
 Energy Procedia 49 (2014) 2482 – 2489

Available online at www.sciencedirect.com

ScienceDirect

1876-6102 © 2013 A. Dobos. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and peer review by the scientifi c conference committee of SolarPACES 2013 under responsibility of PSE AG.
Final manuscript published as received without editorial corrections.
doi: 10.1016/j.egypro.2014.03.263

SolarPACES 2013

Advances in CSP simulation technology in the System Advisor Model

A. Dobosa, T. Neisesa, M. Wagnera
aNational Renewable Energy Laboratory, 15031 Denver West Parkway, Golden, CO, 80401

Abstract

The System Advisor Model (SAM) is modeling software for renewable energy systems developed by the National Renewable
Energy Laboratory (NREL).SAM combines annual time series power production models with financial models to estimate the
levelized cost of energy (LCOE) and other metrics for renewable energy projects. To date, SAM has utilized the general purpose
commercial TRNSYS transient systems modeling software package for CSP simulations and originally PV and wind. To
achieve: (1) significantly faster model performance, (2) easy parallelization of concurrent simulations to take advantage of
modern multi-core processor desktop computers, (3) to allow straightforward modification of CSP component models in the
SAM environment, and (4) ability to include CSP technologies in the SAM Software Development Kit (SDK), NREL has
undertaken to reformulate the CSP models into a new transient simulation framework written in C++, by NREL. This framework
is tailored specifically for use in SAM and not for general purpose modeling like TRNSYS. Preliminary results show excellent
matching with the accepted TRNSYS-based models, as well as an order of magnitude reduction in simulation time for certain
models. These runtime reductions enable larger scale plant configuration analysis, as well as grid-integration studies that require
many thousands of simulations.

© 2013 The Authors. Published by Elsevier Ltd.
Selection and peer review by the scientific conference committee of SolarPACES 2013 under responsibility of PSE AG.

Keywords: systems modeling, concentrating solar power simulation,

1. Introduction

The System Advisor Model (SAM) is free software developed by the National Renewable Energy Laboratory that
predicts hourly energy production for renewable energy systems. Technologies represented in SAM include
photovoltaics (flat-plate and concentrating), concentrating solar power (parabolic troughs, towers, linear Fresnel,
dish-Stirling), solar water heating, wind, geothermal, and biomass. Hourly performance models for PV, wind,
geothermal, and biomass plants are relatively straightforward computationally, as a series of submodels are executed
in sequence to calculate outputs given weather data inputs and system parameters. For concentrating solar thermal
models, however, the solution techniques are not so simple. These systems are represented by interconnected
individual components such as solar collectors, receivers, heat exchangers, piping, storage systems, and power

© 2013 A. Dobos. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and peer review by the scientific conference committee of SolarPACES 2013 under responsibility of PSE AG.
Final manuscript published as received without editorial corrections.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82027022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egypro.2014.03.263&domain=pdf

 A. Dobos et al. / Energy Procedia 49 (2014) 2482 – 2489 2483

cycles. Each component cannot be sequentially modeled because pressures, mass flow rates and temperatures at the
interfaces between components must match, and energy and mass must be conserved among the piping loops and
feedback systems that exist within the system design. Consequently, iterative numerical solutions are applied such
that at each time step of the simulation, the system representation has “converged” to physically sensible values at
each point.

To date, SAM has utilized the general-purpose commercial TRNSYS tool for modeling concentrating solar
thermal power plant systems [1]. TRNSYS is a well-established software package that has been in development
since the mid 1970s, and the simulation core and engineering component code is written entirely in FORTRAN and
focused at engineers doing desktop system analysis. The software consists of a small kernel that iteratively calls
individual system component models many times until the overall system has converged, as well as an extensive
library of components such as building models, HVAC systems, geothermal heat pumps, pipes, tanks with heaters,
solar collectors, PV systems, and related equipment. In previous version of SAM dating back to 2007, custom CSP
component models have been implemented in FORTRAN in adherence to the TRNSYS conventions. SAM includes
only the TRNSYS kernel and component models necessary for CSP modeling at this time. These models have
proven to be reliable and capable predictors of system performance and have been validated and utilized in the
literature.

