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Protein–protein interactions mediate essentially all biological processes. Despite the quality of these data being
widely questioned a decade ago, the reproducibility of large-scale protein interaction data is nowmuch improved
and there is little question that the latest screens are of high quality. Moreover, common data standards and co-
ordinated curation practices between the databases that collect the interactions have made these valuable data
available to a wide group of researchers. Here, I will review how protein–protein interactions are measured, col-
lected and quality controlled. I discuss how the architecture of molecular protein networks has informed disease
biology, and how these data are nowbeing computationally integratedwith the newest genomic technologies, in
particular genome-wide association studies and exome-sequencing projects, to improve our understanding of
molecular processes perturbed by genetics in human diseases. This article is part of a Special Issue entitled:
From Genome to Function.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Genetics has been enormously successful in mapping most genes in
humans and other organisms [1,2], in identifying genetic variation
across populations [3,4], and in identifying thousands of genomic loci
associatedwith risk for disease [5] and reviewed in [6]. With the advent
of whole-genome sequencing it has furthermore become possible to
identify genetic variants that specifically alter protein function and as-
sociate these variants with disease states [reviewed in [7]]. However,
understanding how the thousands of identified genomic variants
affect complex biological mechanisms remains a major challenge and
limits our progress towards biological understanding and therapeutic
intervention.

With the increase in large-scale methods to map functional associa-
tions between genes (e.g., through gene expression correlations, text
mining associations, protein–protein interactions, synthetic lethality
relationships) many data sets are now being viewed as networks
where genes are represented as nodes, and nodes are connected by
edges if there is evidence for functional correlations between the
nodes in question in one of the aforementioned data types. This has
made it clear that most genes exert their function by collaborating
with other genes in molecular networks which represent rigid molecu-
larmachines, cellular structures, or dynamic signaling pathways [8]. The
functional correlation between genes and their neighbors in molecular
networks has led to a new paradigm where it is hypothesized that per-
turbations of entiremolecular networks by genomic and environmental
nome to Function.
influences are driving common and rare diseases [9]. To leverage this
hypothesis many approaches have been applied where genes in close
genomic proximity to incriminated genetic variants are tested for
their tendency to assemble into complicated biological networks that
do not necessarily fit the mold of conventional pathway definitions.
Although these approaches can be applied to many types of functional
genomics data, protein–protein interaction networks have emerged as
a powerful resource to complement genetic data in order to elucidate
biological systems affected in the disease [10–19].

While protein–protein interactions have many applications, this
review will focus on presenting an overview of the generation and ar-
chitecture of protein–protein interaction networks, and the implication
of these networks in current attempts to interpret genetic data and
understanding the molecular basis of human diseases.

2. Mapping and interpreting protein–protein interaction networks

2.1. Background

Since the turn of themillenniumwhen it became technically feasible
to elucidate large-scale protein–protein interaction maps (meaning
hundreds of proteins systematically tested for thousands of interac-
tions), many properties of these networks and their nodes have been
discovered. Not surprisingly the first networks were generated in
Saccharomyces cerevisiaein 2000, soon to be followed in Drosophia
melanogaster, Caenorhabditis elegans, and Homo sapiens (in 2003, 2004,
and 2005, respectively) (Table 1).

Two major approaches have been applied: yeast-two-hybrid (Y2H),
where a functional assay is used to probe the potential interactions
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Table 1
Large scale protein–protein interaction screens in eukaryotic organisms.

Method Organism Interaction Reference

Y2H A. thaliana Pairwise interaction [20]
Y2H S. cerevisiae Pairwise interaction [21]
Y2H S. cerevisiae Pairwise interaction [22]
AP-MS S. cerevisiae Protein complex [23]
AP-MS S. cerevisiae Protein complex [24]
AP-MS S. cerevisiae Protein complex [25]
AP-MS S. cerevisiae Protein complex [26]
PCA S. cerevisiae Pairwise interaction [27]
Y2H C. elegans Pairwise interaction [28]
Y2H D. melanogaster Pairwise interaction [29]
AP-MS D. melanogaster Protein complex [30]
Y2H H. sapiens Pairwise interaction [31]
Y2H H. sapiens Pairwise interaction [32]
AP-MS H. sapiens Protein complex [33]
AP-MS H. sapiens Protein complex [34]
AP-MS H. sapiens Protein complex [35]
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between two proteins [described in detail in [36] and reviewed in [37]];
and affinity purification followed by mass spectrometry [AP-MS,
reviewed in [38]]. Other approaches such as protein complementation
assays (PCA) have also been used with success [27]. Although out of
the scope of this review to go into detail with thesemethods, it is impor-
tant to stress that they are fundamentally different and in the network
data they produce. Y2H and PCA interrogate direct interactions between
two proteins, and AP–MS uses direct affinity between a bait protein and
other proteins present in a biological sample to “pull down” interacting
proteins, the precise identity of which can then be identified usingmass
spectrometry. The Y2H and PCA approach readily enables the cataloging
of direct binary interactions, which is more complicated using AP–MS,
where it is not known whether proteins “pulled down” with the bait
are direct or indirect interaction partners. On the other hand, Y2H
does not readily allow the identification of interactions that only occur
in the presence of indirect interaction partners.

