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UNC-45B Chaperone: The Role of its Domains in the Interaction with the
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1Department of Neuroscience and Cell Biology, 2Department of Biochemistry Molecular Biology, and 3Sealy Center for Structural Biology and
Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
ABSTRACT The proper folding of many proteins can only be achieved by interaction with molecular chaperones. The molec-
ular chaperone UNC-45B is required for the folding of striated muscle myosin II. However, the precise mechanism by which it
contributes to proper folding of the myosin head remains unclear. UNC-45B contains three domains: an N-terminal TPR domain
known to bind Hsp90, a Central domain of unknown function, and a C-terminal UCS domain known to interact with the myosin
head. Here we used fluorescence titrations methods, dynamic light scattering, and single-molecule atomic force microscopy
(AFM) unfolding/refolding techniques to study the interactions of the UCS and Central domains with the myosin motor domain.
We found that both the UCS and the Central domains bind to the myosin motor domain. Our data show that the domains bind to
distinct subsites on the myosin head, suggesting distinct roles in forming the myosin�UNC-45B complex. To determine the
chaperone activity of the UCS and Central domains, we used two different methods: 1), prevention of misfolding using
single-molecule AFM, and 2), prevention of aggregation using dynamic light scattering. Using the first method, we found that
the UCS domain is sufficient to prevent misfolding of a titin mechanical reporter. Application of the second method showed
that the UCS domain but not the Central domain prevents the thermal aggregation of the myosin motor domain. We conclude
that while both the UCS and the Central domains bind the myosin head with high affinity, only the UCS domain displays chap-
erone activity.
INTRODUCTION
The specific three-dimensional structure is one of the major
determinants of protein function (1). In some protein sys-
tems, complex structures can only be formed by interacting
with specific molecular chaperones (2). Chaperones are spe-
cific protein factors, which prevent aggregation, e.g., DnaJ,
Hsp33, or promote efficient folding, e.g., GroEL/GroES
(3–6). In the case of muscle development, one of the major
problems is the elucidation of the coordinated action of
several chaperones that are required for the formation of
myosin thick filaments. In these processes, the formation
of the native structure of myosin is achieved only through
intricate interactions with molecular chaperones, including
UNC-45B, Hsp90, and Hsp70 (7–15). Myosins are a diverse
superfamily of protein motors with at least 24 distinct clas-
ses (16). The general structure of the myosin molecule,
including the type-II myosin involved in muscle structure,
includes the myosin head (motor domain), the neck, and
the tail domains (17). The motor domain harbors the sites
for the actin binding and the enzymatic activities. Although
the tail domain can fold spontaneously, the motor domain
requires the action of several molecular chaperones to fold
into a fully functional structure head (10–12,18,19). The
myosin-specific chaperone UNC-45B, a founding member
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of the UCS (UNC-45/Cro1/She4p) family of proteins
(20,21), is essential for proper folding and assembly of
myosin into muscle thick filaments (22). All metazoan
genomes analyzed thus far encode an UNC-45 ortholog.
In vertebrates, there are two unc-45 genes, a general cell
isoform UNC-45A, and a muscle-specific isoform, UNC-
45B (23).

UNC-45B is composed of three domains: An amino-ter-
minal tetratricopeptide repeat (TPR) domain known to
interact with the ubiquitous molecular chaperone heat shock
protein 90 (Hsp90) (10), a 390-residue Central of unknown
function, and a 430-residue C-terminal UCS domain that
has been identified to partially rescue the uncoordinated
phenotype in Caenorhabditis elegans (24) (Fig. 1). Genetic
and biochemical studies have highlighted the importance of
UCS-domain-containing proteins for proper myosin func-
tion. UNC-45B prevents aggregation of thermally denatured
myosin subfragment 1 (myosin S1, comprised almost exclu-
sively of the motor domain; we use S1 and motor domain
interchangeably throughout the text) (10,25) and prevents
misfolding of mechanically unfolded myosin S1 (26).

The x-ray crystal structures of the yeast protein She4p ho-
molog, Drosophila, and Caenorhabditis elegans UNC-45,
have been determined (9,27,28). Despite recent advances
on the structural characterization of these chaperones,
the molecular mechanisms by which they interact with
the myosin motor domain remain poorly understood.
http://dx.doi.org/10.1016/j.bpj.2014.05.045
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FIGURE 1 Myosin II is composed of a motor domain and an extended

rodlike coiled-coil domain. UNC-45B is made of a-helical tandem repeat

motifs with three distinct domains: an 100-amino-acid amino-terminal

TPR domain that interacts with Hsp90, a 389-amino-acid Central domain

of unknown function, and a 430-amino-acid UCS domain that associates

with the myosin motor domain. To see this figure in color, go online.
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Furthermore, even less is known about the nature of the in-
teractions between myosin and the UNC-45B domains.
Although it has been suggested that direct interactions be-
tween myosin and the UCS domain occur (24), the ener-
getics of the process have not been quantified. The role of
the Central domain in the myosin/UNC-45B interactions
is unknown.

