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Abstract In this study, an effective and practical, h-version, enrichment mesh generation, and finite
element adaptive procedure for the non-linear solution of problems in continuous media is presented.
Moreover, based on the gradient recovery rule, a general recovery technique is developed tomeasure error
and refine mesh in general finite element solutions. The recovery technique is simple and cost effective
to implement. The technique has been formulated for two dimensional problems by employing triangular
elements. The formulation is consistent with non-linear formulations which iteratively equilibrate the
continuous media problems.

In the present study, in addition to correlating various norms (such as energy norm, L2 norm for stress
and L2 norm for strain), a new norm, namely, deviating stresses norm (called J norm in this study), is also
correlated by the authors to estimate the error rate in the finite element method. Based on the results of
this study, the J norm can be used as a tool to estimate the error rate in the finite element method, and to
determine the ultimate load and the possible failure path in continuous domains. For several numerical
examples, the developed algorithms are demonstrated and the resulting meshes are presented.

© 2012 Sharif University of Technology. Production and hosting by Elsevier B.V.
Open access under CC BY-NC-ND license.
1. Introduction

Since the beginning of modeling physical events by com-
puters, numerical errors have been the main cause of concern.
Numerical and computational errors are the main characteris-
tics of these types of modeling. In the discretization process of
the mechanical behavior of continuous domains into a control-
lable model by differential equations or by integration on com-
puters, it is impossible to place all information in the model. In
addition, most results obtained from classical methods are an
unlimited series, which lead to approximate responses. In such
cases, the finite elementmethod is firmly accepted as one of the
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most powerful general techniques for the numerical solution of
a variety of problems encountered in engineering.

In the finite element method, the continuous domain is di-
vided into simple and smaller geometrical elements, called fi-
nite elements, and the unknown parameters are computed,
with respect to their order of position, by satisfying com-
patibility, fundamental equations and equilibrium equations.
However, there are almost no accessible tools for engineers to
select suitable element sizes and proper solutions. Moreover,
each element size is selected based on expert judgments in such
away that the number of degrees of freedom in continuousme-
dia is occasionally so large that solution by ordinary software
becomes uneconomical or impossible. In the last two decades,
significant advances have been made to overcome the weak-
nesses in the finite elementmethod. One can use adaptive finite
element methods based on recovery methods.

Error estimation in the finite element method primarily
received attention in Rheinboldt and Babuska’s innovativework
in 1978–1983 to solve elliptic boundary value problems [1,2].
In the early 1980s, Demkowicz, Bank and Weiser’s research
on recovery methods resulted in an extensive range of error
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estimators [3]. In the late 1980s, Zhu and Zienkiewicz presented
a simple error estimator and adaptive procedure for practical
engineering analysis [4]. In the early 1990s, the post-processing
of error was established and then was directed to general
problems. Most methods presented during these years are
considered ‘‘recovery-based methods’’. In recovery methods,
using the concept of error norm, the error value is evaluated by
comparison of the finite element approximation gradients and
smoothed the real gradients in each element [5–9].

The other approach was introduced in 1987 by Zienkiewicz
and Zhu, which estimated the error in gradient (or stress)
based norms, simply by obtaining the improved values of
the gradient using several available recovery processes. In the
earliest works, a so called L2 projection and an even simpler
averaging procedure were used, yielding quite acceptable
estimates. However, in 1992, an important step forward was
made by introduction of the Superconvergent Patch Recovery
(SPR) technique by the same authors. As the name of the
technique implies, it makes use of special points in the
finite element model (such as the Gauss quadrature points),
where derivatives of the finite element solutions exhibit
higher accuracy compared to that normally expected [10–12].
In 1997, Boroomand and Zienkiewicz improved the SPR
recovery method to the REP (Recovery by Equilibrium in
Patches) method. This method avoids the specification of
superconvergent points, which in fact do not exist in a number
of families of the finite element (e.g. triangles). The formulation
of REP is simple and is based on using a weighted form
of the equilibrium condition over representative patches of
elements [13,14].

Currently, the post-processing of errors has reached its
maturity and much attention has been focused on developing
new methods and determining their performance scopes. A
large number of studies have been carried out related to the
post-processing of errors to determine the errors in finite
element approximations [15].