The lack of concurrence between interactions reported by the
different methods early on was taken as an indication that neither of
these methods worked particularly well [39]. However, not only have
the methods improved over the years [37,38], it is increasingly being
recognized that the different methods are complementary and that
interactions captured by each method are biologically valid despite
diverging [40].

2.2. Coverage and quality of protein–protein interaction networks

Severalmethods have aimed to calculate the total amount of interac-
tions in an organism, which would help to estimate the coverage of the
current data sets. In yeast different groups have arrived at estimates
from 20,000 to 40,000 interactions among 6000 proteins [41–43]
illustrating the difficulties of precisely assessing these numbers. These
problems are likely to arise from a number of issues such as how to
combine information from Y2H and AP–MS experiments, as well as
the knowledge that interactions of a protein can be highly dynamic
and depend on the growth condition of the cell in question [25], and
the specific tissue being analyzed [15,44,45]. For this reason the
estimates of the amounts of interactions in humans have also varied
extensively from ~150,000 to N500,000 [46,47].

Similarly, it has been difficult to estimate the accuracy of protein–
protein interaction data due to its heterogeneity and in many cases
adequate reference data sets: Because protein–protein interaction
screens in many cases are identifying new interactions, missing overlap
between newly identified interactions and those reported in the
literature do not necessarily imply that the new interactions are
false positives. Earlier false positive rates for AP–MS approaches were
estimated to be 10–40%, and reproducibility in the order of 60–85%
[25,26]. However, Varjosalo et al., recently reported that the
reproducibility of AP–MS based interactions was in N95% in the same
lab, and N80% when two different labs used standardized protocols to
map interactions. It was also shown that the discrepancy between re-
producibility within and in-between laboratories was likely due to dif-
ferences in sample handling and preparation [48]. Moreover, recent
Y2H and PCA approaches have been suggested to reach false positive
rates of b5% [27,42]. Although the latter estimates are likely optimistic,
and the best way to accurately measure the false positive rates from
these studies is still being debated, there is a consensus that the newest
interaction screens are of high quality and have considerably reduced
false positive and false negative interactions compared to earlier studies
[38,40].

2.3. Protein–protein interaction databases

Some protein–protein interaction databases simply record interac-
tions from the literature and make them available to the community
in a structured manner. Others focus on predicted interactions, or on
mapping interactions experimentally determined in one organism to
homologous proteins in another. As of September 2013 the pathguide
resource lists more than 125 protein–protein interaction databases
[49]. Most of these are independently run and funded, and do not coor-
dinate their curation practices, or their efforts to make data available to
the community. For these reasons, it is very difficult to know the precise
nature of the interactions that users extract from these repositories,
what the quality of the data is, and which organism the data originally
comes from. Another layer of complexity is added by different policies
between databases in how to report interactions between proteins
where the constructs come from different organisms. Where most
databases report the data to come from two organisms, others map
the interactions to a single species, e.g., Human Protein Reference
Database (HPRD) [50]. Additionally, it is the policy of some databases
to only curate the subset of data from an article that falls into the data-
bases' particular area of focus, where others systematically curate all
data in the publication in question.

To address these challenges, a handful of the most prominent
databases — Database of Interacting Proteins (DIP) [51], IntAct [52],
Molecular Interaction Database (MINT) [53], MatrixDB [54], Microbial
Protein Interaction Database (MPIDB) [55], InnateDB [56], Interologous
Interaction Database (I2D) [57], and Molecular Connections (http://
www.molecularconnections.com) — have created the International
Molecular Exchange (IMEx) consortium [58], to make a unique set of
protein interactions available from a single web portal (http://www.
imexconsortium.org), and to develop common curation and data pre-
sentation practices. In 2011 48% of the publications curated by any data-
base in this consortium was made available on the IMEx consortium
webpage [58], and this number is likely to increase in the coming years.

