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Thyroid hormones (T3, T4) have a broad range of effects on bone, however, its role in determining the
quality of bone matrix is poorly understood. In-vitro, the immortalized mouse osteoblast-like cell line
MC3T3-E1 forms a tissue like structure, consisting of several cell layers, whose formation is affected
by T3 significantly. In this culture system, we investigated the effects of T3 on cell multiplication, collagen
synthesis, expression of genes related to the collagen cross-linking process and on the formation of cross-
links.

T3 compared to controls modulated cell multiplication, up-regulated collagen synthesis time and dose
dependently, and stimulated protein synthesis. T3 increased mRNA expressions of procollagen-lysine-
1,2-oxoglutarate 5-dioxygenase 2 (Plod2) and of lysyloxidase (Lox), both genes involved in post-transla-
tional modification of collagen. Moreover, it stimulated mRNA expression of bone morphogenetic protein
1 (Bmp1), the processing enzyme of the lysyloxidase-precursor and of procollagen. An increase in the col-
lagen cross-link-ratio Pyr/deDHLNL indicates, that T3 modulated cross-link maturation in the MC3T3-E1
culture system. These results demonstrate that T3 directly regulates collagen synthesis and collagen
cross-linking by up-regulating gene expression of the specific cross-link related enzymes, and underlines
the importance of a well-balanced concentration of thyroid hormones for maintenance of bone quality.

� 2010 Elsevier Inc. Open access under CC BY-NC-ND license.
1. Introduction

Thyroid hormones (T3) and (T4) are critical regulators of skele-
tal development and maintenance. While hyperthyroidism could
cause osteoporosis, hypothyroidism results in severe developmen-
tal disturbances of bone and brain [1,2]. Recently, it was demon-
strated that depletion of the receptors for thyroid hormones,
mimicking hypothyroidism, results in severe distortions of the
growth plate and delayed bone development [3,4].

In-vitro, via thyroid hormone receptors, T3 regulates the dif-
ferentiation of osteoblasts, by increasing the expression of many
genes of the osteoblastic phenotype [5] like osteocalcin [6],
osteoprotegerin [7] and MMP-13 [8,9]. In addition to hormones,
the local environment regulates osteoblastic differentiation as
well. Although, growth and differentiation factors are the pri-
mary determinants of the cell fate, interactions of the cells with
the extracellular matrix (ECM) and other cells are important for
the differentiation process [10,11]. The ECM can affect the
behavior of the cells either by the proteins forming the ECM
or by growth and differentiation factors with their binding pro-
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teins immobilised on it. Because ECM considerably influences the
behavior of the cells, any event altering its composition or struc-
ture can have profound effects on the differentiation state [10].
Moreover, we have recently demonstrated that not only the bio-
chemical structuring of ECM, but proper cross-linking of collagen
(I) is a prerequisite for osteoblastic differentiation. Specifically, we
recently demonstrated the diminution of osteoblastic differentia-
tion on such a modified ECM [12] by using the lathyrogen b-ami-
nopropionitrile (bAPN), an inhibitor of the enzyme lysyloxidase
(Lox), which extracellularly processes collagen and initiates collagen
cross-link formation [13]. Furthermore, homocysteine, an amino
acid metabolite, which is suggested interfering with Lox action
[14], negatively influences bone quality [15–18] and modulates
gene expression and Runx2 activity in MC3T3-E1 osteoblastic
cells [19].

Recently, in the osteoblastic MC3T3-E1 culture system it was
demonstrated that 1,25D3 increases collagen quality by regulating
some genes of the enzymatic apparatus, important for collagen
cross-linking resulting in an increase of mature collagen cross-
links [20], although, collagen mRNA levels were not influenced
[20,21]. In rat osteosarcoma cells, however, 1,25D3 and thyroid
hormones up-regulate collagen mRNA expression [22]. Interest-
ingly, 1,25D3 up-regulated the collagen expression in the well-dif-
ferentiated human osteosarcoma cells MG-63, unlike in the less
differentiated SaOS-2 cell line [23].
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Aware of the importance of thyroid hormones for bone develop-
ment and maintenance, and the different effects of thyroid hor-
mones and 1,25D3 on osteoblasts, especially in mice and humans
[24,25], we investigated how T3 regulates collagen matrix forma-
tion and cross-linking in osteoblastic MC3T3-E1 cells.

