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Abstract

Minimal matrices were introduced to give an algebraic characterization of sets of unique-
ness, a notion of interest in Discrete Tomography. They have also been used to produce min-
imal summands in Kronecker products of complex irreducible characters of the symmetric
group. In this paper, motivated by these two applications, we classify all minimal matrices of
size 2 × q. © 2002 Elsevier Science Inc. All rights reserved.

AMS classification: 05B20; 05A17

Keywords: Minimal matrix; Dominance order; Plane partition; Set of uniqueness

1. Introduction

Minimal matrices were introduced in [6], where they were used to give an alge-
braic characterization of sets of uniqueness. These sets are of interest in Discrete
Tomography, see [2,3]. Later minimal matrices were used in [7] as a tool for pro-
ducing minimal summands in Kronecker products of complex irreducible characters
of the symmetric group. In these two applications lies our motivation for studying
minimal matrices.
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Not much is known about minimal matrices but a characterization [7, Proposition
3.1], a sufficient condition for plane partitions to be minimal [8, Proposition 6.1]
and the minimal matrices of size 2 × 2 [6, Theorem 4.1]. In this paper, we extend
the last result and determine all minimal matrices of size 2 × q. It follows from this
classification and Theorem 1′ in [6] that the sets of uniqueness contained in a box
of size 2 × q × r coincide with the pyramids, that is, with the diagrams of plane
partitions of size 2 × q and largest part at most r, see Section 6. We leave for a future
paper the application of our classification to Kronecker products.

We now proceed to state our main result. For this we first introduce some notation
and definitions. A vector λ = (λ1, . . . , λp) of positive integers is called a partition of
n, in symbols λ � n, if λ1 � · · · � λp > 0 and

∑p

i=1 λi = n. The set of all partitions
of n is a lattice under the dominance order, which is defined by

(λ1, . . . , λp) � (µ1, . . . , µq)

if
∑a
i=1 λi �

∑a
i=1 µi for all 1 � a � min{p, q}. If λ�µ and λ /= µ, we write λ �

µ, see [1] for more details on the dominance order.
Let λ = (λ1, . . . , λp), µ = (µ1, . . . , µq) be partitions of an integer n. We denote

by M(λ, µ) the set of all matrices A = (aij) with non-negative integer coefficients of
size p × q, row sum vector λ and column sum vector µ, that is

q∑
j=1

aij = λi for 1 � i � p,

p∑
i=1

aij = µj for 1 � j � q.
(1)

If A is in M(λ, µ), we denote by π(A) the partition of n obtained from A by ordering
its entries decreasingly. If A contains zeros, we omit them in π(A). We say that A
is minimal if A is in M(λ, µ) and π(A) is minimal in the set {π(B) |B ∈ M(λ, µ)}
with respect to the dominance order. Intuitively A is minimal if the diagram D(A)

associated to A, as explained below, is as flat as posible subject to the restrictions (1).
To any matrix A = (aij ) ∈ M(λ, µ) we associate a diagram D(A): it is the set of

triples (i, j, k) of natural numbers such that

1 � i � p, 1 � j � q, 1 � k � aij.

We represent D(A) graphically by stacking unit cubes as in the following example:
The diagram of the matrix[

10 10 9 9 9 7 7 6 6 4 4 3 3 2 2
10 9 9 8 8 7 4 5 5 2 2 3 3 2 1

]
(2)

is represented by
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Note that the entries in the matrix count the number of unit cubes in each partic-
ular stack.

Recall that A is called a plane partition if its rows and columns are weakly de-
creasing. Finally, suppose that A is of size 2 × q. Then we say that A is of type I if A
has weakly decreasing columns and any 2 × 2 submatrix[

a1k a1l
a2k a2l

]
, k < l,

is either a plane partition or has one of the forms[
c + 1 c

d d + 1

]
or

[
c c + 1

d + 1 d

]
;

and we say that A is of type II if A has at least one increasing column (a1k < a2k for
some 1 � k � q) and |a1j − a2j | � 1 for all 1 � j � q. For example, the matrix in
(2) is of type I. An example of a matrix of type II is[

9 8 7 6 6 5 5 4 3 3 1 0 1
10 7 8 6 6 4 4 5 3 2 0 1 0

]
.

