3),

0*(u, v)=(0"(u, v), 8’ (v, u), 1) <(8(x, y), 6(y, x), 1)=0*(x, y).
Thus let u=v. Put =0 if x=y and a:=1 otherwise. Then
0% (u, 1) =(0'(u, u), (6'(u, u), 0)< (6 (x, y), 3(y, x), @)= 0*(x, y)

proving that fe Hom(d4*, B¥) and the inclusion < in (ii). For = let f = Hom(4*, B*),
x,y€A and u=f(x), vi=f(y). The first coordinates in 6*(u, v)<d*(x, y) show the
required &' (u, v)<d'(x,y). O

The equations (4.2) and (4.3) define a map ¢ : (A4, 6)|— (4, 6*) from the V-spaces into
the metric T-spaces. We show that ¢ has an inverse. As usual, pr,: Vy— V assigns u to
(u,v,i)e Vy. We have the following lemma.

Lemma 4.1.8. Let (A,d) be a T-space satisfying (d 1), (d2) and let 6:=pr,od. Then
o*=d.

Proof. Let a, be A where a+#b. Since by (d1) we have d(a,a) <wi=(l, 1,0), the element
d(a,a) is of the form (v,1,0) for some veV. Thus d(a,a)=v and by (4.2) also
0*(a, a)=(v,v,0)=d(a, a). Similarly d(a, b) < w whence d(a, b)=(u, v, 1) for some u,veV,
and so 8(a, b)=u. From d(b,a)=d(a, b)=(v,u, 1) we get d(b,a)=v and by (4.3) finally
dx(a, by=(u,v,1)=d(a,b). [

Combining Lemmas 4.1.4 and 4.1.8 we obtain the following.

Theorem 4.1.9. Let V be a complete lattice. Then V extends to a Heyting algebra T and
there is a contraction preserving bijection ¢ :(A4, 6) — (A, 6*) from the binary V-spaces
onto the metric T-spaces.

As an example we calculate ¢ ~!(dy)=pr,°dy.
Example 4.1.10. The values of Ap:=pr,odr are given in the following tables.

b|w,w,0) W,v,1) a| wu0) (401)

(u,u,0) uvu' u u 0
(4,0, 1) v 0

Ar(a,b)fora#b Ar(a, a)
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Now we have the following result.

Theorem 4.1.11. Let V be a complete lattice. Every binary space over V embeds
isometrically into a power of ¥":=(Vy, Ar).

Proof. Let (4,d) be a binary space over ¥ and as before let (4, 6*) denote the metric
T-space defined by (4.2) and (4.3). The Heyting algebra 7T is solid in the sense of 3.5.6
and so by Proposition 3.5.7 there exists an isometry ¥ from (A4, §*) into a power
(Vy, dy)! (defined in 3.5.6). For f:I— Vg define hi= Pr f by setting h(i}=pr(f(i)) for
all iel. Writing (Vy, d¢)! as (V}, m) according to 3.5.7, for f, g:I—Vy we have,

m(f, g)=\/ dr(f (), g(@))

iel
(where the sup is in (Vy, <)). From the definitions we get,

pry(m((f, 9)))=\/ 4r(Pr(f (), Pr(g(i)))

iel

(with sup in (¥, <)) showing that the map a — Pr(y)(a)) is the desired isometry. [

Remark 4.1.12. Let (V, <) be a complete lattice with a least element 0. We have seen
in Theorem 4.1.9 the existence of a contraction preserving bijection ¢ : (4, ) (4, 6*)
(from binary V-spaces onto metric T-spaces). The notions of (i) injectivity and (ii)
absolute retracts (cf. 3.4.1) are both defined solely in terms of contractions and so may
be identified via ¢ (i.e. (4, 6) has exactly the properties (A4, 5*) does). We have also seen
in Lemma 1.4.1 that powers are defined by morphisms and thus (iii) the retracts of
powers may be identified as well. In this way the equivalence of (1)—(iii) in 3.5.19 may
be transferred from the category of metric T-spaces to Sap.

In general, the concrete characterization of spaces satisfying any of (i)—(iii) becomes
more exacting the smaller the category is, and so it is not surprising that for the largest
category S,y these spaces are quite simple. There is a direct and elementary proof of
this. Indeed, for a binary space (4,d) over ¥ call an element xeAd central if
d(x, y)=d(y,x)=0for all ye A (where 0 is the least element of V') and call (4, d) central
if it contains a central element. For example, in (Vy, A7) from 4.1.10 the element
A=(0,0,1) is central, and so (Vy, A7) is central.

Trivially the absolute retracts (with respect to the injective isometries) are central,
for an absolute retract (4, 5) extend A by a new element x, and extend § by setting
d(x, y)=04(y,x):=0 for all yeAU{x} obtaining in this way an isometric extension of
(A4, 9). Next the central spaces are injective (extend every partial map with values in
a central space (4, d) by sending any extra element onto a central element of (4, J)).
The fact that centrality is preserved under products and retracts (a consequence of the
identity between injectivity and centrality) is in this case also trivial. In this way we
obtain the following.
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Theorem 4.1.13. In the category S,y the absolute retracts, the injectives (both with respect
to the injective isometries), the central spaces and the retracts of powers of ¥ coincide.

4.2. Relational structures and graphs

4.2.1. Let D be aset and V'=(g (D), 2). As we saw in 1.3.3 the category S,y is isomorphic
to the category R,p of binary relational systems of type D (cf. Section 1.2). In 41.10 we
introduced the V-space ¥ =(Vy,dr). We shall need an explicit description of the
relational system U p:=(Vy;{p;: ie D)) associated to ¥ (cf. 1.3.4). Let ieD; according to
1.3.4, the introduction to 1.3 and the fact that = is the order on P:= (D) we have:

pi=(AT){i}={(aa ByeVy: iedr(a, B)} 4.4)
Since D and 0 are the least and greatest element of P, we also have:
Viu={(u,u,D): ueP}| J{(u,v,0): u, ve P}.