In the present study, the authors have used the Von Mises
yield criterion (J norm) in the error estimation process, and the
h-refinement strategy in the adaptive finite element method,
in order to present an efficient simple tool to overcome
weaknesses in the general finite element method. It is given
that in these non-linear solutions, element size selection is
intelligent and rational; furthermore, discretization of the
whole domain is prevented. Hence, the solution operations
suggested in this paper have been reduced to a great extent,
which is recommended for engineering applications. Besides,
based on the method used in this study, it becomes possible to
access failure bond propagation as well as the formation and
failure mechanism type. In addition, using directional error, a
modified h-method (subdivision size, which is a natural way
for most engineers) is presented, which can be applied to
obtain acceptable solution accuracy and simultaneously reduce
computational time.

2. Fundamental equations

An extensive range of boundary value problems, including
all problems of linear elasticity, are characterized by the
following equation:

Lu − b = 0 ≡ STDSu − b = 0 in domain Ω, (1)
and appropriate boundary conditions:
u = ūΓ on Γu, (2)

t = Gσ = GDSu = t̄Γ on Γt , (3)
with ΓuUΓt = Γ , (4)
where:
L = linear differential operator,
S = strain differential operator,
D = elasticity matrix,
b = body forces,
u = exact displacement vector (in elasticity, of course, u
corresponds to a generalized displacement),
σ = exact stress vector,
G = linear differential operator,
t = traction vectors,
Ω = domain,
Γ = boundary of domain,
Γu = part of the boundary where displacement conditions
are specified,
Γt = part of the boundary where traction conditions are
specified,
ūΓ = prescribed displacements on the Γu boundary,
t̄Γ = prescribed tractions on the Γt boundary.

We shall denote by uh the finite element approximation to the
exact solution, u, obtained by standard Galerkin procedure, and
written as:
u ≈ uh = Nū, (5)
the directly computed consistent, stresses, (or gradients) are:
σh = Dεh = DSuh = DSNū = DBū, (6)
where, ū is assigned as the nodal value of the displacements,
N is denoted as the finite element basis functions, and S is
designated as the differential operator which defines the strain
as:
εh = Suh = SNū = Bū, (7)
B is assigned as the strain–displacement matrix, and N is
denoted as the shape functions.

By using the principle of virtual work in a standard FE
manner, the alternative form of equilibrium equations can be
written as:
Kū − f = 0, (8)
where:

K =


Ω

(SN)TD(SN) dΩ =


Ω

BTDB dΩ and B = SN . (9)

In Eq. (8), parameter f represents a ‘force’ vector incorporating
the body forces, b, and the boundary conditions. Parameter f
can be computed as:

f =


Ω

N Tb dΩ +


Γt

N T t dΓ . (10)

After assembling the stiffness matrix of all elements and
forming the nodal forces vector, ū and uh values are calculated
by solving a number of simultaneous equations. The stress of
the finite element approximation is further obtained by the
following equations:
σh = DBū. (11)
The finite element method solutions have several limitations as
follows:
1. Lack of awareness of suitable element size.
2. Lack of awareness of correct solution and error rate.
3. Lack of precise information about displacement provided.
4. Lack of awareness of the value of error made in the process

of discretization.
5. Lack of information about propagation of a possible failure

path.
6. Costly access to the occurrence path of the failure mecha-

nism; this is because the size of elements used are usually
equal, and access to the occurrence path of the failuremech-
anism is highly complex.
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3. Error estimation

Since the finite element method is merely an approximate
method to solve continuous domains accurately, there is con-
stantly a difference between the finite element approximation
and the exact response. Therefore, if uh and σh represent the fi-
nite element approximation and u and σ represent the exact re-
sponses, the error of the finite element approximation, uh, with
respect to the exact solution, u, can be defined as [4]:

e = u − uh. (12)

And the error of the stresses (gradient) is defined as:

eσ = σ − σh. (13)

A point wise definition of error, as given in Eqs. (12) and (13), is
generally difficult to specify, and various integral measures are
more conveniently adopted. One of the most common of such
measures is the ‘energy norm’, written for a general problem
and which, in the specific case of elasticity, is presented as
[5–7]:

∥u∥ =


Ω

uTLu dΩ
1/2

=


Ω

σTD−1σ dΩ
1/2

, (14)

where, Ω is the domain on which the problem is defined and D
is the elasticity matrix. The energy norm of e is written as:

∥e∥ =


Ω

eTLe dΩ
1/2

,

=


Ω

(Se)TD(Se) dΩ
1/2

,

=


Ω

(eε)
TD(eε) dΩ

1/2

,

=


Ω

(σ − σh)
TD−1(σ − σh) dΩ

1/2

. (15)

In the above equations, S is the strain operator and σT and σT
h

vectors are defined as:

σT
=


σx σy σxy


and σT

h =

σxh σyh σxyh


. (16)

Although the absolute value of the energy norm has little
physical meaning, the relative percentage error, e.g;

η =


∥e∥2

∥u∥2 + ∥e∥2

1/2

× 100%, (17)

is more easily interpreted. The percentage error, η, can be de-
terminate for thewhole domain or for the element subdomains.
The local definition is obviously more meaningful.

A more direct measure is the so called L2 norm, which can
be associated with the errors in any quantity. Thus, for the
displacement, u, the L2 norm of the error, e, can be written as:

∥e∥L2 =


Ω

eT edΩ
1/2

, (18)

and for stresses:

∥eσ ∥L2 =


Ω

(eσ )T (eσ ) dΩ
1/2

. (19)

The latter expression differing from the energy norm only by
the weighting, D−1.
Based on the research performed in this area, although
using different norms to estimate the error caused by the finite
element solution generate nearly identical results, the authors
of this paper have attempted to involve yield criteria concepts,
such as von Mises, Tresca, Mohr–Coulomb, and others, in
estimating the error. In this study, in addition to the energy
norm, the J norm,which is derived from theVonMises criterion,
was used as well [16]. The vector, Sσ , is defined in order to
correlate the J norm as below:

ST
σ =


Sx Sy Sxy


. (20)

Sx, Sy, and Sxy are being set in such a way that the result of
ST
σ Sσ , which is (S2

x + S2
y + S2

xy), leads to J2, where J2 is the
second invariant of the stress deviator tensor. For plane stress
conditions, J2 can be computed by the following equations:

J2 =
1
6
[(σx − σy)

2
+ (σy − σz)

2

+ (σz − σx)
2
] + σ 2

xy + σ 2
yz + σ 2

zx

=
1
6
[(σx − σy)

2
+ σ 2

y + σ 2
x ] + σ 2

xy

=
1
6
[σ 2

x + σ 2
y − 2σxσy + σ 2

x + σ 2
y ] + σ 2

xy

=
1
3
(σx − σy)

2
+

1
3
σxσy + σ 2

xy. (21)

According to the last of Expression (21), ST
σ vector can be ad-

justed as:

ST
σ =


(σx − σy)

√
3


1
3
σx · σy


σxy


. (22)

For linear elasticity problems, the J norm and the J norm of e
can be defined as:

∥J∥ =


Ω

ST
σ Sσ dΩ

1/2

, (23)

∥e∥ =


Ω

(Sσ − Sσh)
T (Sσ − Sσh) dΩ

1/2

. (24)

Similarly, the relative percentage error in the J norm is written
as:

η =


∥e∥2

∥J∥2 + ∥e∥2

1/2

× 100%. (25)

Error estimation by Eqs. (17) and (25) is possible only if the ex-
act solutions are available. However, since the exact solutions, u
and σ, are obviously not available in practical computations to
evaluate errors, we seek several practical and effectivemethods
to estimate e in an appropriate norm. An efficient and simple
method to access exact solutions and estimate the error value
is the derivative recovery technique.

Approximate solutions of second-order partial differential
equations by theGalerkin finite elementmethod typically result
in discontinuous derivatives. For example, in elastic solutions,
the displacements are continuous; however, the derivatives of
displacement, stress and strain, are not. The derivative recovery
techniques are motivated by the need to post-process the
results from finite element solutions.

According to the derivative recovery technique, the stress,
σ,can be represented more accurately by a smooth field, σ∗,
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Figure 1: Stress of finite element solution for part of a continuous media.

Figure 2: Smoothed stress by the rule of gradient recovery for part of a
continuous media.

interpolated by continuous shape function, Nσ , and unknown
nodal parameters, σ̄, as:

σ∗
= Nσ · σ̄. (26)

The interpolation functions, Nσ , are used as the best selection
to be of the same order as the shape function, N . Further,
frequently, we have:

Nσ = N ⇒ σ∗
= N · σ̄. (27)

Figures 1 and 2 present the stress of the finite element solution
and smoothed stress by the rule of gradient recovery for part of
a continuous media, respectively.