The main theorem in this paper is:

Theorem 1.1. Let λ = (λ1, λ2), µ = (µ1, . . . , µq) be partitions of n, and let A be
in M(λ, µ). Then A is minimal if and only if A is either of type I or of type II.

Since all plane partitions are of type I, we obtain the following.

Corollary 1.2. Every plane partition of size 2 × q is minimal.

This should be contrasted with the following example. Let λ = (9, 4, 2), µ =
(8, 5, 2) and let

A =
4 4 1

2 1 1
2 0 0

 , B =
4 3 2

3 1 0
1 1 0

 .
Then A, B are in M(λ, µ) and π(A) � π(B). Thus A is a plane partition that is not
minimal.
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The paper is organized as follows. Section 2 contains some new results on min-
imal matrices of arbitrary size. They give us information about minimal matrices
that are not plane partitions. In Section 3, we consider matrices of type I. The main
result in this section is Theorem 3.3, which says that the decreasing sequences of
the entries of two matrices of type I, in standard form, are not comparable under the
dominance order. Section 4 contains two results on matrices of type II. In Section 5,
we prove Theorem 1.1. Finally, Section 6 contains an application of our classification
to Discrete Tomography.

2. Minimal matrices

In this section, we prove some new results on minimal matrices of arbitrary size.
They will be used in the proof of Theorem 1.1. One of them, Corollary 2.3, gives a
necessary condition for a matrix, which is not a plane partition, to be minimal. We
also construct a family of examples of minimal matrices which, in general, are not
plane partitions. This family includes all matrices of type II.

The dominance order defined in the previous section can be extended to
k-tuples of real numbers. In this context, it is known as majorization order. It has
been used extensively in the Theory of Inequalities, see [4, p. 45] and [5, p. 7].
We will need the following result due to Rado, which we adapt to the notation
and necessities of this paper. For any k-tuple α of non-negative integers we
denote by π(α) the partition obtained from α by rearranging its coordinates in
decreasing order. Then we have:

Proposition 2.1 ([4, p. 63] and [5, p. 121]). Let α = (α1, . . . , αa), β = (β1, . . . , βb)

be partitions of m and let λ = (λ1, . . . , λp), µ = (µ1, . . . , µq) be partitions of n. If
α�β and λ�µ, then

π(α1, . . . , αa, λ1, . . . , λp)�π(β1, . . . , βb, µ1, . . . , µq).

Moreover, if any of the first two inequalities is strict, then the third is also strict.

We sketch here, for the sake of completeness, an elementary proof of this Proposi-
tion: Let r be a positive integer and let γ = π(α1, . . . , αa, r) and δ = (β1, . . . , βb, r).
Then it is enough to show that γ � δ. This can be done by a case by case analysis,
according to the positions of r in γ and δ. For the last statement it is enough to
observe that if γ = δ, then α = β.

In the rest of this section, we assume that λ = (λ1, . . . , λp) andµ = (µ1, . . . , µq)

are two partitions of n.

Lemma 2.2. Let A = (aij) be a minimal matrix in M(λ, µ), and let i, j, k be such
that aij − akj � 2. Then i < k and ail � akl for all 1 � l � q.
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Proof. Suppose there exists some 1 � l � q such that ail < akl. Let B be obtained
from A substituting the submatrix

S =
[
aij ail

akj akl

]
by T =

[
aij − 1 ail + 1
akj + 1 akl − 1

]
(note that we are not assuming either i < k or j < l). Since π(aij, akj) � π(aij −
1, akj + 1) and π(akl, ail)�π(akl − 1, ail + 1), then by Proposition 2.1 π(S) � π(T ),
and again by the same result π(A) � π(B). This is a contradiction to the minimality
of A, hence ail � akl for all 1 � l � q. So we have λi = ∑q

l=1 ail >
∑q

l=1 akl = λk ,
but λ is weakly decreasing, therefore i < k. �

Corollary 2.3. Let A be a minimal matrix in M(λ, µ), and let i, j, k, l be such that
aij > akj and ail < akl. Then |aim − akm| � 1 for all 1 � m � q.

These two results give some restrictions in the rows i and k of a minimal matrix.
There are analogous results for columns.

