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Abstract 

The System Advisor Model (SAM) is modeling software for renewable energy systems developed by the National Renewable 
Energy Laboratory (NREL).SAM combines annual time series power production models with financial models to estimate the 
levelized cost of energy (LCOE) and other metrics for renewable energy projects.  To date, SAM has utilized the general purpose 
commercial TRNSYS transient systems modeling software package for CSP simulations and originally PV and wind.  To 
achieve: (1) significantly faster model performance, (2) easy parallelization of concurrent simulations to take advantage of 
modern multi-core processor desktop computers, (3) to allow straightforward modification of CSP component models in the 
SAM environment, and (4) ability to include CSP technologies in the SAM Software Development Kit (SDK), NREL has 
undertaken to reformulate the CSP models into a new transient simulation framework written in C++, by NREL. This framework 
is tailored specifically for use in SAM and not for general purpose modeling like TRNSYS. Preliminary results show excellent 
matching with the accepted TRNSYS-based models, as well as an order of magnitude reduction in simulation time for certain 
models.  These runtime reductions enable larger scale plant configuration analysis, as well as grid-integration studies that require 
many thousands of simulations. 
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1. Introduction 

The System Advisor Model (SAM) is free software developed by the National Renewable Energy Laboratory that 
predicts hourly energy production for renewable energy systems.  Technologies represented in SAM include 
photovoltaics (flat-plate and concentrating), concentrating solar power (parabolic troughs, towers, linear Fresnel, 
dish-Stirling), solar water heating, wind, geothermal, and biomass.  Hourly performance models for PV, wind, 
geothermal, and biomass plants are relatively straightforward computationally, as a series of submodels are executed 
in sequence to calculate outputs given weather data inputs and system parameters.  For concentrating solar thermal 
models, however, the solution techniques are not so simple.  These systems are represented by interconnected 
individual components such as solar collectors, receivers, heat exchangers, piping, storage systems, and power 
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cycles.  Each component cannot be sequentially modeled because pressures, mass flow rates and temperatures at the 
interfaces between components must match, and energy and mass must be conserved among the piping loops and 
feedback systems that exist within the system design.  Consequently, iterative numerical solutions are applied such 
that at each time step of the simulation, the system representation has “converged” to physically sensible values at 
each point. 

To date, SAM has utilized the general-purpose commercial TRNSYS tool for modeling concentrating solar 
thermal power plant systems [1].  TRNSYS is a well-established software package that has been in development 
since the mid 1970s, and the simulation core and engineering component code is written entirely in FORTRAN and 
focused at engineers doing desktop system analysis.  The software consists of a small kernel that iteratively calls 
individual system component models many times until the overall system has converged, as well as an extensive 
library of components such as building models, HVAC systems, geothermal heat pumps, pipes, tanks with heaters, 
solar collectors, PV systems, and related equipment.  In previous version of SAM dating back to 2007, custom CSP 
component models have been implemented in FORTRAN in adherence to the TRNSYS conventions.  SAM includes 
only the TRNSYS kernel and component models necessary for CSP modeling at this time. These models have 
proven to be reliable and capable predictors of system performance and have been validated and utilized in the 
literature. 

The motivation to reconsider the use of TRNSYS within SAM has been driven by factors driving the need for 
simulating very large scenarios that may require thousands of simulations with different input parameters.  To 
achieve these results in a permissible amount of time, it is highly advantageous to effectively utilize modern desktop 
computer processors that may have up to eight individual cores, as well as provide a software framework that can be 
deployed on distributing computing systems or dispatched over the internet. There is also a need to support the SAM 
Software Development Kit (SDK) which does not currently allow users to access CSP technologies through the 
SAM engine. This paper focuses on the recent advancements in the technology used to model the complex solar 
thermal systems to achieve the aforementioned goals of performance, portability, and parallelism.  Preliminary 
results from the new CSP simulation core software show excellent agreement with the accepted outputs of the 
TRNSYS versions, as well as significant improvements in simulation speed. 