It is intuitively ‘obvious’ that σ∗ is, in fact, a better ap-
proximation than σh and is used to estimate error eσ (namely,
Eq. (1)), i.e. put

eσ ≈ σ∗
− σh, (28)

to find nodal parameters, σ̄. The error norm for the stress of fi-
nite element approximation and smoothed stresses by the rule
of gradient recovery can be used in the entire domain [16].

F(σ̄) = ⟨σ∗, σh⟩ =


Ω

(σ∗
− σh)

2 dΩ, (29)

F(σ̄) =


Ω

(N σ̄ − σh)
2 dΩ, (30)

∂F(σ̄)/∂σ̄ = 0 ⇒


Ω

N T
· (N σ̄ − σh) dΩ = 0, (31)

Ω

N T
· N σ̄ dΩ =


Ω

N T
· σh dΩ, (32)

Ω

N T
· N dΩ


· σ̄ =


Ω

N T
· σh dΩ. (33)

If Eq. (33) is represented as follows, then:

M · σ̄ = P, (34)

M =


Ω

N T
· N dΩ, (35)
Figure 3: Area coordinates system and nodal points of three-node triangular
element.

P =


Ω

N T
· σh dΩ. (36)

Since the elements used in the present work are three-node tri-
angular elements (see Figure 3), and if the area coordinate sys-
tems without any dimension are selected, displacement shape
functions are computed as follows:

L1 =
A1
A

, L2 =
A2
A

, L3 =
A3
A

, (37)

L1 + L2 + L3 = 1, (38)

N =

L1 L2 L3


, (39)

σh =


σxh
σyh
σxyh


= constant. (40)

Since the nodal stresses, σ̄x, σ̄y and σ̄xy, are independent, calcu-
lations for σ̄x, σ̄y and σ̄xy are carried out separately. Therefore,
using the presented shape functions, matrix [M] and vector {P}

can be computed by the following equations:

[M]i =

2 1 1
1 2 1
1 1 2


×

Ai
12

, (41)

{Px}i =

1
1
1


× σxh ×

Ai
3

, (42)


Py


i =

1
1
1


× σyh ×

Ai
3

, (43)


Pxy


i =

1
1
1


× σxyh ×

Ai
3

. (44)

After forming matrix [M]i and vectors {Px}i, {Py}i and {Pxy}i for
all elements and adding them together, σ̄x, σ̄y and σ̄xy are calcu-
lated for all nodes by solving several simultaneous equations.

[M] · {σ̄x} = {Px} ⇒ {σ̄x} = [M]−1
· {Px} , (45)

[M] ·

σ̄y


=


Py


⇒


σ̄y


= [M]−1

·

Py


, (46)

[M] ·

σ̄xy


=


Pxy


⇒


σ̄xy


= [M]−1

·

Pxy


. (47)

It has been noted that, in practice, the smoothed approximation
of the stress is generally more accurate than σh. The error esti-
mator is obtained simply by arguing that substituting smoothed
stress σ∗ for true stress σ in Eqs. (14) and (15) should yield a
reasonable approximation to the error in the energy norm. In
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fact, this has been observed to be the case in practice, and exam-
ples illustrating the effectiveness of this process are presented
in Section 6. Therefore, the error value in the energy norm is
computed based on the rule of gradient recovery as follows:u∗

 =


Ω

σ∗TD−1σ∗ dΩ
1/2

, (48)

e∗
 =


Ω

(σ∗
− σh)

TD−1(σ∗
− σh) dΩ

1/2

, (49)

and the relative percentage error can be written as:

η =


∥e∗∥

2

∥u∗∥
2
+ ∥e∗∥

2

1/2

× 100%. (50)

Therefore, the error value in the J norm can be computed as fol-
lows:J∗ =


Ω

S∗

σ
T S∗

σ dΩ
1/2

, (51)

e∗

J

 =


Ω

(S∗

σ − Sσh)
T (S∗

σ − Sσh) dΩ
1/2

, (52)

and the relative percentage error in the J norm can be expressed
as:

η =

 e∗

J

2

∥J∗∥2
+

e∗

J

2

1/2

× 100%, (53)

where S∗
σ and Sσh are calculated as Eq. (22).

Hence, it is required that after the final analysis is completed,
the condition:
η < η̄, (54)
should be satisfied for the whole domain, where η̄ is the
maximum permissible error. In practical conditions, η̄ is
considered to be less than 10%. If η > η̄, the error is more than
the permissible error and mesh generation ought to be refined
to obtain an acceptable response.