To simplify the notation put g(u,u, D):=u and g(u,v,0):=(u,v) for all u,veP and
replace Vy by its image U:=g(Vy)=P?UP (where P2=P x P). Put Q:={aeP: ica}
(=all subsets of D containing i). Using the Tables of 4.1.10 and recalling that
uvu =unt’ and 0=D we obtain:

g(p)=(P*x P)u (@ x Q)U((P x Q) X P)U(P x(Q x P)). (4.5)

Thus g(p;) consists of (i) a clique (=complete graph including all loops) on P2, (ii) a
clique on Q (iii) all arcs (= oriented edges) going from the vertices of P x Q (members
of P?) to the vertices of P, and (iv) all arcs from the vertices of P to the vertices from
Q x P (members of P?).

Example 4.2.2. Let D={1} (i.e. our a relational system is just a binary relation p,).
Then P={0, {1}}, 0={{1}} and p, is displayed in Fig. 1.

The translation of Theorem 4.1.13 to relations (in terms of relational homomor-
phisms, embeddings, products, etc.) yields the following theorem.

Theorem 4.2.3. Every binary relational system of type D embeds into a power of Up.
Moreover, the absolute retracts and the injectives (with respects to embeddings) as well
as the central relational systems and the retracts of powers of Uy coincide.

Remark 4.2.4. Theorem 4.2.3 extends to m-ary relational systems, but so far the
corresponding Up has been obtained by ad hoc and technical constructions (see
[18,20]) and we do not know whether metric ideas and Heyting algebra can yield
a more transparent construction.

Certain Heyting substructures of ¥y lead to subclasses of S, satisfying the analogs
of Theorems 4.1.11 and 4.1.13. For V'=(g (D), =) this producés interesting classes of
relational systems. Some of them have already been studied, or are well known.
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Fig. 1.

For example, V*y:=(VxV x{1}){J{(0,0,0)} is obviously a subsemigroup of
Vg, +) (ie. closed under +) and 0:=(0,0,0) its neutral element. It is also closed
under ~ and obviously a Heyting algebra in the induced order. Consider a binary
V —space (4, 6) such that (A4, 6*), defined by (4.2) and (4.3) in 4.1.6—4.1.7 happens to be
a Vii-space (i.e. all values of 6* are in V). Obviously for all xe 4 we have d(x, x)=0
(where 0 is the least element of V). In the particular case of V:=( (D) =) the binary
spaces correspond to relational D-systems of reflexive binary relations. Proceedings as
in 4.2.1 for every ie D we construct the binary relation

pi=(P? x PHu{(0,0)} ({00} x(@x P (P x @) x {0’}

or P?{ J{0'} where again P:=g(D) and Q:={aeP:ica}. For D={1} (ie. a single
binary reflexive relation) the lattice V}; and p, are indicated on the upper right corner
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Fig. 2.

of Fig. 2. For the special case of relational systems consisting of binary reflexive
relations (or, equivalently, for (4, 8) satisfying é(x, y)=0 if and only if x=y) a similar
approach is explored in [13].

Symmetry is another important property of binary relations. In Fig. 2 the four
possible cases of the lattice and p; for a single binary relation (with respect to
symmetry and reflexivity) are displayed. For example, every reflexive and symmetric
binary relation (a graph with all loops) is isomorphic to an induced subgraph of
a suitable power of the graph with 2 consecutive edges and 3 loops (in the left upper
corner of Fig. 2).

4.3. Automata

4.3.1. Let A be a fixed set called an alphabet. The elements a, b, ... of A are letters and
finite sequences of letters are words. The empty word is denoted by 0. The word
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a=daga, -+ a,— 1 has length £(a):=n (and £(0) :=0). Denote by A" the set of all words of
length n, next put A*={ J;2, 4" and identify A* with A. For two words r=rory ---r,_;
and s=s¢5; --- 5,1 denote by r + s the concatenationrgry ---r,- 1508y -+ S~y Of r and
s {we prefer this notation instead of the more natural 7-s). Clearly {(A*; +) is
a monoid; in fact it is the so called free monoid generated by A. A language is a subset of
A*. Clearly, the operation + may be extended to the set L:= g (A*) of languages by
setting X + Y:={x+y: xe X, ye Y} for all X, Y= 4* (Note that X + } =0+ X =@ while
X+{0}={0}+ X=X for all X< A4*). Let x—x be a (fixed) involutive bijection of
A (ie. X =x for all xeA). Put O:=0 and for n>0 and for a=aqa,---a,_,€A* put
A:=0y_ 1@y, dg. Clearly r+s=5+7 for all r,se 4* For X € A* set X :={X: xe X }.
Clearly ~ is an order automorphism of (L, ) and + is an ordered monoid with
respect to the complete lattice L, =(L, =) (where A* and § are the least and greatest
elements). Moreover, we have full distributivity:

X+ A X=X+ Xi= X+X)=A\ (X+X))

iel iel iel iel

and so the following holds.
Fact 1. L:=<L, 2, +,{0}, — is an involutive Heyting algebra.

4.3.2. Classically a non-deterministic automaton over A is a quadruple A={Q,7T,LF)
where Q is a set called the set of states, I = Q and F < Q are the sets of initial and final
states and T=Q x A x Q is the set of transitions. The language L(A) accepted by Q is
the set of ag -+ a,-,€A4" for which there exist poel, py,...,p,— €0, p,€F such that
(pi,a;,pi+1)eT for i=0,...,n—1. For example, the empty word 0O belongs to L(A)
exactly if InF#0. For q,¢g'eQ put A, ,:=<0Q,T,{q},{q'}> (ie. I={q} and F:=={q'})
and consider L(4,, ) as a ‘distance’ from q to g’ (given T'). Call the pair Q={Q, T)
a transition system over A. To ac A we may associate the binary relation

Pa={,q) (g.a,4)eT}

on Q. (There is also the relation pn={(g,q), ge@}). To Q associate the binary
relational system Qp:=(Q, (p.: acA)) of type A. We can define the category of
transition systems over A whose objects are the transition systems over 4 and whose
morphisms are defined by Hom(Q, Q')=Hom(Qpg, Q%) (where the latter are in the
category of binary relational systems of type A).