The motivation to reconsider the use of TRNSYS within SAM has been driven by factors driving the need for
simulating very large scenarios that may require thousands of simulations with different input parameters. To
achieve these results in a permissible amount of time, it is highly advantageous to effectively utilize modern desktop
computer processors that may have up to eight individual cores, as well as provide a software framework that can be
deployed on distributing computing systems or dispatched over the internet. There is also a need to support the SAM
Software Development Kit (SDK) which does not currently allow users to access CSP technologies through the
SAM engine. This paper focuses on the recent advancements in the technology used to model the complex solar
thermal systems to achieve the aforementioned goals of performance, portability, and parallelism. Preliminary
results from the new CSP simulation core software show excellent agreement with the accepted outputs of the
TRNSYS versions, as well as significant improvements in simulation speed.

2. Implementation

This section details the implementation of a new solver kernel for calculating the performance of concentrating
solar thermal systems. The kernel is henceforth referred to as “TCS”, a loose acronym denoting the transient
component simulation purpose of the tool.

2.1. Kernel structure

TCS is a transient physical system simulation tool at whose core is an iterative successive-substitution solving
engine. Each unique physical system component is known as a type, and instances of types are units (this follows the
TRNSYS convention). A system consists of a set of n units ordered 0..n-1. It is allowed to have multiple units of the
same type in a system. The order in which units are defined in the system is the same order that the iterative solver
calls each type at each time step. A type is essentially a compiled subroutine that calculates the values of output
variables from input variables.

Each type defines a specific set of input and output variables. Each variable is given at compile-time a data type,
index, label, units, description, optional metadata, and optional default value. Variables can be numbers, one
dimensional arrays, two dimensional matrices, or strings. There is no defined limit on the number of variables, or
size of arrays and matrices. Information about a type’s input and output variables can be dynamically queried
through the TCS application programming interface (API).

A simulation progresses with a constant time step from a specified start time to a specified end time. The internal
time unit in TCS is the second. At each time step, TCS calls each unit in the given calling sequence. After each unit
is called, TCS checks to see if any of the outputs are connected to inputs of other units. If so, TCS propagates the
output value to the input value, marking the unit associated with the input for iteration if the previous input value

2484 A. Dobos et al. / Energy Procedia 49 (2014) 2482 – 2489

was outside the specified tolerance for the particular connection. TCS repeats the unit calling sequence, calling only
marked units until all output and input values have converged to tolerances and there are no marked units left in the
calling sequence. At this point, the simulation is said to have converged at that time step. TCS increments the time
and repeats this sequence at the next time step until the end time is reached. The successive substitution strategy
employed is outlined in Figure 1.

Figure 1. Simulation kernel solution strategy

Key features of the simulator kernel include:

 Fully dynamic type interface API: Types can be written in C or C++, and dynamically loaded by the TCS

kernel. Because the type API uses the standard C __cdecl calling convention, types can be written using any
standard C or C++ compiler on any operating system.

 Multithreading: The TCS kernel is fully reentrant and thread-safe, allowing it to work well with host
software that can dispatch concurrent simulations, provided all the types used in a simulation are also written
in this way. The SAM software is being updated to automatically utilize all available processor cores to
dispatch multiple parallel simulations. This is not possible with the TRNSYS framework.

 Data types: Input and output variables can be numbers, arrays, matrices, or strings. This affords significant
flexibility when defining a type subroutine and moving data between units.

 Tolerance configurability: TRNSYS requires the specification of a single tolerance value for all variables.
TCS enables each connection between an output and an input to be given a unique tolerance value to reach
for convergence. Additionally, the tolerance may be specified as a percentage or an absolute value.