Attempts to quantify the reliability of the curation process between
databases, led to the dismal estimate that the agreement between inter-
actions curated from the same literature by different databases was in
the order of 55%, and that proteins were correctly identified in only
71% of the cases [59,60]. However, in response to these numbers the da-
tabases being scrutinized engaged in a recuration effort to firmly estab-
lish that curation mistakes only apply to 2%–9% of the data in question
[61], and that many errors reported by Cusick et al., were, in fact, not
curationmistakes, but related to disagreements on terminology that de-
scribes different types of interactions, and what it means to provide a
curated data set. This debate highlights important issues regarding pro-
tein interaction data, its related semantics, and the misalignment be-
tween the output provided by the protein interaction databases and
community expectations of the curated data. The databases in the
IMEx consortium provide the data that is available in the literature in
a principled formatwithout assessing its quality. In some cases users be-
lieve that curated data is equivalent to high-confidence data, and that
the curation process is a quality filter, which is not the case (nor should
it be). Simultaneously, the recuration effort showed that, although
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mistakes undoubtedly occur, they are not commonplace andmostly at a
low and acceptable level. Looking ahead, as efforts like the IMEx consor-
tium gain even more traction curation practices will undoubtedly
improve, as will the information to the users about the specific details
of the invaluable data provided by the databases.

2.4. Global integrated protein–protein interaction networks

Although there are challenges to integrating protein interaction data
from multiple sources, it has been shown consistently that integrating
many different data sets computationally, and devising probabilistic
scores for the interactions based on a variety of schemes can lead to a
very high accuracy when these integrated networks are thoroughly
benchmarked [15,16,39,41,62]. Perhaps more importantly, integrated
protein interaction networks have in many cases provided high quality
predictions of new biology that can be confirmed through follow-up ex-
periments for example by identifying unexpected genes involved in pan-
creatic biology and type 1 diabetes [17,18] by identifying novel nucleolar
proteins [63], by identifying unexpected proteins involved in heart de-
velopment and congenital heart diseases [44,64], by identifying new
components of FGF signaling thatweremutated in patientswith congen-
ital hypogonadotrophic hypogonadism [65], by elucidating in vivo phos-
phorylation networks [66], and by identifying networks and proteins
involved in autoimmunediseases [12,13]. These examples suggest the bi-
ological value and importance of integrated networks as a framework for
understanding complex phenotypes and to augment and interpret large-
scale data sets emerging from the genetic and genomics communities.

For these reasons it is not surprising that a number of different
resources are available that provide integrated networks of protein–
protein interactions in many cases combined with other data types. A
non-exhaustive list includes InWeb [16], GeneMANIA [67], Funcoup
[68], I2D [57], PINA [69], ConsensusPathDB [70], STRING [62], and
IMEx consortium [58], and mentha [71].

It is out of the scope of this review to go into an in depth comparison
of these different resources, but I recommend interested users to care-
fully assess at least the source of the data in the different databases,
their approach to quality controlling and scoring the underlying data,
and that users know exactly what the biochemical interpretation of an
edge is for the different networks. The latter is important because
many of the networks resulting from these and other databases are
commonlymisinterpreted to be based strictly on protein–protein inter-
action data although they inmany cases are amix of protein–protein in-
teractions, regulatory associations, synthetic lethality relationships,
pathway co-occurrence, and text-mining associations. To our knowl-
edge only InWeb, IMEx consortium, mentha, I2D and PINA exclusively
use protein–protein interaction data to produce networks. If the objec-
tive of creating a network is to identify all possible functional associa-
tions between a gene of interest and other genes, including many
types of functional association data in the networkmay be an advantage
because of increased coverage. However, the increase in coverage
comes at the cost of a more ambiguous interpretation of what the net-
work means from a biochemical and molecular biology perspective.
Moreover, since the point of many network analyses is not only to anno-
tate functional associations between genes of interest, but to inform
specific follow-up experiments, it can be an advantage to constrain the
network building to physical protein interactions. Not only are these
interactions often the most informative backbone of the network in
question, in the case that an interesting network is identified itwill be im-
mediately clear that a Y2H or AP–MS experiment centered on interesting
network nodes, will be a means to validate, consolidate, and expand the
network in question to get added insight into its molecular biology.

2.5. Properties and terminology of protein–protein interaction networks

With the emergence of large-scale protein–protein interaction
networks the data were amenable to scrutiny using tools borrowed
from mathematical network theory. These analyses showed that the
distribution of interactions follow specific graph-theoretical laws,
where the probability of observing a protein with a small number of in-
teractions (~5) is high, and the probability of observing a protein with
many (N100) interactions is low. In other words, most proteins have a
small amount of interactions, and a fewproteins have hundreds of inter-
actions. A plot of the amount of interactions for a given protein against
the probability of observing a protein with this amount of interactions
will follow a downward sloping straight line in a double logarithmic
plot, which is termed a power law distribution (Fig. 1) in graph theory
[8]. Although this concept may seem abstract, it usually becomes more
intuitive when we consider social networks like Facebook (https://
www.facebook.com/) or LinkedIN (https://www.linkedin.com/) where
a small percentage of people have thousands of connections and but
most have several orders of magnitude fewer. The distributions of peo-
ples, Facebook friends, or LinkedIN connections also follow a power law,
and would be depicted as a straight line in a double logarithmic plot.