We have seen in 1.3.3 how to turn a binary relational system of type 4 over @ into
a binary space (Q, ) over ¥:=(@(A), 2). In our situation for distinct ¢,q'€Q we have
concretely 8(g,q'):={acA: (x,a,y)eT} (i.e. 5(q.q') is the set of letters permitting
a direct transition from the state q to the state ¢'). As noted above, for every geQ we
have

8(¢,q):={0}J{aeA: (¢.a,q)eT}. 4.6)
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Motivated by (4.6) we put AS*:={0}| J4 (considering O as an element). We intro-
duce a particular binary operation + on @(A<?') as follows. Let X, X, =A<

(1) f OeXynX, put Xo+X; =X,uX,.(2) If 0eX;\ X, _; for some ie{0,1} put
Xo+ X=X, +Xo=X,_; B) If 0¢X,0X, put Xo+X,:=0. We show that the
structure thus obtained has the required properties.

Lemma 4.3.3. U, :=(p(4A%"), 2, +,{0}) is an ordered commutative monoid.
Proof. (1) Clearly + is commutative. (2) To prove associativity it suffices to show:

Claim. Let X,Y,Z< AS'. Then W:=(X + Y)+ Z #0 if and only if G belongs to at least
two of X,Y,Z. If this is the case, then W=X0UYUZ whenever DeXNYNZ while
otherwise W equals to the one of X, Y,Z not containing 0.

Proof of the claim. Note that for U, V<= A< we have 0eU+ VesQeUNV.

(=) Let W:=(X+Y)+Z#0. If oW then Oe(X+Y)nZ and so OeXnYNZ.
Thus let O¢ W. If W=Z then 0e(X + Y)\Z and 0e(XAY)\ Z. Finally let W=X +Y.
Then DeZ\(X+Y). As X+ Y=W#0, we have either 0eX\Y and W=Y or
CDeY\X and W=X. Note that we also verified the second part of the claim.

(<) If DeXNYNZ clearly W=XUYUZ #0. In the other 3 cases the sole set not
containing O dominates the sum in W. [

From the commutativity and the claim above, clearly (X + Y)+Z and X +(Y+2)
are equal.

(3) Note {0} + X =X regardless whether OeX or O¢X.

(4) To verify the isotony, let X, ¥,Z< A<! and X2 Y. To verify X + Z2 Y+ Z we
have 4 cases. (a) There is nothing to prove if Y+Z=0 (b) If OeYnZ then
O0eXnZ and X+Z=XuZ2YuZ=Y+Z. (c) If 0e¥Y\Z then OeX\Z and
X+Z=Z=Y+Z. (d) Finally if 0eZ\Y, then either 0€Z\X and X+Z=
X2Y=Y+Z or 0eXnZ and X+Z=XuZ2Y=Y+Z. This proves Lemma
433. O

Consider a binary space (E, d) over U,. The axiom (d1): d(x, y) <0<>x =y translates
into Ded(x, yye>x =y. We show that (d1) implies the A-inequality (d2). Suppose (d2)
does not hold for some x, y, zeE. Then &:=d(x, z)+d(z, y) #0 (since § is the greatest
element of U,) and so Oed(x,z) or Oed(z,y) proving x=z or z=y. If x=z#y then
D¢d(z,y) and e=d(z, y)=d(x, y), giving a contradiction since we supposed that (d2)
does not hold. The same argument applies if x#z=y. Finally, if x=y=2z then
Oed(x, z)nd(z, y) and e=d(x, z)ud(z,y)=d(x, y), giving again a contradiction.

To (E, d) satisfying (d1) associate the transition system (E, g;) where

&4 = {(X, a, y) T X, yEE, aEd(X, y)ﬂA},
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conversely, to every transition system (E,¢) assign the binary space (E,J.) over
U, where for all x,yeE, x#y we put:

3y(x, y)i={aeA: (x,a,y)ee}, 6,(x,x):={0}| J{aeA: (x,a,x)e¢}. 4.7)

Let ~ be an involution on A. We can extend it to 4! by setting O = 0 and also to
@ (AS1) (by setting X :={x: xe X} for all X =4<"). With this involution the above
U, is an involutive Heyting algebra (to check X+ U,-E, X;= U,-e,(X-i-X,-) we have to
distinguish four cases according to DeX and JeX;). A transition system (E,¢) is
called selfdual if (x,a, y)ce<>(y,a, x) holds for all x,yeE and aeA. For example, if
|A]=1 then a selfdual automaton can be viewed as a binary symmetric relation (i.e.
a graph). For | 4]=2 a self dual automaton is essentially a binary relation. For a self
dual automaton (E, ¢) the binary space §, introduced above is a metric space over
U, [as it satisfies both (d1) and (d3)].

We can make a transition system (E, £) over A into a selfdual one. For this it suffices
to duplicate the alphabet A. To each letter ac A4 associate a new letter a’ so that a +—a’
is a bijection from A onto A’ :={a": ac A} where 4 and A’ are disjoint. Now it suffices
to put B:=AuUA', set d:=da’, @ :=a for all aeA4 and finally put £:={(y, 4, x): (x, a, y)e€}
and ¢ :=gué The automaton (E,¢') is clearly self-dual and so (E,J,) is a metric
space over Ug.