We next construct a family of examples of minimal matrices which, in gener-
al, are not plane partitions. It includes all matrices of type II. Let V (p, s) denote
the set of all vectors v = (v1, . . . , vp) with non-negative integer coordinates such
that

∑p

i=1 vi = s. Let us write s in the form s = γp + r with 0 � r < p and let
m(s) := (m1, . . . , mp), where

mi =
{
γ + 1 if 1 � i � r;
γ if r < i � p.

The following lemma is easy to prove.

Lemma 2.4. The vector m(s) belongs to V (p, s) and for every vector v ∈ V (p, s)
one has π(v)� m(s). So, m(s) is, up to permutation of coordinates, the only mini-
mal vector in V (p, s).

Let cj (A) denote the jth column of A. Then we have:

Proposition 2.5. Let A ∈ M(λ, µ) be such that π(cj (A)) = m(µj ) for all 1 � j �
q, in other words each column cj (A) of A is a minimal vector in V (p,µj ). Then
A is minimal. Moreover, if B is any other minimal matrix in M(λ, µ), then also
π(cj (B)) = π(cj (A)) for all 1 � j � q. In particular π(B) = π(A).

Proof. It follows from Lemma 2.4 and Proposition 2.1 that for any matrix M in
M(λ, µ), π(M)�π(A). Let B be any minimal matrix in M(λ, µ). By Lemma 2.4
π(cj (B))� m(µj ) for all 1 � j � q. If for some 1 � k � q we have π(ck(B)) �
m(µk), then, by the last part of Proposition 2.1, we would have π(B) � π(A), which
contradicts the minimality of B. Therefore π(cj (B)) = m(µj ) = π(cj (A)) for all
1 � j � k. �
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3. Matrices of type I

In this section, we state and prove the properties of matrices of type I needed in
the proof of our theorem. We asume that λ = (λ1, λ2) and µ = (µ1, . . . , µq) are
partitions of n. The main result in this section is Theorem 3.3, which says that the
decreasing sequences of the entries of two matrices of type I, in standard form, are
not comparable under the dominance order.

Recall that a matrix A ∈ M(λ, µ) is of type I if it has weakly decreasing columns
and each 2 × 2 submatrix[

a1k a1l
a2k a2l

]
, k < l,

is either a plane partition or has one of the forms[
c + 1 c

d d + 1

]
or

[
c c + 1

d + 1 d

]
.

Lemma 3.1. Let A be a matrix of type I. Suppose
[
c+1
d

]
and

[
d
d+1

]
are two columns

of A, and let
[
e
f

]
be a third column of A. Then:

(1) If e + f = c + d + 1, then
[
e
f

]
is equal to either

[
c+1
d

]
or

[
c
d+1

]
.

(2) If e + f > c + d + 1, then e � c + 1 and f � d + 1.
(3) If e + f < c + d + 1, then e � c and f � d .

Proof. First assume e + f = c + d + 1. If e < c, then it follows from the definition
of type I that

[
e
f

]
is to the right of

[
c+1
d

]
and that the submatrix[

c + 1 e

d f

]
is a plane partition. This implies c + d + 1 > e + f , which contradicts our assump-
tion. Thus e � c. If e > c + 1, we similarly obtain a contradiction. Therefore e =
c, c + 1 and (1) follows. Secondly, assume e + f > c + d + 1. Then column

[
e
f

]
is

to the left of columns[
c + 1
d

]
and

[
c

d + 1

]
,

and by definition of type I[
e c + 1
f d

]
and

[
e c

f d + 1

]
are plane partitions. Thus (2) follows. Statement (3) is proved similarly. �

Suppose that A ∈ M(λ, µ) satisfies the hypothesis of the previous lemma. Then
the block of A formed by all columns

[
e
f

]
with e + f = c + d + 1 will be called

an npp-block (npp stands for non-plane partition). By reordering the columns of the
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block in such a way as to have the first row of the block weakly decreasing we obtain
a matrix B in M(λ, µ) with π(B) = π(A) and such that its corresponding npp-block
has the form[

c + 1 · · · c + 1 c · · · c

d · · · d d + 1 · · · d + 1

]
. (3)

In general if A is a matrix of type I, we can reorder the columns within each of its
npp-blocks as indicated above. The resulting matrix will be denoted by Ā. It is a
matrix in M(λ, µ), of type I, with π(Ā) = π(A), such that its first row is weakly
decreasing and each npp-block looks like (3). Ā will be called the standard form of
A. IfA = Ā, we will say that A is in standard form. Note that if A is a plane partition,
A has not npp-blocks and A is already in standard form.