 

2. Implementation 

This section details the implementation of a new solver kernel for calculating the performance of concentrating 
solar thermal systems.  The kernel is henceforth referred to as “TCS”, a loose acronym denoting the transient 
component simulation purpose of the tool.  

2.1. Kernel structure 

TCS is a transient physical system simulation tool at whose core is an iterative successive-substitution solving 
engine. Each unique physical system component is known as a type, and instances of types are units (this follows the 
TRNSYS convention).  A system consists of a set of n units ordered 0..n-1. It is allowed to have multiple units of the 
same type in a system. The order in which units are defined in the system is the same order that the iterative solver 
calls each type at each time step. A type is essentially a compiled subroutine that calculates the values of output 
variables from input variables.  

Each type defines a specific set of input and output variables. Each variable is given at compile-time a data type, 
index, label, units, description, optional metadata, and optional default value. Variables can be numbers, one 
dimensional arrays, two dimensional matrices, or strings. There is no defined limit on the number of variables, or 
size of arrays and matrices. Information about a type’s input and output variables can be dynamically queried 
through the TCS application programming interface (API).  

A simulation progresses with a constant time step from a specified start time to a specified end time. The internal 
time unit in TCS is the second. At each time step, TCS calls each unit in the given calling sequence. After each unit 
is called, TCS checks to see if any of the outputs are connected to inputs of other units. If so, TCS propagates the 
output value to the input value, marking the unit associated with the input for iteration if the previous input value 
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was outside the specified tolerance for the particular connection. TCS repeats the unit calling sequence, calling only 
marked units until all output and input values have converged to tolerances and there are no marked units left in the 
calling sequence. At this point, the simulation is said to have converged at that time step. TCS increments the time 
and repeats this sequence at the next time step until the end time is reached.  The successive substitution strategy 
employed is outlined in Figure 1. 

Figure 1. Simulation kernel solution strategy 
 
Key features of the simulator kernel include: 
 
 Fully dynamic type interface API: Types can be written in C or C++, and dynamically loaded by the TCS 

kernel. Because the type API uses the standard C __cdecl calling convention, types can be written using any 
standard C or C++ compiler on any operating system. 

 Multithreading: The TCS kernel is fully reentrant and thread-safe, allowing it to work well with host 
software that can dispatch concurrent simulations, provided all the types used in a simulation are also written 
in this way.  The SAM software is being updated to automatically utilize all available processor cores to 
dispatch multiple parallel simulations.  This is not possible with the TRNSYS framework. 

 Data types:  Input and output variables can be numbers, arrays, matrices, or strings.   This affords significant 
flexibility when defining a type subroutine and moving data between units. 

 Tolerance configurability: TRNSYS requires the specification of a single tolerance value for all variables.  
TCS enables each connection between an output and an input to be given a unique tolerance value to reach 
for convergence.  Additionally, the tolerance may be specified as a percentage or an absolute value.  
 

These software framework advancements enable high performance simulations that can leverage intra-process 
parallelism on modern computer architectures. 

2.2. Representing systems 

Systems are described in TCS by programmatically defining a set of components and their interconnections.  
TCS includes a utility program for development and debugging models that includes a scripting interface for 
configuring models, as well as visual and tabular data browsers to view time series outputs calculated by the models.  
Simulation control parameters (start, step, end times) are also controlled in the development utility, which also 
provides an online help system that provides variable information for all the inputs and outputs of each component 
type.  
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3. Verification 

The SAM default system configurations were configured in TCS for the empirical trough model, physical trough 
model, generic solar thermal system model, molten salt power tower, direct steam power tower, and dish-Stirling 
models.  The six systems were simulated in both the TRNSYS and TCS versions, and scatter plots of the hourly 
energy yield predictions from both models are shown in Figures 2-7.  All three show very good match in the 
calculated outputs.  The physical trough and molten salt power tower models shows a greater spread, which is due 
primarily to numerical difference between the model implementations when switching operational modes in the 
controller.  The deviations between the two models most frequently occur at startup and shutdown times, when 
slight changes in the converged outputs of the previous time step may cause the plant controller to enter a different 
mode of operation in a subsequent time step.  Additional investigations are underway to document the exact causes 
for hour-by-hour differences in models, despite the greater flexibility in TCS to specify convergence tolerances on a 
variable-by-variable basis. 