2. Materials and methods

2.1. Cell culture

MC3T3-E1 cells (kindly donated by Dr. Kumegawa, Meikai Uni-
versity, Department of Oral Anatomy, Sakado, Japan) were cultured
in alpha MEM (Sigma), supplemented with 4.5 g/l glucose, 5% FCS
(Sigma) and 30 lg/ml Gentamycin (Sigma) at 37 �C under 5% CO2

in humidified air. They were subcultured twice a week using
0.001% pronase E (Roche) and 0.02% EDTA in Ca2+ and Mg2+ free
phosphate-buffered saline (PBS). To prevent a potential phenotypic
drift during repeated subcultures the cells were not used for more
than four weeks after thawing.

2.2. Determination of the cell multiplication and total protein

To estimate the cell multiplication cells were seeded in 24 wells
micro plates at a density of 5000 cells/cm2 and cultured for the
indicated time in the culture medium described above with or
without 10�7 M T3 for 1, 2, 3, 4, 8 and 12 days. Dose dependency
of T3 on cell multiplication was investigated on days 4 and 8 at
10�9, 10�8, 10�7, 10�6 M T3. After the treatment period, the cell
layer was washed with PBS and cells were detached from the cul-
ture plate by treatment with 0.002% pronase E (Roche) and 0.04%
EDTA in PBS. All cells of a well were counted in a cell counter
(Schärfe, Germany).

For the determination of cell number (DNA amount), cell layers
were washed with PBS and frozen with 1 mM Tris–HCl buffer (pH
8.0) containing 0.1 mM EDTA. During thawing, Hoechst dye (Poly-
sciences, Warrington, PA) was added (1 lg/ml in 150 mM NaCl)
and, after an incubation of 15 min at room temperature, the fluo-
rescence of the DNA was measured (excitation 360, emission
465 nm). Calf thymus DNA was used to prepare a standard curve.

To address the amount of proteins in the cultures, after washing
with PBS, the cell layers were dissolved in 0.5 M sodium hydroxide
solution and thereafter neutralized with 0.5 M Tris–HCl buffer (pH
7.4). The protein concentration of an aliquot was measured using
bicirconic acid in 0.8% copper sulfate using bovine serum albumin
as standard.

2.3. Estimation of collagenase digestible protein to address collagen
synthesis

Collagen protein synthesis was assessed as collagenase digest-
ible protein (CDS) by pulse-labeling of the cultures with [14]C-pro-
line according to Petrokofsky and Diegelmann [26]. For this
purpose the culture medium was replaced by serum free culture
medium containing 0.1% bovine serum albumin, gentamycin,
50 lg/ml ascorbic acid and 100 lg/ml bAPN to prevent cross-linking.
After addition of 10 lCi [14]C-proline the cultures were incubated
for 6 h.

Because T3 strongly influences cell multiplication the estimated
amount of collagen was normalized to the DNA-content of the
culture.

2.4. RNA-isolation and expression analysis by northern hybridization

Cytoplasmic RNA was isolated using a mini-prep method at
days 4, 8 and 12. The total amount of RNA was estimated by mea-
suring the absorption at 260 nm with a Hitachi spectrophotometer.
Northern hybridization was performed by fractionating 10 lg total
RNA on a 1% agarose gel containing 2.2 M formaldehyde. After
electrophoresis the gel was soaked in 0.1 M Tris–HCl and 0.15 M
NaCl for 5 min and transferred to a nylon filter (NEN, Brussels) with
20xSSC (1xSSC is 0.15 M NaCl and 0.015 M sodium citrate). After
baking the filter for 2 h at 80 �C, hybridization was done over night
in 10% dextransulfate, 10 lg/ml shared salmon sperm DNA, 1 M
NaCl and 1% sodium dodecylsulfate after 1 h prehybridization in
the same solution. For estimation of the amount of mRNA, the fil-
ters were evaluated in an Instant Imager (Packard Instrument
Company, Meriden, CT). As hybridization probe we used the 30end
of the mouse Col1a1 cDNA. As a control we hybridized the same
northern blots using the Pst I fragment of rat glyceraldehyde-
phosphate-dehydrogenase (Gapdh). Probe labeling was performed
with [32]P-dCTP by multi prime labeling according to the suppliers
suggestions (Roche).