Lemma 3.2. Let A, B ∈ M(λ, µ) be of type I, in standard form. Then A = B if and
only if π(A) = π(B).

Proof. Assume that π(A) = π(B). Since A and B are in standard form, their first
rows are weakly decreasing. Then the largest entries of A and B are precisely a11 and
b11. Then π(A) = π(B) implies a11 = b11, and therefore a21 = b21. Denote by Ã,
respectively B̃ the matrix obtained from A, respectively from B by deleting the first
column. Then Ã and B̃ have their first row and their columns weakly decreasing and
π(Ã) = π(B̃). This implies that their first columns are equal. We proceed inductively
and conclude that A = B. The converse is obvious. �

For any matrix A ∈ M(λ, µ) of type I, in standard form, we define a total order
<A on the set

P = {
(i, j)

∣∣ i = 1, 2 and 1 � j � q
}

of positions of A as follows: First, we consider an auxiliary matrix Â = (̂aij) obtained
from A by substituting each npp-block of the form (3) with g columns equal to

[
c+1
d

]
and h columns equal to

[
c
d+1

]
by the matrix[

c + g
g+h · · · c + g

g+h
d + h

g+h · · · d + h
g+h

]
with g + h columns and rational entries. It follows from Lemma 3.1 that Â has weak-
ly decreasing rows and columns; it also has row sum vector λ and column sum vector
µ. We now define <A by

(i, j) <A (k, l) if

{
âij > âkl or
âij = âkl and either (i < k or i = k and j < l).

(4)

For example, if

A =
[

10 10 9 9 9 7 7 6 6 4 4 3 3 2 2
10 9 9 8 8 7 4 5 5 2 2 3 3 2 1

]
,
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then

Â =
[

10 10 9 9 9 7 6 1
3 6 1

3 6 1
3 3 1

2 3 1
2 3 1

2 3 1
2 2 2

10 9 9 8 8 7 4 2
3 4 2

3 4 2
3 2 1

2 2 1
2 2 1

2 2 1
2 2 1

]
and the total order on P is given by the diagram

We will denote by IA(k,l) the interval {(i, j) ∈ P |(i, j) �A (k, l)}. We use this or-
der to prove the following.

Theorem 3.3. Let A,B ∈ M(λ, µ) be of type I, in standard form. If A /= B, then
π(A) and π(B) are not comparable in the dominance order.

For the proof we need two technical lemmas.

Lemma 3.4. A ∈ M(λ, µ) be of type I, in standard form. Let y = |IA(1,s)| denote the

cardinality of the interval IA(1,s) for 1 � s � q. Then the y largest entries of A are

precisely those aij with (i, j) ∈ IA(1,s).

Proof. If A is a plane partition, then A = Â and the claim follows from (4). If
this is not the case, we just have to observe that if some (2, j) ∈ IA(1,s) is a position
corresponding to an entry lying in some npp-block of A, then by Lemma 3.1 and (4)
all positions corresponding to entries in the second row of such npp-block belong to
IA(1,s). �

The following lemma is proved in a similar way.

Lemma 3.5. Let A in M(λ, µ) be of type I, in standard form. Suppose that either
a2s does not belong to an npp-block or a2s lies in the last column of an npp-block for
some 1 � s � q, let y = |IA(2,s)|. Then the y largest entries of A are precisely those

aij with (i, j) ∈ IA(2,s).