Nodes with the highest amount of interactions in a network are
often referred to as ‘hubs’. In protein networks, some hubs tend to
form physical interactions with all of their interaction partners at the
same time and place (and have been called party hubs), while others
engage in piecemeal interactions one at a time in different cellular loca-
tions (termed date hubs) [72], although it should be noted that the bio-
logical validity of these terms has been extensively debated [73–75].

What is commonly accepted is that most networks are ‘small world’,
meaning that there is a relatively short distance between any pair of
nodes [76]. Additionally, they showa high degree of clustering,meaning
that the interaction partners A and B of a given protein S often interact
with each other too [8,76,77]. In social networks this translates to the
more intuitive notion that the friends A and B of person S are likely to
also be friends with each other due to the social behavior of humans.
The biological interpretation of a high degree of clustering in the
networks is that proteins, like most people, like to work in groups to
execute their function. This biological organization has important impli-
cations for molecular biology in that clustering in the network leads to
topological modules where proteins are more connected to each other
than to the rest of the network (Fig. 2A), and it turns out that these
topological modules represent groups of nodes that have a common
biological role such as being different members in a biological pathway,
rigid architectural structure, or molecular machine (Fig. 2B). For this
reason, running clustering algorithms on protein networks can in
many instances retrieve known functional modules such as the
exosome or ribosome, and in some cases — in a purely data driven
manner — add new proteins to these, or identify modules that were
not previously known [25,63]. As I will discuss in Section 3, the
organization of protein–protein interaction networks also has impor-
tant implication for human diseases.

2.6. Future challenges measuring cell-type specific interactions and
estimating the size of the full human interactome

Despite the clear value of having cell-type specific interactomes, so
far no efforts have been launched to generate such a resource. Therefore,
it remains unclear what the variations in the interactions of a given
protein or functional module will be across different cell types and
what this will tell us about the size of the human interactome.

The question of the size of the full interactome given the knowledge
about interactions in a handful of cellular contexts, is in many ways
similar to the question of the size of the internet given the indexation
of pages from different search engines that was of major debate in the
late 1990s. To gain insight engineers proposed to use relative size and
overlap analyses from different search engines to approximate these
numbers (http://www7.scu.edu.au/1937/com1937.htm). Similar ap-
proaches could be employed to interaction data both to compare the
similarity of different cellular interactomes as well as to estimate the
completeness of existing generic networks. For example, the relative
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Fig. 1. Properties of protein–protein interaction networks. The properties of randomnetworks (A), scale-free networks (B), and hierarchical networks (C). Protein networks are also called
scale free, because it is not possible to define a meaningful average node in these networks. Plotting the degree k of nodes in protein interaction networks against the probability of ob-
serving that degree P(k), follows a power law (Bb). In these networks the clustering coefficient C(k) does not change as the function of the node degree (Bc), meaning that nodeswith few
interactions and a lot of interactions alike tend to participate in highly connected topological modules in the network. These properties are different for random networks (Aa, Ab, Ac)
where edges are randomly distributed across nodes, and hierarchical networks (Ca, Cb, Cc), where clusters are united in an iterative manner.
Figure is reproduced from [8] with permission.
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size of the experimentally derived network for bait A of interest across
10 cellular contexts (Aexp1–10) compared to the network of A in
InWeb [16] (Ainweb) is the fraction of Aexp1–10 in Ainweb, which
can formally be expressed as:

Size Aexp1−10ð Þ=size Ainwebð Þ ¼ Pr Aexp1−10& AinwebjAinwebð Þ
=Pr Aexp1−10&AinwebjAexp1−10ð Þ

where Pr(Aexp1–10) represent the probability that an interaction of A
is seen experimentally in any of the 10 cell contexts, and Pr(Aexp1–10
AInWeb | Aexp1–10) represent the conditional probability that an ele-
ment belongs to both sets given that it belongs to Aexp1–10. Similar
analyses can be carried out for other networks of A (e.g., in Astring,
and Amentha in STRING [62] and mentha [71], respectively), which
will enable us to determine 1) the relative completeness of the experi-
mental data in the 10 cell contexts compared to existing interaction
data, and 2) the overlap between experimentally derived data and
literature-based networks. Furthermore, analogous comparisons of the
individual cellular networks (e.g., A1 vs A2) will provide answers to
the variability between cell types.