4. Error estimation for each element and refinement
strategy

In the previous section, the overall relative percentage
error (η) of the entire domain was computed. To reach the
permissible error, the first solution which comes to mind is
to make all elements smaller, until η < η̄. In addition to the
aforementioned weaknesses, this solution is not economical
and makes the problem highly intricate to solve. However,
another solution that is more efficient and does not make
the problem too large is discretization of the elements locally.
This means that the elements with over permissible errors
are refined, but the elements with permissible errors remain
unchanged. This method is known as Adaptive Refinement.
However, this method requires a parameter by which the local
error of all elements should be computed. This parameter is
known as ξi.

Although the relative percentage error written by Eqs. (50)
and (53) are defined on the whole domain, it is noteworthy
that the square of each can be obtained by summing element
contributions. Thus:e∗

2
=

m
i=1

e∗

i

2
, (55)

where i represents an element contribution, andm is designated
the total element number. In fact, for an ‘optimal’ mesh, we
generally try to equate the contributions to this square of the
norm for all elements [4–12]. Thus, in the J norm, the following
equations can be written:e∗

2
= m ·

e∗

i

2
, (56)

η =


m ·

e∗

i

2

∥J∗∥2
+ ∥e∗∥

2

1/2

× 100%, (57)

η = η̄ ⇒
e∗

i

 =
e∗

per

 , (58)

where
e∗

per

 denotes the permissible error norm for each
element. If Eqs. (57) and (58) are combined, then the following
equations are obtained:

(η̄)2 =
m ·

e∗
per

2

∥J∗∥2
+ ∥e∗∥

2 , (59)

e∗

per

 =
η̄

√
m

J∗2
+

e∗
2

1/2
. (60)

According to the definition, ratio ξi is as follows:

ξi =

e∗

i

e∗
per

 . (61)

Therefore, as a criterion, if ξi < 1, the error of the i th element
is acceptable, but if ξi > 1, the error of the i th element is over
permissible.

In general, local refinement operations of mesh generation
are carried out based on one of the following methods:
1. h-refinement (which achieves accuracy by refining themesh

using a given type of finite element); the first of these
methods is element subdivision (enrichment);

2. p-refinement (which increases the order of polynomial trial
function approximation in a pre-defined element subdivi-
sion);

3. h–p-refinement (which is the proper combination of h-and
p-refinements);

The 2nd and 3rd aforementioned procedures have particular
advantages in many (elliptic) situations when combined with
a hierarchic formulation. The efficiency of these procedures
involves, generally, abandoning a standard finite element
structure. Consequently, in the present study, h-refinement
and enrichment mesh generation is used such that the mesh
generation structure is maintained during the refinement
process and refinement operations are carried out merely over
the elements with higher errors.

Mesh generation includes two interrelated generation tasks
of well-placed nodes on the boundary and in the interior
of the domain, and the triangulation of these nodes. As the
distribution of the nodes clearly influences the nature of the
mesh obtained, the placement of these nodes is a significant
step in this algorithm.

The problem of placing nodes in a domain to obtain a
satisfactory triangular mesh can be approached in a number of
ways. In this study, the nodes are conveniently divided into two
disjoint sets, namely, boundary nodes and interior nodes. The
boundary nodes are those which lie on the outside boundary of
the object domain and on the boundaries of any interior holes.
The interior nodes are those lying inside the domain.

In this research, the major steps involved in adaptive mesh
generation are:
(a) At first, the problem is analyzed using the finite element

method and by the three-node triangular element.



1038 A. Asghari, R. Mirghaderi / Scientia Iranica, Transactions A: Civil Engineering 19 (2012) 1033–1043
Figure 4: Placement of additional node for mesh refinement.

(b) Overall relative error (η) and local relative error (ξi) are
calculated based on equations introduced in the previous
sections.

(c) The elements with ξi > 1 are divided into two elements,
creating an additional node in themiddle of the longer side.
In this step, due to the additional node in the middle of the
longest side of the triangular element, the other triangular
element connected to the longest side can compulsorily be
divided into two elements (see Figure 4).

(d) The new refined mesh is analyzed again by the finite
element method and step (b) is repeated. This process is
continued until ξi < 1 for all elements.