2.5. Expression analysis by quantitative reverse transcription
polymerase chain reaction (QRT-PCR)

mRNA was extracted using a mRNA Isolation Kit (Roche) and
cDNA was synthesized from the mRNA using the 1st Strand cDNA
Synthesis Kit (Roche). The obtained cDNA was subjected to PCR
amplification with a real time cycler using TaqMan Gene
Expression Master Mix (Applied Biosystems) and TaqMan primers
(Applied Biosystems) that amplify lysyloxidase (Lox, Mm0049
5386_m1) bone morphogenetic protein 1 (Bmp1, Mm0080 2225_m1)
and procollagen lysine, 2-oxoglutarate 5-dioxygenase 2 (Plod2,
Mm00478767_m1). Gapdh was used as a housekeeping gene for
normalization, amplified in the same tube. All QRT-PCR’s were
performed in triplicate.

After 10 min of initial denaturation at 95 �C the PCR was per-
formed with 60 cycles: 10 s denaturation at 95 �C; 30 s annealing
and extension at 60 �C. Quantification using the 2^ [�ddC (T)]
method [27].

2.6. Fourier transform infrared imaging (FTIRI)

For collagen cross-link analysis, the cells were fixed in alcohol,
scraped off the culture dishes and transferred onto barium fluoride
windows where they were air-dried. Following this, spectra were
obtained in transmission with a Bruker Equinox 55 spectrometer
coupled to a Bruker Hyperion 3000 FTIR microscope equipped with
a motorized stage (±1 lm) and a 15� objective. The spectra were
baseline-corrected in the amide I & II spectral area (�1500–
1700 cm�1), water vapor subtracted and then subjected to second
derivative spectroscopy and curve fitting routines as published
previously [28]. The ratio of the relative areas under the amide I
peaks at 1660 and 1690 cm�1 corresponds to the two major
coll-x pyridinoline (Pyr) and dehydro-dihydroxylysinonorleucine
(deDHLNL). With maturation, the content of the divalent coll-x
deDHLNL is diminished, whereas that of Pyr is increased, because
the former matures into the latter with time. Therefore, the ratio
(Pyr/deDHLNL) provides insight into the maturity of the ECM.
The type and amount of collagen cross-links was determined as
previously published [28].

2.7. Statistical analysis

Statistical analyses were performed by ANOVA (Turkey’s post
hoc test) or Student’s t-test using Prism 4.03. (GraphPad Soft-
ware Inc., CA, USA). P 6 0.05 was considered to be significant
and the data are presented as mean ± standard deviation
(mean ± SD).
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3. Results

Recently, we have demonstrated that T3 significantly influences
formation of the ECM [29,30], and dramatically attenuates cell
multiplication [31]. To assess specific effects of T3 on the synthesis
of components of the ECM, it is important to relate the effects to
cell number or its surrogate DNA-content of the cultures.

When MC3T3-E1 cells were treated with 10�7 M T3, there was a
significant attenuation of cell number in the cultures compared to
control. This effect was time and dose dependent as demonstrated
in Fig. 1. In the early culture time (day 4), T3 at low concentrations
increased cell multiplication significantly while at higher concen-
trations it had no significant stimulatory effect (Fig. 1B). On day
12, when untreated cells already formed several cell layers, T3
attenuated cell multiplication dose dependently (Fig. 1C). The
protein synthesis, normalized to the DNA-content of the cultures,
significantly increased during the culture time indicating that T3
up-regulated total protein synthesis in MC3T3-E1 cells (Fig. 1D).
Osteoblasts are known to synthesize large amounts of collagen,
thus, we analysed the expression of the collagen type (I) and found,
that T3 increased the amount of Col1a1 mRNA levels, which were
significantly different after 12 days of treatment (Fig. 2A). The T3
effect on Col1a1 mRNA levels was dose dependent (Fig. 2B).
Measuring [14]C-proline incorporation into newly synthesized pro-
tein clearly demonstrated that the mRNA effect is translated into
protein as demonstrated by collagenase digestible protein (CDP),
a well-known surrogate for collagen synthesis (Fig. 2C). The influ-
ence of T3 on the cross-linking process was demonstrated by mea-
suring collagen cross-links ratio by FTIR. This technique allows
access to the specific types of cross-links that are abundant in min-
eralized tissues (Pyr and deDHLNL [28]) and gives information
about the maturity and thus quality of the ECM. The collagen
1 2 3 4 8 12
0