Although this type of analyses will not provide a definitive answer
on the total amount of interactions in humans, it will give us much
more precise estimates of the completeness of existing data sets, the
coverage of the interactions of a protein in a given cell type, and provide
insight into where existing networks are close to saturation versus
where they are sparse.

The technology to carry out these experiments is available, and we
should in the near future begin to see these types of analyses emerge
in the literature.
3. Protein–protein interaction networks for understanding complex
diseases and phenotypes in humans

As large-scale protein interaction maps became available, it was
soon noticed that genes involved in similar phenotypes often interacted
physically at the level of proteins in model organisms [25,28,29], and in



Fig. 2. Themodular organization of protein–protein interaction networks. Protein interaction networks have topological modules inwhich proteins aremore connected to each other than
to the reset of the network (A). These represent genes in the same pathways, molecular machines, or rigid architectural structures, i.e., functional modules (B). This has implications for
human disease biology, as genes involved in the same disease tend to fall into the same clusters or functional modules. Modules enriched for genes from a particular disease are termed
disease modules (C).
Figure is reproduced from [9] with permission.
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humans [78]. These discoveries had obvious implications for human ge-
netics, because at the time there were more than 800 linkage intervals
reported in the online Online Mendelian Inheritance in Man database
[(OMIM) McKusick-Nathans Institute of Genetic Medicine, Johns Hop-
kins University (Baltimore, MD) (http://omim.org/)], without an obvi-
ous candidate gene, and prioritizing genes in these intervals for
follow-up validation was a major challenge. The logic was straightfor-
ward even if the analysis of interaction data wasn't: perhaps it would
be possible to systematically analyze protein networks and identify
disease modules (that represent pathways or protein complexes) in
which several members were known to cause a particular disease
(e.g., Alzheimer's disease) (Fig. 2C). In this case non-disease associated
members of that module would make good candidates in that disease,
in particular if a gene encoding one of these proteins was located in a
linkage interval associated with Alzheimer's .

A barrage of methods that capitalized on several different network-
based strategies has now been published. A comprehensive review of
these methods has been written by Moreau and Tranchevent [79], and
here we will only focus on a subset of the earliest methods that used
protein networks as part of the approach, as they laid the foundation
and framework for most of the subsequent methods detailed in this re-
view. In addition to themethodsmentioned inMoreu and Tranchevent,
I encourage readers interested in other methods to familiarize them-
selves with Gene Relationships Among Implicated Loci (GRAIL) [80]
and Meta-Analysis Gene-set Enrichment of Variant Associations
(MAGENTA) [81] which use text mining networks, and pathway min-
ing techniques, respectively, to analyze genetic data.

3.1. Using protein networks to prioritize linkage intervals

The first method by Oti et al. [78] relied on unscored binary interac-
tion pairs to identify candidates in a linkage interval that interactedwith
proteins coded by genes known previously to be involved in completely
identical diseases. Others incorporated unscored human protein inter-
action data and other functional association data types into a network
where edges could represent both protein interactions as well as other
functional connections between the genes [82,83], and these two latter
methods did not take advantage of cross-species integration of interac-
tion data. Another approach was to map genes in linkage intervals to
protein complexes, and, by systematically text mining human disease
descriptions, to rank the protein complexes based on the diseases repre-
sented in these complexes (Fig. 3) [16]. In the community, there was
considerable surprise that these methods could accurately identify
known disease genes even when knowledge contaminated data (i.e.,
data that was potentially derived after the identification of the disease
gene the method was trying to identify), was removed from the proce-
dure [16,82,83]. The validity of several of these approaches was further
confirmed when they successfully identified new unexpected genes in-
volved in type 1 diabetes [18], and congenital heart diseases [64].
3.2. Integrating genome-wide association studies and protein networks for
biological discovery

The advent of genome-wide association studies (GWAS) [6] led to
the discovery of many single nucleotide polymorphisms (SNPs) associ-
ated with phenotypic states. In the most straightforward implementa-
tion GWAS compares the frequency of SNP alleles between cases and
controls. However, due to linkage disequilibrium in the human genome
(i.e., correlation between variants that are in close genomic proximity),
a cost efficient strategy is to define a set of proxy SNPs that each repre-
sents genomic regions that can harbor tens of genes. In this way the
result of a GWAS is the association of SNPs that represent different
genomic regions, with little or no information as to which genes in
these regions (if any) are likely to be the underlying biological cause
of the association signal.