The approach outlined in this section is solely based on the transition graph of an
automaton, while the theory of automata commonly concentrates on a study of the
language accepted by an automaton. We deal with the latter aspect in the next
paragraph.

4.34. Let A be an alphabet, let ~ be an involution on A4 and let (E, ¢) be a transition
system over 4. For x, ye E, denote by d,(x, y) the language accepted by the automaton
(E, & {x},{y}) (having a single initial state x and a single final state y). Denote by J, the
map associated with & (defined in (4.7)).

Fact 1. (E,d,) is a binary space on L 4 and d, is the largest map d: E x E— L , satisfying:
(D1) d(x,y)<0if and only if x=y;,
(D2) d(x, y)<d(x,z)+d(z, y)
L) d(x,y)<Oe(x, y);

for all x,y,zeE. If, moreover, (E, ¢) is self dual then d, satisfies:

(D3) de(x, y)=d.(¥, %),
for all x, yeE, and thus (E,d,) is an L 4-metric space.

(Recall that L ,, the family of subsets of A*, is ordered by the reversed inclusion and
that + denotes the concatenation, cf. 4.3.1.)

Proof. Observe that:

de(xa )’)= U {65([’0, p1)+ +55(Pn~1’Pn)'-
”<waP1’~--ypn—1€EaX=P0a y=p,,} (48)
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We check that d, satisfies (L), (D1), (D2) and (D3). The inequality (L) follows
immediately from (4.8) (for n=1). For (D1) observe that d,(x, y) <0 implies that there
exist n<w, po, ..., Pa€E, po=Xx, p,=y such that §,(p;, p;+,)={3} for all i<n. By the

definition of 5 thic imnlieg n for all i<y and thus y=v Caonversaly for evervy
NIV LALRAVAVIL UL Ve LRI llllyll\iﬂ l.l _l,ll+1 AVLI All 7 dlivd uiavuo A .y- \/UL‘VMIQ\JIJ 1v1 \IV\IIJ

xeE we have 0€ed,(x, x) =d,(x, x) and so d,(x,x)<0. To prove (D2) let x, y,zeE.
We have

do(x, y) < /\{Z 0c(PiDiv 1)+ Y, 0.4, q54+1) <0, m<aw,

i<n j<m
DPos--->Pn> 490> -~-,qm€E’ Po=X, pp=4q0=2, Qm=Y}

Now L, being Heyting, the distributivity guarantees that the right-hand side equals
d.(x, z)+d,(z, ).

Finally, if (E, ¢) is selfdual then §,(x, y)=4,(x, y) and so d,(x, y)=d,(x, y).

Let d:ExE—L, satisfy (D1), (D2) and (L) From (D2) we deduce that
dA(Po, Pu) <Y i< d(pi, pis 1) fOr Py, ..., p,€ E. From this and (L) it follows that for x, yeE
we have

d(X,y)S_Z d(Pi,Pi+1)<Z Ou(pi,pi+1) forall po,...,p.€E
such that po=x and p,=y. It follows that d(x,y)<d,(x,y) for all (x,y)eE and so
d<d, O

Fact 2. A binary space (E,d) over L, is of the form (E,d,) for some transition system
(E, &) if and only if d satisfies the following convexity condition:

(D4) If u,veA*, x, yeE, and d(x,y)<{u}+ {v} then d(x,z)<{u} and d(z,y)<{v} for
some zeE.

Proof. First d, satisfies (D4). Indeed, let x, yeE, u=uo -+ t,— and v=vqy ---v,,—1 be
such that d,(x,y)<{u}+{v}. Since {u}+{v}={u+v}, we have u+ved,(x,y). Thus
there are pq, ..., Pus+ m€E such that x=py, y=pa+m and (p;, u;, pi+1)ce for all i<n and
(Pn+j» Uj> Pn+ j+1)€€ for j<m. Setting z:=p, we have ued,(x,z) and ved,(z, y) proving
d,(x,z) < {u} and d(z, y) < {v}. Conversely, let d satisfy the condition (D4); let & be such
that &.(x, y)=d(x, y)nA='. We prove that d,=d. Since d(x, y)<J,(x, y) the previous
fact shows that d<d,. For the converse d, <d, we prove by induction on the length of
a word a that d(x, y) < {a} implies d,(x, y) < {a}. This is clear for words of length 0 and
1.Leta=aqy - a,e A*. If d(x, y) < {a} then, since a=ay -~ a, -1 + 4, the condition (D4)
guarantees that d(a,z)<{ao --- a,—, } and d(z, y)<{a,} for some ze E. From the induc-
tion hypothesis, d.(a, z)<{do ---a,-1 } and by the definition of d also J.(z, y) < {a.}.
From the A-inequality we get

ds(x9 y)Sde(X, Z)+d5(Z, ,V)Sde(x, Z)+55(Z, y)S {aO et Qp_y } + {an} = {aO an}

proving the induction step and hence our claim. O
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Fact 3. Let (E,¢) and (E',¢') be two transition systems over A. The following are
equivalent for f:E—E’:
(1) f is a transition system morphism from (E, ) into (E',¢'),
(ii) f'is a contraction from (E,d,) into (E',d,),
(iit) fis a contraction from (E,d,) into (E',d,).

Proof. (i)« (ii) This was already indicated in 4.3.2. As we have seen above,
3.(x,y) =A% v d (x,y) holds for all x, yeE.
(ii) = (iii) If f satisfies (ii) then,

de'(f(x)’f(y))siz 55’(f(pi)’f(pi+l)): n<w,po,... 7pneEs Po=2X, pn=y}

i<n

<{ Z 5£(pi’pi+1): n<m, po, .. apneE’ Po=2X, pn=y}=ds(x’y)'

(ii)) = (i) Let fsatisfy (iii). Then,

S (f () f(M) =A% nde (f(x), f(M) 245 d(x, y)=0(x, ). O

Corollary 4.3.5. (i) The categories AT 4 and AT 3 consisting of automata and of selfdual
automata on A and equipped with the automaton morphisms are full subcategories of the
category of binary spaces over L.