(e) When ξi < 1 for all elements, the solution is stopped and
all internal actions can be calculated by analyzing the last
refined mesh generation.

By using enrichment mesh generation during the h-refinement
process, the following points have been considered:

1. In parametric studies based on the step by step method
(from step (a) to step (e)), it was observed that several
elements have no suitable sizes due to their division into
smaller ones. Therefore, a criterion was added to the
criterion of division in step (c). According to this criterion,
the elements, in which the ratio of the longest side to the
height is larger than a constant number (for example 6), are
also divided into two elements.

2. At the beginning of the solution in the h-refinement process,
using enrichment mesh generation, if the sizes of the
elements are not selected properly (which mostly occurs),
ξ in some elements, can become much smaller than one.
Moreover, in several others, it reaches near one and, in the
rest, much larger than one (for example larger than 15).
Hence, in the criterion of division, it was predicted that in
the first analysis, ξ is compared with a larger number than
one to distribute the elements uniformly and, as the number
of analyses increases, ξ tends to reach one, such that ξ for all
elements should be smaller than one in the last analysis. The
above method is more efficient in parametric studies.

3. As it was noted in step (c), due to an extra node in themiddle
of the longest side of an element, several other elements can
be compulsorily divided into two elements. In a particular
situation, although an element does not need to be divided
in itself, it can be divided into smaller elements because
of its connected elements. For instance, in Figure 5, it is
supposed that element two does not require to be divided,
but elements one and three are required to be refined. In
addition, it is supposed that the longest side of elements one
and three is attached to the second element. Thus, based on
step (c), although element twodoes not need to be divided, it
should be divided into three elements, due to elements one
and three, which are attached to it.
Figure 5: The compulsory division of the element number 2 into more than
two elements in the mesh refinement process.

Figure 6: Restraining of the extra boundary node’s freedom in the mesh
refinement process.

4. If two out of three nodes of a three-node triangular element
are restrained and its ξ is larger than one, it should be
considered that if the extra node is in the middle of the
side connected to restrained nodes, the degrees of freedom
of the defined extra node should further be restrained (see
Figure 6).

5. Determination of ultimate load and possible failure path
using adaptive refinement process

In general, refinement methods for the non-linear solution
of problems in continuous domains are created by joining the
following packages of software:

1. Preparing non-linear analysis software.
2. Preparing a software to calculate overall relative error (η)

and local relative error (ξi).
3. Preparing software for the refinement of mesh generation

based on the defined error norm.

In non-linear analysis, one may question the suitable timing
for performing the refinement method. The following choices
provide the answers to the question:

• Performing the refinement method at the end of each
iteration analysis.

• Performing the refinement method at the end of each load
step.

But, since at the end of each iteration analysis, the internal
and external forces are not equilibrant, the refinement method
is not performed at the end of each iteration analysis. Thus,
the ending of each load step is the appropriate timing for
performing the refinement method in non-linear analysis.

At the end of each load step, the refinement operation can
be stopped, based on one of the following criteria:

1. The refinement operation is stopped after obtaining η < η̄
at the end of each load step.

2. The operation is stopped after obtaining ξi ≤ 1 for all
elements.



A. Asghari, R. Mirghaderi / Scientia Iranica, Transactions A: Civil Engineering 19 (2012) 1033–1043 1039
3. The operation is stopped after a certain number of adaptive
refinement processes in each load step.

Selecting each of the above criteria causes an increase or
decrease in the analysis timing, and further causes the probable
failure path to become either thinner or thicker.

In the present research, the following step by step method
is used to determine the ultimate load and the possible failure
path:
1. At first, by using non-linear analysis software and the

solution of the problemwith fewer numbers of elements and
an initialmesh, the ultimate load is approximately estimated
by a trial and error method and the load coefficients and the
required numbers of load steps are specified.

2. In each load step, the following steps are followed, respec-
tively:
2.1 At first, the problem undergoes a non-linear analysis for

the specified load step.
2.2 The (η) value for the entire domain and the ξi value for

all elements are computed by the appropriate software
and based on previously described methods.

2.3 Based on ξi values, the existing mesh is refined by the
appropriate software.

2.4 The new refined mesh is again analyzed and returns to
step 2.2. This process continues until one of the stop cri-
teria is obtained (at the user’s will). The results and the
ultimate mesh are saved.