To mitigate this challenge several methods have integrated GWAS
loci and protein interaction data to identify networks of proteins
in these loci that interact more than a random expectation. Rossin
et al. [13] developed a disease association protein–protein link evaluator
(DAPPLE, www.broadinstitute.org/mpg/dapple/) to show that proteins
encoded in Crohn's disease and rheumatoid arthritis physically interact
to suggest specific biological processes and candidate genes in incrimi-
nated loci. This algorithm has become widely used in the genetics
community and has for example also been used to analyze data from
inflammatory bowel diseases [84] and type 2 diabetes [85] (Fig. 4). Sim-
ilarly, Bergholdt et al., integrated protein–protein interactions and
GWAS data to identify candidate genes in type 1 diabetes [14]. Another
interesting integration of protein networks and GWAS data was by
Hannum et al. [86], who integrated GWAS data and protein complexes
in yeast to identify genetic interactions that informed areas of yeast
biology that were not well covered by earlier screens. Together, these
analyses have revealed that genes in loci associated to a phenotype
through GWAS have a tendency to physically interact in networks that
begin to highlight the biology underlying some of the phenotypes in
question.

http://omim.org/
http://www.broadinstitute.org/mpg/dapple/
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Fig. 3. Using protein complexes to prioritize genes in linkage intervals. First, a virtual pull-down of each candidate gene is executed by querying a protein interaction network for
interactors of the candidate. Each complex is named the candidate complex. Second, proteins for which the corresponding gene is known to be involved in a disease are identified in
the candidate complex, and thephenotypic similarity of diseases represented in the complex and thedisease related to the linkage interval are compared using a computational phenotype
similarity score. In this case, proteins that are involved in different disorders comparable to Leber congenital amaurosis are colored according to their clinical overlapwith this disease. The
last step involves scoring and ranking the candidates by the Bayesian predictor. Each candidate is scored based on phenotypes associatedwith the proteins in the candidate complex, and
all candidates in the interval are ranked based on this score.
Figure is reproduced from [16] with permission.
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Alternative ways of combining GWAS studies and protein net-
works have been proposed by Califano et al. [87], who argue that
pathway-wise association studies — where association signal is tallied
across pathways — is a way to augment GWAS data, and to improve
the low signal-to-noise relationships in these studies. As one of the
Fig. 4. Augmenting and interpreting GWAS data using protein–protein interaction networks. Th
interaction networks, revealed a CREBBP network (A) and an Adipocytokine network (B).
Figure reproduced from [85] with permission.
major advantages to GWAS studies are that they are not biased by
prior assumptions about the biology of a disease, these approaches are
the most attractive if the genetic signal can be complemented and
constrained by similarly unbiased protein network data enabling us to
identify unexpected or de novo pathways involved in common complex
e systematic integrating GWAS loci, individual type-2-diabetes related genes, and protein
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disorders. Methods such as the ones proposed above become increas-
ingly feasible as large-scale methods to map protein networks evolve.

Although it is interesting to make an annotation of the potential
pathways spanning loci discovered in GWAS studies, it is more exciting
if network-based approaches can also predict new biology relevant to
these diseases in question. For example, Rossin et al. [13] showed that
a network spanning Crohn's disease loci from one of the earliest
GWAS studies, significantly predicted several genetic variants that
were discovered in a later meta analysis of several Crohn's disease
GWAS', and where the prediction could not in any way have been
knowledge contaminated. Similarly, Berchtold et al. [18], followed up
on specific genes that were predicted to be involved in type 1 diabetes
based on their interaction patterns. Expression profiling in human
pancreatic islets exposed to pro-inflammatory cytokines, identified
that cytokine-regulated genes in these networks are likely to play an
important role for type 1 diabetes in pancreatic islets.

Most disease-associated SNPs have turned out to affect regulatory
regions, rather than reflecting protein-coding changes. As such most
genetic variation underlying common complex phenotypes probably af-
fect proteins by the expression level of the corresponding mRNA [88].
Not only are common variants known to affect transcript levels, but a re-
cent article shows that common variants in many cases correlate with
protein abundance [89]. Given that protein networks significantly
connecting GWAS loci have been observed repeatedly, these observa-
tions raise the question about how protein networks are affected by
regulatory variants in human populations, which currently remains an
open question. It is conceivable that changes in protein abundance of
network members contribute to a subtle change in information flow
in these networks, but future experiments will have to be carried
out to test such a hypothesis, and it remains an exciting area of
investigation.

Despite our lack of insight into how common variants directly affect
the composition and function of cellular protein networks, it is now
clear that combining GWAS data and protein networks offer exciting
avenues to the interpreting of association data, informing biology, and
gaining molecular insight into common complex disorders.