(ii) The category AT, is a full subcategory of the category of metric spaces over
Lp where B=AUA' and A’ is a copy of A. In particular, the product of automata
corresponds to the product of spaces with the sup-distance.

Proof. The first statement is clear. For the second, duplicate 4 as indicated in 4.3.4
and on B=AuA’ define ~ by setting @a=da’, @ =a. Clearly AT, and ATy are, as
categories, identical. Now, apply the first statement. I

Fact 4. Let A be an alphabet with an involution ~. Let L(A*):=(P(A*), %,) be the
transition system over A defined by L, ={(X,0,Y): X2Y+{da}, Y2X+{a},
X,YeL,,acA}. Denote by dy, the corresponding distance and by d;, the distance
associated to the Heyting algebra L,=(gp(A*), 2, +, —). Then,

04X, Y)=d, (X, Y)NAS! for all X, YeL,; in particular d, ,<dg,.

Proof. Let aedy (X, Y). Then, according to the definition of #,, either =0, (and
X=Y)oraeAand X2Y+{a}and Y=2X + {a}. In the first case, since X = Y we have
Oed, (X, Y)nA<; in the second case the two inequalities mean that d, (X, Y) < {a};
that is aed, (X, Y). The converse is similar.

Since dg, is the largest distance satisfying do, <4, it follows that d, ,<d,,. O
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F. Saidane and the first author have identified a subset D, of #(A4*) with the
foliowing properties: the distance induced by d;, on D, coincide with the distance
associated with the transition system D, induced by L, on D,; moreover, every
involutive transition system embeds isometrically into some power of D, (see

F. Saidane, Graphes et Langages: une approche métrique, Thése, n° 206-91, Lyon,
November 1991).

4.4. Sequential machines
4.4.1. In the sequel the alphabet A is a fixed non-singleton set and ¢ a fixed indecom-

posable ordinal number (that is one satisfying 7+ &= ¢ for all T < ¢&; thus for example
w is such ordinal). Denote by B the set A° (of all maps from &= {r: 1< ¢} into A4). For

n<w an n-ary operation f on B is a retrospective if for all by, ..., b,eB the value
¢=f(by,...,b,) is such that for each 1<¢ the restriction ¢|; depends at most on
bile, ... bal.. The first case, and perhaps the most interesting, is the one with {=w.

We may associate to f a black box consuming n infinite tapes and producing a
single infinite tape. On the ith input tape is the infinite sequence
hi=(b{,bi,...>(i=1,...,n) while the output tape at the (discrete) time 7 carries the
finite sequence {c¢g,¢q,...,¢,—1 - At the time t the box reads (or swallows) the
symbols b1, ..., b7 The machine is myopic in the sense that at the time t it may react
only to the part b}, ..., b3, ...,bL, ... b" already read (or swallowed). In other words,
the machine is no oracle and so it is completely unaware what it will read (or swallow)
in the future. Thus, if the input sequences b* and d* have identical initial segments of
length t(i=1,...,n) then the two output sequences é=f(by,....h,) and
&:=f(dy,...,d,) also agree on the first t terms. For A4 finite and {=w the unary
retrospectives were introduced by Raney [22] (cf. [11, Section 4.7]).

4.4.2. For 1<¢, peA® and %eB:=A* denote by j-% the map h defined by setting
h(4):=p(A) for A<t and h(t + A):=%(4)for all A < £ (here we need the fact that 14+ &=¢
for all 1< ¢). To an n-ary retrospective fon B, t<¢, pt, ..., p"e A%, n={p',...,p">
assign p=f"e 4" and an n-ary retrospective f, on B so that

fulPY-RY PR =P SR, LR 4.9)

holds for all X!,...,%"¢B. Note that both =f" and f, are unique (by virtue of the
definition of a retrospective). Further let Q, denote the set of all f,; obtained in this
way. Note that the cardinality of Q, is at most,

a=0q.¢= ), |47
t<§
(where Y is the cardinal sum). For £ = clearly o, , =max (¥, | 4|) and 50 o4}, , =N,
for |A|<N,. In 4.4.3-4.4.7 we consider only the case £=w. As usual, XeB:=A4% is
interpreted as an w-sequence {Xxg,Xy,...» over 4, a notation used throughout
443-44.7.
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4.4.3. Following the ideas from [8] we show that for {=w a retrospective may be
interpreted as a (possibility infinite) initial deterministic Mealy automaton (IDMA for
short). As usual, an IDMA is given by a sixtuple,

M=<Ia0’Qa5,/Lq0> (410)

where the input and output alphabets I and O and the set of states Q are non-empty
sets, the initial state qo is an element of Q and the transition function 6 and output
function Amap I x Q into Q and O, respectively. In the sequel we assume that I = 4" for
some positive integer n and O = 4 (i.e. M has n inputs and a single output that all work
over the same alphabet A) and refer to M as an n-ary IDMA over A. Such an IDMA
realizes an n-ary operation f on B:=A® provided for all %,,...,X,eB the sequence
J=f(%!, ..., X") satisfies

Ve=M(X1, ..., X1, qo) (4.11)
for all t<w where ¢, is defined inductively by setting
Gm+17=0((Xms > XT); ) (4.12)

for all m <. (In the sequel we shorten the right-hand side of (4.11) to A(x},...,x%,q,)
and similarly for (4.12)). We have the following.

Lemma 4.4.4. An n-ary operation f on B:=A% is a retrospective if and only if it is
realized by an n-ary IDM A over A with at most a:=max(N,,|A4|) states.