2.5x104

5.0x104

7.5x104

1.0x105

Co
T3

culture time [days]

ce
ll n

um
be

r /
 w

ell

Co 9 8 7 6
0

5.0x105

1.0x106

1.5x106

2.0x106

******

*

log [T3]

 ce
ll 

nu
m

be
r /

 w
ell

A

C

Fig. 1. T3 regulated cell multiplication and protein synthesis of MC3T3-E1 osteoblastic c
time. During culture T3 attenuated cell multiplication beginning with day 4 (A) significa
multiplication at 10�9 and 10�8 M on day 4 (B) while on day 12 (C) T3 attenuated cell mu
synthesis significantly when normalized to the DNA-amount. The bars indicate mean ±
cross-link ratio was increased in T3 treated cultures and showed
a dose-dependent effect, which reached significance at 10�7 M
(Fig. 3). These findings led us to address the question whether
T3, similar to 1,25D3 [20], regulates enzymes involved in post-
translational collagen modification that are necessary to prepare
collagen for the cross-linking process. mRNA of T3-treated and un-
treated cultures were isolated at different time points, reverse
transcribed, and analysed for mRNA expression of Lox and Plod2
by QRT-PCR. Fig. 4 demonstrates that T3 stimulated the expression
of both, Lox and Plod2. During the culture time the basal levels of
Lox were not changed; stimulation by T3 was already established
on day 4 (4-fold) and increased to day 12 were it was 8-fold
(Fig. 4A). Plod2 was down-regulated during culture time by 50%.
The stimulation by T3 was 4-fold at day 4, 12-fold at day 8 and
about 9-fold on day 12 (Fig. 4B). Lox when exported to the extra-
cellular space, must be activated by cleavage of the propeptide
by Bmp1 a proteinase that also liberate the collagen type I chain
from the C-terminal propeptide to enable collagen fibril formation.
Fig. 4C demonstrates that during the culture time, Bmp1 mRNA
expression was down-regulated in untreated cells to about 50%
but T3 increased the mRNA levels about 5, 9 and 14-fold on day
4, 8 or 12, respectively.

4. Discussion

Osteoblastic differentiation is characterized by up-regulation of
specific proteins. We and others have demonstrated that T3 up-
regulates many proteins of the osteoblastic phenotype
[5,6,8,9,32–36]. In vivo, the importance of thyroid hormones for
the development and the maintenance of the skeleton is well
established [37]. Those findings were supported by transgenic ani-
mal models, where it was demonstrated that mice lacking thyroid
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Fig. 2. T3 stimulated collagen a1 (I) expression in MC3T3-E1 osteoblastic cells time
and dose dependently. Cells were cultured in absence (Co) or presence of 10�7 M T3
for 4, 8 and 12 days (A) and on day 12 with increasing concentrations T3 (B). T3
time and dose dependently increased Col1a1 mRNA expression reaching signifi-
cance on day 12 (A) at 10�7 and 10�6 M (B). (C) Up-regulation of Col1a1 mRNA was
translated into protein as shown by collagenase digestible protein (CDP) that was
estimated as a surrogate for collagen protein synthesis. The bars indicate
mean ± SD. *P 6 0.05; **P 6 0.01; Co vs. treatments (n = 4).
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Fig. 3. T3 modify cross-link of the ECM produced by MC3T3-E1 cells. MC3T3-E1
cells were cultured in absence (Co) or presence of 10�8 and 10�7 M T3 for 12 days.
Thereafter, cell layers were fixed with 70% Ethanol and specific cross-links were
analysed by FTIR. T3 increased cross-link ratio (Pyr/deDHLNL) as a function of
concentration, which showed significant difference at 10�7 M T3. Provided P-values
indicate significantly different values vs. control cultures. The bars indicate
mean ± SD. *P 6 0.05 (n = 3).
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hormone receptors, are viable but exhibit disorders of the pitui-
tary–thyroid axis, growth, and bone maturation [3,4,38,39]. New-
born mice show decreased femur and tibia length that persist
into the adulthood, and the growth plates exhibit increased carti-
lage- and reduced bone area with delayed ossification. These facts
clearly demonstrate the importance of thyroid hormones for the
induction of hyperthrophy of chondroblasts [22], maturation of
the growth plate, as well as for the differentiation of osteoblasts
[6,32]. Another feature of thyroid hormone receptor depleted mice
is a disorganized growth plate [3]. The fact that the growth plate
consists mainly of collagen fibres points even more to the impor-
tance of thyroid hormones for proper collagen fibril organization;
but a proper formation of collagen fibres requires the coordinated
expression of the participating genes. Our findings that T3 up-
regulated the expression of those genes affecting collagen cross-
linking and collagen maturation, which is reflected in a change of
the cross-linking pattern, suggest an improvement of collagen
quality by thyroid hormones.