3.3. Interpreting exome sequencing data using protein networks

As it became feasible to sequence the protein-coding portion of the
genome (the exome) using next-generation sequencingmany common
and rare exomevariants have been reported [7]. Interpreting this deluge
of data poses analogous, but conceptually different, problems as the
challenges of interpreting GWAS association signals. GWAS produces a
set of common variant loci that are significantly associated to the phe-
notype in question, but where the specific gene relevant to the associa-
tion signal is unknown. In contrast, exome-sequencing points to specific
genes harboring the identified genomic variants, but there is very rarely
a single genetic variant that is significantly associated to the phenotype
being analyzed. Where GWAS identifies sets of genes lying in a
region significantly associated with the phenotype, exome sequencing
identifies a list of genes where no one in particular has a very strong
statistical signal. Also here, there have been notable successes in
interpreting genetic data using protein interaction networks.

Two studies analyzing the rates and patterns of exonic de novo mu-
tations in patients with autism spectrum disorders independently
showed that genes harboring these mutations significantly interact
at the level of proteins in a chromatin remodeling network [10,11]
(Fig. 5). Where Neale et al., used the protein interaction network
InWeb [15,16] combined with the DAPPLE algorithm [13] to identify
their network, O'Roak et al., used GeneMANIA [67] and created their
own null models based on simulations [11]. Importantly, the patients
sequenced to identify de novo mutations were different. Despite using
different cohorts, different protein networks, and different statistical
methods, both analyses converged on the same biology hereby serving
as each other's validation that the biology of chromatin remodeling
plays an important role in the pathogenesis of autism which was
completely unexpected.

3.4. Other applications

Besides interpreting and augmenting linkage intervals, GWAS loci,
and genetic variants resulting from exome-sequencing studies, protein
networks have been applied in many ingenious ways to gain insight
into the architecture of complex human phenotypes.

An early study analyzed the interactions of proteins involved in
human ataxias to gain understanding of their biological interdepen-
dencies and to map their links to known neurodegeneration proteins
[90]. To my knowledge this was the first large-scale systematic experi-
mental protein–protein interaction map of a human disease and
showed that ataxia-related proteins interacted with each other to a
much higher degree than one would expect by random.

Due to the technical limitations of generatingprotein networks asso-
ciatedwith diseases in humansmore generally, we used InWeb to iden-
tify 1524 protein complexes involved inmore than 1000 specific human
diseases, and added tissue resolution to these complexes using gene ex-
pression data [15]. When we plotted the expression signature of each
complex with data on which tissues were affected if members of the
complex were mutated, we observed a significant correlation, illustrat-
ing that disease complexes exhibit tissue-specific signatures both in
terms of expression and pathological manifestations, and that these sig-
natures converge on a specific spatio-temporal location in the human
organismwhere the complex has its most important function. Although
our analysis relies on integrated protein–protein interaction data from
many studies, the reported complexes are of similar quality than the
major experimental screens in Eukaryotes. Using a computational
approach we circumvented some of the challenges of experimentally
generating and analyzing thousands of complexes across hundreds of
human diseases and tens of tissues, and made the resulting compendi-
um available online (www.cbs.dtu.dk/suppl/dgf).

Even though it is convenient to categorize genetic risk factors based
on the methodology that identifies them, and risk factors within these
categories are almost always analyzed in isolation, it is conceivable
that large protein networks can be perturbed copy number variants
(CNVs), exomic variants, SNPs, and environmental influences that in
some combinatorial way drives a particular disease. Therefore, analyz-
ingmany different categories of risk factors in combination using an in-
tegrated approach could shed new light on the biology of a disease. This
hypothesis has been supported by studies of congenital heart diseases
[44,64], and schizophrenia [91], where large networks — that do not
fit into the definitions of existing biological pathways — driving heart
and neurodevelopment, respectively, have been shown to be perturbed
by heterogeneous genetic risk factors. These analyses support the
hypothesis by Califano et al. [87], that large molecular networks are
drivers of diseases while simultaneously highlighting specific genes
and genetic risk factors for functional follow-up studies.

Exciting new understanding of how vira hijack the machinery of
human cells during human immune deficiency (HIV) infections has
emerged by analyzing the protein–protein interactions of viral and
human proteins [92,93]. Similarly, analyzing how DNA tumor virus
proteins interact with human proteins have also recently been used to
better separate cancer driver from passenger mutations showing that
mutations arising in human tumors converge on proteins also targeted
by the aforementioned vira [94].