These software framework advancements enable high performance simulations that can leverage intra-process
parallelism on modern computer architectures.

2.2. Representing systems

Systems are described in TCS by programmatically defining a set of components and their interconnections.
TCS includes a utility program for development and debugging models that includes a scripting interface for
configuring models, as well as visual and tabular data browsers to view time series outputs calculated by the models.
Simulation control parameters (start, step, end times) are also controlled in the development utility, which also
provides an online help system that provides variable information for all the inputs and outputs of each component
type.

 A. Dobos et al. / Energy Procedia 49 (2014) 2482 – 2489 2485

3. Verification

The SAM default system configurations were configured in TCS for the empirical trough model, physical trough
model, generic solar thermal system model, molten salt power tower, direct steam power tower, and dish-Stirling
models. The six systems were simulated in both the TRNSYS and TCS versions, and scatter plots of the hourly
energy yield predictions from both models are shown in Figures 2-7. All three show very good match in the
calculated outputs. The physical trough and molten salt power tower models shows a greater spread, which is due
primarily to numerical difference between the model implementations when switching operational modes in the
controller. The deviations between the two models most frequently occur at startup and shutdown times, when
slight changes in the converged outputs of the previous time step may cause the plant controller to enter a different
mode of operation in a subsequent time step. Additional investigations are underway to document the exact causes
for hour-by-hour differences in models, despite the greater flexibility in TCS to specify convergence tolerances on a
variable-by-variable basis.

The total annual energy yield deviation between the two models is characterized by calculating the root mean
square error normalized to nameplate capacity of the power plant (Eqn. 1). The RMSE is calculated for the base-
case simulations for each model. Table 1 shows that RMSE values are very small, even for the physical trough
model which shows slightly more deviation between the two models.

MWE

EE
RMSE

TRNSYSTCS

100

)(
8760

1 2

 (1)

Figure 2. Scatter plot of hourly net energy yield for empirical trough model

2486 A. Dobos et al. / Energy Procedia 49 (2014) 2482 – 2489

Figure 3. Scatter plot of hourly net energy yield for physical trough model

Figure 4. Scatter plot of hourly net energy yield for generic solar thermal system model

Figure 5. Scatter plot of hourly net energy yield for molten salt power tower model

 A. Dobos et al. / Energy Procedia 49 (2014) 2482 – 2489 2487

Figure 6. Scatter plot of hourly net energy yield for direct steam power tower model

Figure 7. Scatter plot of hourly net energy yield for dish Stirling model

Table 1. CSP system model root mean square deviation between TRNSYS and TCS

System RMSD (%)

Parabolic trough, empirical model

Parabolic trough, physical model

0.06

0.69

Generic solar thermal system model 0.02

Molten salt power tower 0.78

Direct steam power tower 0.69

Dish Stirling 0.05

2488 A. Dobos et al. / Energy Procedia 49 (2014) 2482 – 2489

4. Simulation Run Time

Simulation speed was tested on a dual-core computer with a 2.5 GHz processor, 8 GB RAM, Windows 7 64-bit,
and a solid state hard drive. While TCS is designed to be parallelizable to run multiple hourly simulations
simultaneously, for the purposes of this comparison, only a single processor core was utilized. The 32-bit binaries
of both TCS and TRNSYS were used.

Table 2. CSP system model simulation times and annual prediction differences, baseline inputs