Proof. (=) Let f be a retrospective. Put M :={A" A4,0,0,4, f > where O, has been
described in 4.4.2 and the transition function § and output function A are defined as
follows. Let a=<ay,...,a,y€A" and keQ,. By the definition k=f, for some
n={p',...,p"> where p!,...,p"eA* for some O<t<w. For i=1,...,n denote by
r* the element {p’,a;>eA** ! and put n':={r!,...,r">. Let f"and f™ be the elements
of A*and A**! from (4.9). From the definition of retrospective we have f™ =f"-a for
a unique ae A. Now put

Sa,k)y=fy,  Mak)=a (4.13)

(where again f,.€Q; is determined by (4.9)).
A straight-forward check shows that (4.13) does not depend on our choice of « (in
k=f,) and so it defines an n-ary IDMA over A. Observe that this IDMA realizes f.
{<=) Itis easy to verify that every n-ary IDMA over A realizes an n-ary retrospective
over B:=4%. [

4.4.5. The structural theory of automata studies the construction of new automata
from a given set M ={M;: iel} of IDMA’s over A. The M/ s may be seen as small
IDMA s available on the market (each in potentially unlimited quantity of copies). The
copies of these IDMASs serve as building blocks for a net of IDMAs which constitutes
a new IDMA.
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In this paper we limit ourselves to feedback-free (i.e. tree-like) nets. Although
feedbacks largely enhance the construction capability, already their definition is based
on various assumptions concerning real time functioning. This and the technical
difficulties in feedback handling largely exceed the framework of this paper. More-
over, the feedback-free constructions directly translate into universal algebra permit-
ting the application of clone techniques.

4.4.6. Put «:=max(Ny,|A|) and denote by I, the set of all IDMA’s of type (4.10) over
A with |Q] <« (i.e. with at most « states). For a positive integer n denote by I‘P the set
of all Mel, with exactly n inputs. To formalize the building of tree-like nets, we
introduce Mal’tsev type operations (cf. [16]) on I,. Let

M=<AM,A,Q,5,/LQO>, N=<An9AaQ’75,,llaq(,)>

(where 6 and Amap A™ x Q into Q and A and ¢’ and A’ map A" x Q' into Q' and A’). Put
r:=m+n—1 and denote by

M N=( A%, 4,076, 4,45
the IDMA obtained by joining the output of N to the first input of M. It is easy to see
that we may take Q" :=Q x @', g5=(q0,90) and define 3" and A" by setting
0"y 5a,,4,9):=08(0"(ay, .-+ n,q ), Qus1s--»Gps q),
Alay,...,a,,4,9)=A0"(a1,...,n,q), Apt15--,r, G)

for all ay,...,a,€A, ¢'eQ and geQ. The IDMAs {M, tM and AM are defined in an
analogous fashion. Finally eel9 connects the first input directly to the output. In
this way we obtain the algebra

_I.A:=<IA; *7CaT9A9e%>

(of type (2,1,1,1,0)).

For an indecomposable ordinal ¢ denote by 4 the set of all retrospectives on
B:= A%. The composition of retrospectives from S% coincides with the above composi-
tion of the corresponding IDMAs. This is stated in the following lemma whose proof
1s omitted.

Lemma 4.4.7. The map ¢:I,—S% which to each Mel , assigns the retrospective
realized by M is a homomorphism from I 4 into {8%; *,{, 1,4,e2>.

The following subclones of S5 are determined by the cardinalities of Q ¢ (the sets of
states of the corresponding IDMA if {=w). For an infinite cardinal x put

Tyee={feS5: 10, <x}.
We have the following proposition.

Proposition 4.4.8. For every infinite cardinal k the set T,y is a subclone of s5.
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Proof. Put 7:=T,,. Let feT be n-ary and geT m-ary. We show that Q,, ={(Qy).
Indeed, let keQ,,. According to 4.2 we have k=({f), for some n= {pt,...,p"> where
Pl ..., p"e A% for some O<t<¢. Put w':=<p%,...,p" p'). Then for all X,...,X"eB
from (4.9) we obtain:

(Cf)n(Cf)n(ils 952,!):(;]{)(;)12'19apngn)zf(ﬁzia713"’2”,51 )‘El)
=f" (R XN R =) (RS R R,

Comparing the first and last part we get k=({f),={(f,)€{(Q) proving the above
assertion. Now,

101 <IL(Q))I<IQs <K

(actually, the first two inequalities are equalities) proving {feT. The proof that
Q.,<1(Qs) is quite similar. In an analogous way for n>1 and ==
(P, P> with pl L., p" e Al and w'=(pL, P, p% ...,p" ) one can prove
that (4f),=4f, and so again |Q,,|<|4Q,|<|Q| <« proving that AfeT.

It remains to consider h:=f*g. Put r.=m+n—1. Let 0<t<¢, p',...,p"€eA* and
n:={p,...,p">. Put,

' ={p, ... "), ={g" Pt P,

We have the following.

Fa‘:t' (f* g)nzfn’ *(nrr.

Proof of the Fact. Let n:=%',...,%"eB. Put %%:=¢,-(%,...,%™). Then
R h(RY, .. &)=h(pL- %', ..., p"-X)
=f(g(pt-%", ..., p™ &™), pmrL.gmtL | BTRY)
= (g™ gp (R, ..., &™), pmrL. ML BTX")
O’ﬁm+1')’zm+1"“’ﬁr'5€r)
=f". [ X0 %™t X7)
=" (filger(RL, ..., &™), XL %7)

=fn’ '(fn' * gn”)(ila air)s

Il
~
—
Y

)
=<

proving the fact. [

From the fact we get Q,,,<Q,* Q, and finally |Q,,|<|Q,]|Q,| <x*=k (as k is an
infinite cardinal).