Finally, analyzing howdisruption of single edges in a protein interac-
tion network affects biology and the role that these types of perturba-
tions play in human Mendelian disorders has recently come under
scrutiny [19,95]. These analyses that capitalize on integrating genetic
data with structurally resolved protein interaction networks suggest
that many in-frame missense mutations observed in Mendelian disor-
ders disrupt protein domains responsible for mediating specific edges
in a protein interaction network. This is an exciting discovery, which
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Fig. 5.De novo exomemutations reveal a significant chromatin remodeling network in autism spectrum disorders. Genes that harbor de novomutations in patients with sporadic autism
spectrum disorders, significantly interact at the level of proteins, revealing a chromatin remodeling network (the sub network including SMARCC2). Proteins are colored based on the
significance of their interactions with other proteins in which de novo mutations were found as determined by the DAPPLE algorithm using protein interactions from InWeb.
Figure is reproduced from [10] with permission.
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will improve our molecular-resolution understanding of the function of
genetic variants and hopefully enable us to incorporate this type of
information into drug discovery and treatment strategies.

4. Outlook

There is little doubt that the newest protein–protein interaction
platforms provide data of high quality, and over the last years, standards
for reporting protein–protein interaction data, as well as the agreement
on common curation practices have been established enabling the data
to be available in structured databases in a uniform manner.

Despite these advances, progress towards a molecular level under-
standing of many diseases, and the effect of specific disease alleles in
human populations are currently limited by a number of factors. These
factors include incomplete understanding of protein interaction data
in humans, as well as tools to explore these networks and to integrate
genetic and proteomic data. As one example of areas in which the anal-
ysis of protein networks must improve is statistical testing. While the
field of statistical genetics is relatively mature and has reached some
community standards for interpreting and reporting robust genetic
findings, the field of network analyses and integration is currently in
its infancy. For example, while some algorithms like DAPPLE [13],
GRAIL [80], MAGENTA [81], all account for the haploblock structure of
the human genome, as well as the differences in size of the genes in
the proximity of SNPs that are used as the starting point of the analysis
(gene size correlates with SNP association statistics as larger genes
will have a higher probability of being close to a SNP with low associa-
tion P values), it remains unclear from the description of many other
analogous methods if they correct for such confounders. Not only is
the correct integration with genetic data important, network-based
methods also need to take into consideration the data structure of the
networks that they rely on (e.g., degree distribution of genes). Finally,
it is often not clear whether the output P values of network-based algo-
rithms have been properly adjusted for multiple hypothesis testing
which leads to ambiguity in the interpretation of their results. There-
fore, analogous to the developments in genetics, we need — as a
community — to develop and agree on statistical tools and methods
that are reliable and take into consideration the inherent interconnec-
tedness of molecular protein networks. We also need to define a stan-
dard for identifying statistically robust findings in these networks, for
integrating with complicated genetic data sets, and for presenting
these data to non-expert users in an intuitive way.

Current interaction networks are generic and static meaning that
they are not generated or assembled under the condition of a specific
cellular context or across multiple time points and growth conditions
of the cell in question. Nor do the interaction networks contain informa-
tion about which protein isoform that mediates a specific interaction.
For many of the purposes mentioned in this review it would be optimal
to derive high-resolution cell-specific interaction networks that cover
all context-specific interactions. Proteomic technologies are evolving
quickly, and have become significantly more cost efficient in the last
years. In theory it is now feasible to imagine the elucidation of a full
human interactome across many different cell types, but the scope of
such a project is similar in size to the largest recent genomics efforts
such as the 1000 Genomes Project [3] and the ENCODE project [96].
To my knowledge this type of community-wide effort has not yet
been launched although it has been debated for years [97], and it
remains unclear when such a data set will be available.

It also remains unclear how existing algorithms that integrate bio-
logical networks and genetic data will perform in the face of large
data sets of cell-type specific interaction networks. One could imagine
several scenarios: one possibility is to pool all the cell-type specific net-
works to get a meta-network based on high-resolution experiments.
More data could improve the performance of algorithms such as
DAPPLE [13], or it may create saturated networks (where everything
connects to everything) thus drowning out the signal. A way to exploit
contextualized interaction data could be to use the algorithms to itera-
tively test cell-specific interactomes and identify the one that performs
best on a user-defined genetic data set. This would enable a data-driven
identification of the cell type that best supports the genetic data from an
interactome standpoint, similar to what has recently been accom-
plished by combining epigenetic and GWAS data to identify cell-type
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specific chromatin marks that have the most significant influence on
SNPs associated with a number of common complex traits [98].

Despite the challenges of interpreting and using protein interaction
data, and their lack of cell-specific context, they are now being used
widely to understand themolecular basis of disease. As proteomic tech-
nology improves and becomes increasingly cost-efficient and scalable,
as statistical tools and algorithms to analyze these data become avail-
able and standardized, and as geneticists become aware of the power
of filtering and integrating their data using protein–protein interactions
this work should continue to gain momentum andwill be an important
piece of the puzzle to understand the molecular biology of human
diseases.
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