System TRNSYS (s) TCS (s) Difference, TCS-TRNSYS

Parabolic trough, empirical model

Parabolic trough, physical model

2.1

12.4

1.3

9.3

-38 %

-24 %

Generic solar thermal system model 1.9 0.7 -63 %

Molten salt power tower model 3.0 1.8 -40 %

Direct steam power tower model 23.6 13.8 +71 %

Dish Stirling model 1.7 1.3 -24 %

Nearly all cases show significant speed improvements for TCS compared with the TRNSYS version. The
performance improvements for the empirical and generic solar models are due to the fact that the TRNSYS version
spends most of the time reading and writing files on disk, while in the TCS system the inputs are set
programmatically and outputs at each time step are extracted directly. Thus, a significant amount of overhead
unrelated to actual calculation has been removed. Additionally, the models are relatively simple and do not require
significant iteration at each time step for convergence; the calculations are essentially “straight through” at each time
step from inputs to outputs. However, the physical trough model requires iteration of the solver kernel at each time
step, and thus the performance difference relative to the TRNSYS version is not as large, though still significant.
The direct steam power tower was not fully converted and validated at the time of writing, and we expect its
simulation time will be shorter than TRNSYS when it is finished, judging from the experience with all of the other
models.

5. Conclusions

A high performance transient time series solver framework (TCS) for SAM has been implemented in C++ and
compared to TRNSYS, the current simulation engine for CSP models in SAM. Equivalent model implementations
for six CSP system models show very low root mean square deviations between the two simulation frameworks, and
that the TCS version provides a significant reduction in computation time for the same model relative to TRNSYS.
Future implementations in SAM will leverage the multi-threading parallelization potential of the TCS kernel, and
will consequently greatly reduce simulation times for large parametric scenario analysis, as well as enable the use of
CSP simulation engines on a variety of platforms including Linux, Mac OS X, web servers, and others. This new
framework will enable distribution of the CSP models within the SAM Software Development Kit (SDK) which
currently only includes PV, Wind and Geothermal technologies. In the future, TCS will be used by NREL to
continue to augment SAM with new and emerging CSP technologies.

Acknowledgements

This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the
National Renewable Energy Laboratory.

 A. Dobos et al. / Energy Procedia 49 (2014) 2482 – 2489 2489

References

[1] TRNSYS: Transient System Simulation Tool User’s Manual. Version 17. http://www.trnsys.com
[2] EES: Engineering Equation Solver. F-Chart Software. http://www.fchart.com/ees/
[3] Price, H. (2003). Parabolic Trough Solar Power Plant Simulation Model. Proceedings of the ISEC 2003: International Solar Energy

Conference, 15-18 March 2003, Kohala Coast, Hawaii. New York: American Society of Mechanical Engineers. 665-673 pp.; NREL Report
No. CP-550-34742.

[4] Wagner, M. J.; Gilman, P. (2011). "Technical Manual for the SAM Physical Trough Model." 124 pp.; NREL Report No. TP-5500-51825.
[5] Neises, T.; Wagner, M. "Simulation of Direct Steam Power Tower Concentrated Solar Plant." ASME SE 2012 Conference.
[6] Wagner, M. (M.S. 2008). "Simulation and Predictive Performance Modeling of Utility-Scale Central Receiver System Power Plants."

University of Wisconsin-Madison.
[7] Kistler, B. (1986). "A User's Manual for DELSOL3: A Computer Code for Calculating the Optical Performance and Optimal System Design

for Solar Thermal Central Receiver Plants." Sandia Report No. SAND86-8018.
[8] Feierabend, L. (M.S., 2009). "Thermal Model Development and Simulation of Cavity-Type Solar Central Receiver Systems." University of

Wisconsin-Madison.
[9] Wagner, M.; Zhu, G. (2012). "A Direct-steam Linear Fresnel Performance Model for NREL's System Advisor Model." NREL Conference

Paper CP-5500-55044.
[10] Wagner, M. (2012). "Results and Comparison from the SAM Linear Fresnel Technology Performance Model: Preprint. NREL Conference

Paper CP-5500-54758."
[11] Wagner, M. J.; Zhu, G. (2011). "Generic CSP Performance Model for NREL's System Advisor Model: Preprint." 10 pp.; NREL Report No.

CP-5500-52473.
[12] System Advisor Model (SAM). National Renewable Energy Laboratory, 2013. https://sam.nrel.gov/