Call the clone T'4,x, the clone of finite retrospectives. Clearly it corresponds to the
set of all finite state IDMA’s on 4. For 1<|A4|<¥, the single clone of the form
T 4o different from T q,x, 18 S4=T 40,
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4.49. We describe S:=S¢ in terms of the following ultrametric d on B:= A%, Put
V={+i={x:k<&} and V2 (V; =, A, &) where v A v/ :=min(v,v') is the join for the
order > and £ its least element. For distinct £, jeB put

A%, 7):= N\ {A i<w: R (D)} (4.14)

here again A is the usual inf in the well-ordered set (V, <) and d(%, X)= £ for all XeB.
Thus for distinct X and 7 the value of d(%, #) is the least ordinal on which they differ (as
maps from £ into 4). We have:

Lemma 4.4.10. The above map d is is a V-ultrametric on B.

Proof. Clearly it suffices to verify the A-inequality. Let X,j,ZeB and
vi=d(X,2)<d(Z, 7). Then X(A)=Z(A)=F(4) for all A<v and so d(X,¥)<v. O

For {=w and 4 finite, Csakany and Gecseg [7] (cf. [11, Section 4.7]) used the related
relational metric § defined by setting 8(X%, ):=1/(d(%, §)+ 1) for X+ and 6(%, %) =0.
We relate retrospectives and V-contracting operations.

Theorem 4.4.11. An operation fon B=A%is retrospective if and only if fis contracting
with respect to the above V-ultrametric on B.

Proof. (=) Let %%,...,%"7',...,7"eB. Put
di=f(&, . X", B= (T .. 5", 6= N d(&, §). (4.15)

First consider the case 6=¢. Then d(X% 7')=¢ and consequently %'=j' for all
i=1,...,n. Then fi=7 and d(ii, 5)= ¢ =§ as required. Thus let § <¢. Then (4= Fi(A)
for all A<d. Now f being retrospective, we get d#{(A1)=0(4) for all A< and conse-
quently d(#, §) =.

{<=) Suppose an n-ary operation fon B is d-contracting but not retrospective. Then
there are £1,..., %" 7!, ..., "€ B and 1< & such that (1) = §¥(A) for all 4 <t while @ and
# defined by (4.15) satisfy ii(r) # 8(z). Now d(%', 5') >t for i=1,...,n show that § defined
by (4.15) satisfies 6 >1. On the other hand 7 >d(d, ¥) and, since fis V-contracting, also
d(i1, )= 6 proving 1> 6 and leading to the contradiction 6>1=46. O

The paper [7] (cf. [11, Section 4.7]) deals with the special case |A|=n and
f permutation of B (whereby a contracting fis an isometry). We show that (B, d) is
hyperconvex (cf. 3.3.3).

Proposition 4.4.12. The ultrametric (B,d) is hyperconvex.

Proof. Let x be a cardinal and %'eB and r;eV for all i <x such that for all i,j <k,

AEL %)= A1y, (4.16)
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Define ¢:x—V by setting ¢(i):=r; for all i<k. Since both x and (V, <) are well-
ordered, we may arrange the notation so that ¢ is isotone (i.e. ¢(i)< @(j) whenever
i<j<x). Put 0:=Ker ¢ and let { ¥;:i <4} denote the equivalence classes of 6 (where
A< E+1) and the intervals Y; are arranged so that Y, precedes Y; whenever i <j<4).
For y <A denote y(y) the least element of Y,. We have two cases: (1) Let 4 be an
isolated ordinal. Put Z:=%/ where je Y, , is arbitrary. Now for all i<k from (4.16;;)
we get

d(il,2)=d(x~l,ij)>r‘ A rJ':ri

as r; is the greatest element of {r;;i<x}. Note thatif r;=¢ and ke Y, from (4.16,;)
we get d(X* ) >E A E=¢, whence d(&*, ¥)=¢ and £*=%/ proving that Y,_, is
a singleton and our choice of Z unique. In particular, this happens if 1=£+ 1 (because
then ry 5 =¢).

(2) Let A be a limit ordinal. For each y <A put u,:=r,, and Z,:=%?|, (recall that
y(p) is the first element of the block Y, of 6). We have:

Fact. If y<d <4 then Z;|,=Z,.

Proof. Put i:==p,. By (4.16;;) and the isotony of ¢, we have
dED, 2OV, A py=p, (4.17)

and therefore X’ and %£*® agree on yu, proving the fact.

Let ZeB be such that z{, =2, for all y< 1. In view of the fact above, such Z exists.
Moreover, # is unique whenever A= ¢. It remains to prove that d(%%, £)=r; for all i <.
Let i<k. Then ie Y, for some y <. Put j:=y(y). From i,je ¥, we get r;=r;=p,. Now
from (4.16;;) we get

=r. (4.18)

By the definition of 7 we have d(%/,%)>u,=r;. Combining this with (4.18) and the
A-inequality we get the required d(X',2)>d(X, ¥ Ad(F, )21 A ri=r;. O

Remark 4.4.13. We have also proved: If the set R:=={r;: i<x} is cofinal with & or
contains & then Z is unigue (in particular, this happens for £ =@ whenever R is infinite).

Non-expansive relations were defined in 3.7.9. In our special case we have the
following.

Proposition 4.4.14. Let ¢ be a non-expansive relation for the above V-ultrametric
A=(A,d). Then the clone Polo either equals Pol(d), for some veV or it equals
(Vw<a Pol(d),, for some limit ordinal A<E.

Proof. By Proposition 3.7.13 the clone Polo is of the form ﬂwsw Pol(d),, for
W=imd where § is a V-ultrametric. First we characterize such W.
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Fact. Let W< V. Then W=imd for a V-ultrametric if and only if EeW and |W|> 1.

Proof of the fact. (=) Evident. (<) For w,w'eW put é(w,w):=¢ if w=w' and
o(w,w'):=w A w otherwise. It suffices to prove the A-inequality. Let u,v,w= W.
Taking into account that ¢ is the greatest element of ' we may assume that u,v and
w are pairwise distinct. Then,

ou,)=u AvZuAWwWAWA=0(uw) A 8(w,v).