The total annual energy yield deviation between the two models is characterized by calculating the root mean 
square error normalized to nameplate capacity of the power plant (Eqn. 1).  The RMSE is calculated for the base-
case simulations for each model.  Table 1 shows that RMSE values are very small, even for the physical trough 
model which shows slightly more deviation between the two models. 
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Figure 2. Scatter plot of hourly net energy yield for empirical trough model 
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Figure 3. Scatter plot of hourly net energy yield for physical trough model 

 

Figure 4. Scatter plot of hourly net energy yield for generic solar thermal system model 

 

Figure 5. Scatter plot of hourly net energy yield for molten salt power tower model 
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Figure 6. Scatter plot of hourly net energy yield for direct steam power tower model 

 

Figure 7. Scatter plot of hourly net energy yield for dish Stirling model 

 
 

Table 1. CSP system model root mean square deviation between TRNSYS and TCS 

System RMSD (%)   

Parabolic trough, empirical model 

Parabolic trough, physical model 

0.06 

0.69 

  

Generic solar thermal system model 0.02 

Molten salt power tower 0.78 

Direct steam power tower 0.69 

Dish Stirling 0.05 
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4. Simulation Run Time 

Simulation speed was tested on a dual-core computer with a 2.5 GHz processor, 8 GB RAM, Windows 7 64-bit, 
and a solid state hard drive.  While TCS is designed to be parallelizable to run multiple hourly simulations 
simultaneously, for the purposes of this comparison, only a single processor core was utilized.  The 32-bit binaries 
of both TCS and TRNSYS were used.   

Table 2. CSP system model simulation times and annual prediction differences, baseline inputs 

System TRNSYS (s) TCS (s) Difference, TCS-TRNSYS  

Parabolic trough, empirical model 

Parabolic trough, physical model 

2.1 

12.4 

1.3 

9.3 

-38 % 

-24 % 

Generic solar thermal system model 1.9 0.7 -63 % 

Molten salt power tower model 3.0 1.8 -40 % 

Direct steam power tower model 23.6 13.8 +71 % 

Dish Stirling model 1.7 1.3 -24 % 

    

Nearly all cases show significant speed improvements for TCS compared with the TRNSYS version.  The 
performance improvements for the empirical and generic solar models are due to the fact that the TRNSYS version 
spends most of the time reading and writing files on disk, while in the TCS system the inputs are set 
programmatically and outputs at each time step are extracted directly.  Thus, a significant amount of overhead 
unrelated to actual calculation has been removed.  Additionally, the models are relatively simple and do not require 
significant iteration at each time step for convergence; the calculations are essentially “straight through” at each time 
step from inputs to outputs.  However, the physical trough model requires iteration of the solver kernel at each time 
step, and thus the performance difference relative to the TRNSYS version is not as large, though still significant.  
The direct steam power tower was not fully converted and validated at the time of writing, and we expect its 
simulation time will be shorter than TRNSYS when it is finished, judging from the experience with all of the other 
models. 

5. Conclusions 

A high performance transient time series solver framework (TCS) for SAM has been implemented in C++ and 
compared to TRNSYS, the current simulation engine for CSP models in SAM.  Equivalent model implementations 
for six CSP system models show very low root mean square deviations between the two simulation frameworks, and 
that the TCS version provides a significant reduction in computation time for the same model relative to TRNSYS.  
Future implementations in SAM will leverage the multi-threading parallelization potential of the TCS kernel, and 
will consequently greatly reduce simulation times for large parametric scenario analysis, as well as enable the use of 
CSP simulation engines on a variety of platforms including Linux, Mac OS X, web servers, and others. This new 
framework will enable distribution of the CSP models within the SAM Software Development Kit (SDK) which 
currently only includes PV, Wind and Geothermal technologies. In the future, TCS will be used by NREL to 
continue to augment SAM with new and emerging CSP technologies.  
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