Proof of Theorem 3.3. Let π(A) = (α1, . . . , α2q) and π(B) = (β1, . . . , β2q). Let
u be the position of the first column in which A and B differ. Since A and B play
symmetric roles we may assume a1u > b1u. Let X = IB(1,u) and x = |X|. Then, by
Lemma 3.4

x∑
h=1

αh �
∑
(i,j)∈X

aij >
∑
(i,j)∈X

bij =
x∑
h=1

βh. (5)
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To finish the proof we will find a y such that
y∑
h=1

αh <

y∑
h=1

βh. (6)

Let E = (eij) be such that A = B + E. Note that e1j + e2j = 0 for all 1 � j � q,
that

∑u
j=1 e1j > 0, and thus

∑u
j=1 e2j < 0. Then

m = min


s∑
j=1

e2j

∣∣∣∣ 1 � s � q

 < 0.

Let w be the position of the last column in which m is attained. Note that w < q. We
will distinguish three cases. In each of them we define an interval Y of P, and using
the following notation: y = |Y |, k = max{j | (1, j) ∈ Y } and l = max{j | (2, j) ∈
Y }, we prove

y∑
h=1

αh =
∑
(i,j)∈Y

aij, (7)

k > w and
l∑
j=1

e2j = m. (8)

Case 1: (2, w) <A (1, w + 1). Let Y = IA(1,w+1). Then (7) follows from Lemma
3.4. Here k = w + 1 and l = w. Thus (8) holds.

Case 2: (1, w + 1) <A (2, w) and either a2w does not belong to an npp-block
or it lies in the last column of an npp-block. Let Y = IA(2,w). Then (7) follows from
Lemma 3.5. Here k � w + 1 and l = w. Thus (8) holds.

Case 3: (1, w + 1) <A (2, w) and a2w is in an npp-block-like (3), but not in
the last column of the block. Then (a2w, a2w+1) is either (d, d), (d, d + 1) or (d +
1, d + 1). By the definition of w we have e2w � 0 and e2w+1 > 0. These inequali-
ties, the identity A = B + E and the fact that the first row of B is weakly decreasing
imply that (a2w, a2w+1) = (d, d + 1) and (b2w, b2w+1) = (d, d). Then e2w = 0. Let
f denote the position of the first column of the npp-block, thus f � w. We claim that
b2s = d for all f � s � w. This is shown by induction on s. It is true for s = w.
Let f � s < w and assume, by induction hypothesis, that b2t = d for all s < t �
w. Then e2t = 0 for all s < t � w, and

∑s
j=1 e2j = ∑w

j=1 e2j = m. Thus e2s � 0.
Since the first row of B is weakly decreasing, we must have e2s = 0. Therefore
b2s = a2s = d . Our claim follows. It implies 1 < f .

If a2f−1 � c, we define Y = IA(2,f−1). Then (7) follows from Lemma 3.5. Also
(1, s) ∈ Y for all f � s � w + 1. Hence k > w. Since l = f − 1 and e2f = · · · =
e2w = 0, (8) holds.

If a2f−1 � c + 1, we define Y = IA(1,w+1). Then (7) follows from Lemma 3.4.
Here k = w + 1 and l = f − 1, and as in the previous case (8) holds.
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Then, in cases 1–3, we have, by (7) and (8), that

y∑
h=1

αh =
∑
(i,j)∈Y

aij

=
∑
(i,j)∈Y

bij +
k∑
j=1

e1j +
l∑
j=1

e2j

=
∑
(i,j)∈Y

bij +m−
k∑
j=1

e2j .

Since k > w, we have m− ∑k
j=1 e2j < 0. Therefore

y∑
h=1

αh <
∑
(i,j)∈Y

bij �
y∑
h=1

βh,

and (6) holds. �

Remark 3.6. If A ∈ M(λ, µ) is of type I, then

λ1 − λ2 �
∣∣{1 � j � q |µj is odd

}∣∣.

4. Matrices of type II

In this short section, we collect two results on matrices of type II needed in the
proof of our main theorem. We assume that λ = (λ1, λ2) and µ = (µ1, . . . , µq) are
partitions of n. Recall that a matrix A ∈ M(λ, µ) is of type II if it has at least one
increasing column (a1k < a2k for some 1 � k � q) and |a1j − a2j | � 1 for all 1 �
j � q.

The first result is a particular case of Proposition 2.5.

Lemma 4.1. If A ∈ M(λ, µ) is of type II, then A is minimal. Moreover, if B is any
other minimal matrix in M(λ, µ), then π(cj (B)) = π(cj (A)) for all 1 � j � q, and
B is of type II. In particular π(A) = π(B).