In this work we demonstrate that T3 up-regulated genes in-
volved in bone matrix formation and collagen maturation. Never-
theless, it should be kept in mind that T3 not only up-regulates
genes important for the bone formation and differentiation process
[7], but also regulates genes of the resorption process, especially at
higher ‘‘hyperthyroid” concentrations, as necessarily used in this
study to demonstrate significant effects. Genes involved in bone
resorption regulated by T3, are collagenases [8,9] and carbonic
anhydrase, an enzyme important for the osteoclastic bone resorp-
tion [40]. Moreover, in a calvarial mouse model system for bone
resorption, it was demonstrated that thyroid hormones strongly
activate osteoclastic bone resorption [41–43].

Well regulated thyroid hormone concentrations in blood are of
great importance: not only a hyper- or hypothyroid status is criti-
cal for the patient, but even tiny aberrations from the euthyroid
status, as found in subclinical dysfunctions, can have repercussions
on the cardiovascular system and bone, as well as on other organs
and systems [44]. The in-vitro experiments presented in this and
previous studies support the importance of well-balanced thyroid
hormone concentrations; low to normal concentrations increase
cell multiplication, while too high concentrations as found in the
hyperthyroid status could induce apoptosis [31].

Recently, it was demonstrated that 1,25D3 also regulates colla-
gen quality by increasing mRNA expression of Loxl2 as well as
Plod1 and Plod2, especially the splicing variant Plod2b (LH2b).
Although, we did not study the regulation of the Lox-like genes,
we would like to emphasize the importance of the different iso-
enzymes: cross-linking is a very tissue specific process, and different
expression patterns of iso-enzymes of Plod and Lox and Lox-like
proteins in the different tissues could be responsible for the forma-
tion of different types of collagen cross-links. Gene array analysis
suggested that all three known Plod’s are expressed in the osteo-
blastic MC3T3-E1 cell line [19], while Plod2b seemed to be the
key player because it is strongly regulated by the osteotropic
hormones T3 (this work) and 1,25D3 [20,45]. Of the enzymes
regulating cross-linking extracellularly, Loxl2 and Loxl4 are only
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marginally expressed in this cell line (not shown); 1,25D3 strongly
up-regulates Loxl2 but not Lox [20] whereas T3 strongly up-regu-
lated Lox. These findings may indicate that only a combined action
of those hormones could guarantee a bone with high quality, but
we are aware that other hormones and factors are also involved
in this process.

Bmp1 a procollagen C-endopeptidase, processes both, procolla-
gen and LOX; the propeptide of the LOX-precursor is splitted off
and is suggested to be involved in regulation of cell differentiation
as a tumor-suppressor [13] and modulator of signals from the ECM
[46]. The demonstrated regulation of Bmp1 in this study under-
lines the overall influence of thyroid hormones on bone metabo-
lism and cross-linking.
In summary, we demonstrated that T3 regulates the bone for-
mation process by up-regulation of collagen and of enzymes
important of collagen-fibre formation. Our results and recently
published data emphasize the importance of fine-tuned thyroid
hormone concentrations for proper bone maintenance.
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