3. The refinement operation for all load steps is performed ac-
cording to step 2.

4. The number of load steps, the load coefficient value in differ-
ent load steps and the convergence of the solution, in par-
ticular in the final steps, are evaluated, and, if there is any
problemwith the convergence, the number of load steps and
the load coefficient value in different load steps are refined
and the problem is analyzed again from step 1.

5. The load–displacement curve is drawn to control the num-
ber of load steps and the load coefficient value in different
load steps, and if the ratio of displacement in the last load
step to elastic displacement is sufficiently large, the opera-
tion will be stopped.

6. Numerical examples

Example 1 (A Rigid and Rough Strip Surface Footing). This
example, as seen in Figure 7, has been chosen to demonstrate
the combination of adaptive refinement and mesh smoothing
using a ‘‘remesh and reanalyze’’ adaptive process. In this
example, by using the energy norm, ultimate load and the
possible failure path for a rigid and rough strip surface footing
are determined. The ultimate load value is obtained by the
adaptive finite element method, with values obtained from
different theories that have also been compared.

In this example, the plane strain conditions are assumed
with the following information:

E = 21 MPa (Yong’s modulus)
ν = 0.30 (Poisson’s ratio)
H ′

= 0 (Plastic hardening modulus)
C= 24 kPa (Cohesion)
∅ = 0 (Angle of internal friction)
B = 8 m (Width of footing)
Yield criteria = Mohr–Coulomb criterion.

For surface footing, as shown in Figure 7, the adaptive refined
mesh and contours of the distribution of the energy norm
error estimator at the end of different load steps have been
illustrated in Figure 8. The color scheme used in the adaptive
refined meshes (Figure 8 and other similar figures) represents
Figure 7: Physical model of a rigid and rough strip surface footing.

the relative percentage error in each element, and has been
adjusted as follows:

Figure 9 shows variations of ultimate load and vertical dis-
placement in the center of the strip footing, and comparison of
ultimate load with values obtained from different theories
– Bell’s theory: Pu = 4 × B × C
– Hansen’s theory: Pu = 5.14 × B × C
– Terzaghi’s theory: Pu = 5.7 × B × C
– Adaptive F.E.M.: Pu = 5.82 × B × C
where:

C = Cohesion
B = Width of footing.

Example 2 (A Deep Cantilever Beam with a Rigidly Fixed Side).
This example, as seen in Figure 10, has been chosen to demon-
strate a combination of adaptive refinement andmesh smooth-
ing using a ‘‘remesh and reanalyze’’ adaptive process. In this
example, by using the J norm, the increased coefficient of the
material weight and possible failure path for a deep cantilever
beam is determined. In this example, the plane stress conditions
are assumed, with the following information:

E = 2 × 105 MPa (Yong’s modulus)
ν = 0.30 (Poisson’s ratio)
H ′

= 0 (Plastic hardening modulus)
σy = 240 MPa (Yield stress)
γ = 0.1 (Unit weight material)
Yield criteria = Von Mises criterion.
For the above numerical example, the adaptive refinedmesh

and contours of the distribution of the J norm error estimator at
the end of different load steps have been presented in Figure 11.
The direction of minimum principle stresses at the center of
elements in the last load step, and variations of the increased
coefficient ofmaterialweight and vertical displacement at point
A, have been presented in Figures 12 and 13, respectively.

Example 3 (Adaptively Refined Final Mesh Results Obtained
Through J and Energy Norms). For the illustrated problem in
Example 2, Figure 14(a) and (b) show the comparison of
adaptively refined final mesh results obtained through J and
energy norms, respectively. These figures are related to the
adaptively refined mesh in the latest load step.
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Figure 8: Adaptive refined mesh and contour of the distribution of the energy norm error estimator at the end of different load steps.
Figure 9: Variations of ultimate load and vertical displacement at the center
of strip footing and comparison of the ultimate load with values obtained from
different theories.
 Figure 10: Physical model of a deep cantilever beam with a rigidly fixed side.
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Figure 11: Adaptive refined mesh and contour of the distribution of the J norm error estimator at the end of different load steps for the deep cantilever beam as
illustrated in Figure 10.
7. Conclusion

In the present research, the finite element method was
primarily presented as a general technique for the numerical
solution of a variety of problems encountered in engineering.
However, this method has several limitations, such as being
unaware of the suitability of element sizes, being unaware
of the error value in the process of discretization, having
no precise information about the propagation of the failure
path and having costly access to the formation path of the
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Figure 12: Direction of minimum principle stresses in the center of elements
in the last load step for the deep cantilever beam as shown in Figure 10.