Remark 4.2. If A ∈ M(λ, µ) is of type II, then

λ1 − λ2 <
∣∣{1 � j � q |µj is odd

}∣∣.
Note that Remarks 3.6 and 4.2 imply that there cannot be simultaneously a matrix

of type I and a matrix of type II in a set M(λ, µ).
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5. Proof of the main theorem

In this section, we conclude the proof of Theorem 1.1. We assume that λ =
(λ1, λ2) and µ = (µ1, . . . , µq) are partitions of n.

One direction of the proof of the theorem is contained in the following.

Proposition 5.1. If A is minimal in M(λ, µ), then A is either of type I or of type II.

Proof. If A has at least one increasing column, then, since λ1 � λ2, it follows from
Corollary 2.3 that |a1j − a2j | � 1 for all 1 � j � q. Therefore A is of type II. Now
suppose that all columns of A are weakly decreasing. Let 1 � j < k � q. Then either

S =
[
a1j a1k
a2j a2k

]
is a plane partition or a1j < a1k or a2j < a2k . If a1j < a1k , the condition µj � µk
implies a2j > a2k . Then by the corresponding result for columns of Corollary 2.3,

S =
[
a1j a1j + 1

a2k + 1 a2k

]
.

If a2j < a2k , then we show similarly that

S =
[
a1k + 1 a1k
a2j a2j + 1

]
.

Therefore A is of type I. �

For the other direction we know by Lemma 4.1 that matrices of type II are mini-
mal. So it remains to show that matrices of type I are minimal. Let A ∈ M(λ, µ) be
of type I. Since M(λ, µ) is a finite set, there exists a minimal matrix B in M(λ, µ),
such that π(A)�π(B). Proposition 5.1 implies that B is either of type I or of type
II. Remarks 3.6 and 4.2 imply that B has to be of type I. Let Ā, respectively, B̄ be
the standard form of A, respectively, of B; thus π(Ā) = π(A)�π(B) = π(B̄). Then
Theorem 3.3 implies Ā = B̄ and we conclude that A is minimal. This finishes the
proof of Theorem 1.1.

6. Sets of uniqueness

Sets of uniqueness were introduced in [2] and minimal matrices were used in
[6] to characterize them algebraically. In this section, we explain briefly how our
classification of minimal matrices of size 2 × q determine all sets of uniqueness
contained in a box of size 2 × q × r . We refer the interested reader to [6] for details.
We need first:
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Lemma 6.1. IfA ∈ M(λ, µ) is a plane partition of size 2 × q, then there is no other
B ∈ M(λ, µ) with π(A) = π(B).

Proof. Let B ∈ M(λ, µ) with π(A) = π(B). Since A is a plane partition, A is of
type I and therefore A is minimal by Theorem 1.1. Since π(A) = π(B), B is also
minimal. Then Theorem 1.1 and Remarks 3.6 and 4.2 imply that B is of type I. Let
B̄ be the standard form of B. Since A = Ā, Lemma 3.2 implies A = B̄. Thus B̄ is a
plane partition and B = B̄ = A. �

For a natural number, let [n] := {1, . . . , n}. LetB(p, q, r) := [p] × [q] × [r] be a
3-dimensional box. A subset S of B(p, q, r) is called a pyramid if for all (a, b, c)∈S
and all (x, y, z)∈B(p, q, r) the conditions x�a, y�b and z�c imply (x, y, z)∈S.

Theorem 6.2. Let S be a subset of the 3-dimensional box B(2, q, r) and suppose S
has weakly decreasing slice vectors. Then S is a set of uniqueness if and only if S is
a pyramid.

Proof. One implication is contained in Theorem 1′ in [6] or in Corollary 3.2 in [8].
For the other, we assume that S is a pyramid and let A ∈ M(λ, µ) be its associated
plane partition, see [6, p. 446]. Since A is of type I, A is minimal. And it follows
from Lemma 6.1 that there is no other B ∈ M(λ, µ) with π(A) = π(B). Then by
Theorem 1′ in [6], S is a set of uniqueness. �

We note that Theorem 6.2 can also be proved using additive sets, see
[8, Theorem 2].
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