Note that (d), is the least quivalence on 4 and so Pol(d), is the clone of all operations
on A. We have two cases: (1) U=W\{&} has a greatest element w. Then
Polo=Pol(d), and we are done. (2) U is cofinal with {w: w< A} for a limit ordinal
A< It is easy to see that then Polo equals (), <z Pol(d),. O

References

[1] K.A. Baker and A.F. Pixley, Polynomial interpolation and the Chinese remainder theorem for
algebraic systems, Math. Z. 143 (1975) 165-174.

[2] G. Birkhoff, Lattice Theory, 3rd Ed. Vol. 25, AMS, Colloquium Publ. Providence RI, 1967.

[3] G. Birkhoff and O. Frink, Representation of lattices by sets, Trans. Amer. Math. Soc. 64 (1948)
299-316.

[4] L.M. Blumenthal, Theory and Applications of Distance Geometry (Chelsea Bronx, New York, 1970).

[5] L.M. Blumenthal and K. Menger, Boolean Geometry I, II. Rend. Circ. Mat. Palermo, Ser. II,
Vol. 1 (1952) 343-361.

[6] P.M. Cohn, Universal Algebra (Harper and Row, New York, 1965, 2nd Revised Ed. Reidel,
Dordrecht-Boston-London, 1981).

[7] B. Csakany and F. Gécseg, On the group of automata permutations (Russian), Kibernetika 1965,
No. 5, 14-17, MR 34 # 4071.

[8] W.Dassow, Completeness Problems in the Structural Theory of Automata (Akademie-Verlag, Berlin,
1981).

[9] A.L. Foster, Semi-primal algebras: characterization and normal-decomposition. Math. Z. 99 (1967)
105-116.

[10] A.L. Foster and A. Pixley, Semicategorical algebras. 1. Semi-primal algebras, Math. Z. 83 (1964)
147-169.

[11] F. Gécseg and L. Peak, Algebraic Theory of Automata (Akad. Kiado, Budapest, 1972).

[12] G. Gratzer, Universal Algebra (Van Nostrand, Princeton, 1968; 2nd Ed. Springer, New York, 1979).

[13] E.M. Jawhari, D. Misane and M. Pouzet, Retracts: Graphs and ordered sets from the metric point of
view, in: I. Rival, ed., Combinatorics and Ordered sets, Contemporary Maths Vol. 57 (AMS,
Providence, RI, 1986) 175-226.

[14] K. Kaarli, Compatible function extension property, Algebra Universalis 17 (1983) 200-207.

[15] D. Kelly and W. Trotter, Dimension Theory for Ordered Sets, in: I. Rival, ed., Ordered Sets (Reidel,
Dordrecht-Boston, 1982) 171-211.

[16] A.L. Mal’tsev, lterative algebras and Post varieties (Russian), Algebra i Logika Sem. 5 (1966) No. 2,
5-24. MR 34 # 7424. English translation in: The metamathematics of algebraic systems, Collected
papers 1936-67. Studies in Logic and Foundations of Mathematics, Vol. 66 (North-Holland, Amster-
dam, 1971).

[17] H. MacNeille, Partially ordered sets, Trans. Amer. Math. Soc. 42 (1937) 416-460.

[18] R. Péschel, Shallon-algebras and varieties for graphs and relational systems, Proc. conf. Siebenlehn,
October, 1985.

[19] R. Poschel and L.A. Kaluzhnin, Funktionen und Relationenalgebren, Ein Kapital der Diskreten
Mathematik, (VEB Deutscher Verlag d. Wiss, 1979, Birkhauser Verlag 1979) Math R. Vol. 67.



M. Pouzet, 1.G. Rosenberg [ Discrete Mathematics 130 (1994) 103-169 169

[20] M. Pouzet and I.G. Rosenberg, Embeddings and absolute retracts of relational systems, to appear in
Acta Sci. Math. (Szeged).

[21] A. Quilliot, An application of the Helly property to the partially ordered sets, J. Combin. Theory
Ser. A 35 (1983) 185-198.

[22] G.N. Raney, Sequential functions. J. Assoc. Comp. Machinery 5 (1958) 177-180.

[23] B.A. Romov, Local characterizations of Post algebras, I (Russian), Kibernetika(Kiev), 5 (1976) 38—45.
English translation Cybernetics (1977).

[24] B.A. Romov, Galois correspondence between iterative Post algebras and relations on an infinite set.
(Russian), Kibernetika(Kiev), 3 (1977), 62-64.

[25] LG. Rosenberg, Subalgebra systems of direct powers, Algebra Universalis 8/2 (1978) 221-227.

[26] I.G. Rosenberg, On a Galois connection between algebras and relations and its applications,
Contributions to general algebra, in: H. Kautschitsch, W.B. Miiller, W. Nobauer, eds., Proc.
Klagenfurt Conf. May 25-28, 1978 (Verlag Johannes Heyn, Klagenfurt, 1979) 273-289.

[27] 1.G. Rosenberg and D. Schweigert, Local clones, Elektron. Inf, u. Kybernetik 18 (1982) 7-8, 389-401.

[28] I.G. Rosenberg and L. Szabo, Local completeness 1, Algebra Universalis 18 (1984) 308-326.

[29] L.A. Skornjakov, Elements of Lattice Theory (Russian). (English translation Hindustan, Delhi,
A. Hilger, Bristol, 1977).

[30] L. Szabo, Concrete representation of related structures of universal algebras I, Acta Sci. Math.
(Szeged) 40 (1978) 175-184.

[31] H. Werner, Which partition lattices are congruence lattices, Collog. Math. Soc. J. Bolyai 14 (1974)
483-453.