Figure 13: Variations of increased coefficient of material weight (α) and
vertical displacement at point A for the deep cantilever beam as displayed in
Figure 10.

failure mechanism. In order to overcome the aforementioned
limitations, the adaptive finite element method was presented
as an efficient method.

The advantages of the adaptive finite element method over
the general finite element method are as follows:
1. The computation of overall relative error (η), based on
the rule of gradient recovery, and its comparison with
acceptable overall relative error (η̄), to control the solution
accuracy.

2. The computation of local relative error (ξi) for all elements
in order to obtain their proper sizes.

3. Possible adaptive refinement of mesh based on the local
relative error (ξi) is computed for all elements. In this stage,
the local error estimate is used to steer the discretization
process and the global error estimate is employed as a
stopping criteria.

4. Accessing the failuremechanismwithmuch fewer elements.
Considering the adaptive finite element method, the refine-
ment operations are only exerted in areas where the error
rate is high. Thus, it is possible to obtain the ultimate load
with much fewer elements.

5. Accessing the possible failure paths through adaptive
refinement of the elements; given the fact that the relative
local error rate in the failure propagation paths is high, the
actual size of the elements in these areaswill be smaller than
those in other areas. Therefore, the element size distribution
at each load step represents propagation of the failure path
in the adaptive finite element analysis.

In previous studies, the estimation of the error rate in the
non-linear solution of continuous domains problems with the
adaptive finite element method was generally accomplished
by the error computation of L2 for stress, L2 for strain, and
energy norms. What makes this study distinct from previous
similar ones is its simplicity and efficiency in the non-linear
solution of problems (such as modeling a rigid connection in
steel structures, in order to estimate the rotation of connection
in leveling positions, and to define the plastic joint formation
position) and, further, in involving yield criteria concepts, such
as von Mises, Tresca, Mohr–Coulomb, and other yield criteria,
to estimate error and adaptive refinement strategies in order
to determine the ultimate load and the possible failure path in
continuous domains problems.

Example 1 has been chosen in order to compare the results
of this study with known theories. Since, in the finite element
method, the obtained response is a level high, and considering
that the difference between the response of the adaptive finite
element method and that of existing theories is relatively
lower, the obtained results can be considered acceptable due
to the assumptions used in the finite element method, which
(a) J norm. Number of joints = 306. Number of
elements = 563.

(b) Energy norm. Number of joints = 320. Number of
elements = 591.

Figure 14: Comparison of adaptively refined final mesh results obtained via J and Energy norms for the deep cantilever beam as presented in Figure 10.
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is considered to be acceptable. It should be noted that the
aforementioned approximate theories provide users with no
information about the propagation of the failure path. In other
words, these theories do not show where the failure starts
and in which sites the displacements are more than others.
Based on the simple and effective method used in this study, in
addition to accessing the ultimate load, it is possible to access
the propagation path of the failure mechanism as well. The
above information is highly useful to prevent failure.

The similarity of the results obtained in Example 2 in which
the propagation of the failure path of a deep cantilever beam
is shown, with the formation of the plastic flexural strength of
a deep cantilever beam, represents one of the strengths of the
adaptive refinement in the finite element method analysis. As
displayed in Example 2, according to the method used in this
study, the access to the ultimate load and failure path formation
is possible with a highly simple, effective and inexpensive
method.

Parametric studies in this research revealed that access to
the ultimate load and the probable failure path is possible
through any of L2 for stress, L2 for strain, energy, and J norms.
However, as displayed in Example 3, selecting J norm primarily
causes possible access to the failure mechanism with relatively
fewer numbers of elements, and secondly, the J norm displays
that the quality of the probable failure path is better than that
of the energy norm. However, the quality and the reliability of
the error estimator are obviously dependent on the accuracy
of the recovered solutions, and, eventually, on the smoothing
procedures.

One of the weaknesses observed in the examples analysis
was inaccessibility to the thin and regular failure bond. At the
first look, the reason seemed to depend on the type of norm
selected. However, studies and investigations into different
norms demonstrated that disregarding large deformations and
large strains in non-linear analysis was the main reason for
inaccessibility to the thin and regular failure bond. Hence, to
obtain the thin and regular failure bond, it is necessary to
consider large deformations and large strains in non-linear
analysis.
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