In our approach, we applied a combination of comple-
mentary experimental approaches (fluorescence titration of
BADAN-labeled S1, dynamic light scattering, and single-
molecule AFM technique) to quantitatively analyze the in-
teractions of UNC-45B domains with the myosin motor
domain. We discovered that the UCS domain and the Cen-
tral domain bind to different subsites on the myosin head,
suggesting distinct roles in forming the myosin�UNC-
45B complex. Our data indicate that the UCS domain alone
is sufficient to prevent myosin misfolding and aggregation.
Hence, the UCS domain likely plays a critical role in the
biogenesis and proper folding of the myosin motor domain.
MATERIALS AND METHODS

Proteins

Myosin

Myosin was purified from rabbit skeletal muscle using established protocol

(29). Myosin subfragment 1 (S1, comprised almost exclusively of the motor

domain; we use ‘‘S1’’ and ‘‘motor domain’’ interchangeably throughout the

text) was obtained by chymotryptic digestion of myosin as described in

Weeds and Pope (30) andMornet et al. (31). The purity of the myosin motor

domain was confirmed by sodium dodecyl sulfate-polyacrylamide gel elec-

trophoresis (SDS-PAGE) (Fig. 2 A).

UNC-45B constructs

The selection of domain boundaries for the UCS domain (500–931 amino

acids) and the Central domain (100–499 amino acids) were based on the

human UNC-45B sequence (Accession No.: Q8IWX7.1) and crystal struc-

ture (9,28) (see Fig. S1 in the Supporting Material). UNC-45B is highly

conserved among mammals. The alignment between human and mouse

UNC-45B showed 95% identity and 98% similarity and 99% identity and

99% similarity between the human and mouse UCS domain. Synthetic

cDNA (GenScript) for the constructs were subcloned into a pProEx vector

(Life Technologies, Carlsbad, CA) for UNC-45B or pET28a vector (EMD

Millipore, Billerica, MA) for the UCS and Central domains; the N-terminus

had a hexahistidine (His6) tag. Protein expression in BL21 cells (Life Tech-

nologies) was induced by addition of 1 mM IPTG and shaking at 16�C over-

night. The cells were resuspended in PBS (phosphate-buffered saline,
FIGURE 2 Characterization of the full-length

UNC-45B and its UCS and Central domains. (A)

SDS-PAGE gels of the purified proteins: Myosin

S1, UNC-45B, UCS domain, and Central domain.

(B) Far-UV circular-dichroism spectroscopy for a

full-length UNC-45B (top), UCS domain (center),

and Central domain (bottom). All three of them

exhibit typical a-helix secondary structure with

minima at 209 and 222 nm (58, 69, and 69% for

full-length UNC-45B, UCS, and Central domains,

respectively). To see this figure in color, go online.
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10 mM sodium phosphate buffer, pH 7.4, 150 mM NaCl), and sonicated on

ice in the presence of a protease inhibitor cocktail (1 mM phenylmethylsul-

fonyl fluoride and 1 g/mL of trypsin inhibitor, chymostatin, pepstatin,

leupeptin, N-benzoyl-L-arginine ethyl ester, and p-toluidinyl-L-arginine

methyl ester). The proteins were affinity-purified over a HisTrap column

(GE Healthcare, Piscataway, NJ), eluting with a gradient from 20 to

500 mM imidazole over 20 column volumes. The His6-tags were cleaved

using thrombin (UCS and Central domain) or TEV protease (UNC-45B).

The purity of the proteins was confirmed by SDS-PAGE and was >95%

(Fig. 2 A). Full-length UNC-45B has a similar molecular mass to myosin

subfragment 1 (S1) and runs at ~100 kDa whereas the UCS and Central

domains run slightly below 50 kDa (molecular masses are 46 and

44 kDa, respectively).

Chimeric I27-myosin S1 construct (I27-S1 protein)

We used our previously published protocol to chemically couple an octa-

meric I27 polyprotein to a specific site within the myosin motor domain

of myosin S1 (26). The polyprotein harbored an N-terminal cysteine residue

and a C-terminal His6-tag. Coupling to the S1 was achieved via the reactive

cysteines (SH1/SH2) within the motor domain. The cross-linking adduct

was isolated by size-exclusion chromatograpy on a Sephacryl S-300 col-

umn (GE Healthcare). This protein chimera was found to be properly folded

because it binds actin filaments in an ATP-dependent manner and can sup-

port actin filament gliding (see Fig. S2).
Circular dichroism

The far ultraviolet (UV) circular-dichroism measurements were performed

on a model No. J-815 spectrometer (JASCO, Oklahoma City, OK). The

protein concentration was 1 mM in 30 mM TRIS pH 7.4, 100 mM KCl,

1 mM MgCl2, and 1 mM TCEP buffer. A 0.2-cm path-length cuvette was

used. The data reported in Fig. 2 B corresponds to the average of three scans

obtained at a scan rate of 50 nm/min in the range of 190–260 nm. The soft-

ware program K2D3 (http://www.ogic.ca/projects/k2d3/) was used to esti-

mate secondary protein structure content.
Fluorescence measurements

The environmentally sensitive fluorophore BADAN attached to myosin S1

was used to study its interaction with full-length UNC-45B and its UCS and

Central domains (26). The fluorescence titrations were done in the presence

of 100 mM KCl, 1 mM MgCl2, 30 mM TRIS pH 7.4, and 1 mM TCEP.

Experiments were performed in a quartz cuvette (500 mL) into which the

UNC-45B constructs (full-length UNC-45B, UCS domain, and Central

domain) were added. Fluorescence emission of BADAN-S1 at 520 nm

was measured after excitation at 387 nm relative to a control sample that

contained buffer instead of UNC-45B constructs. Each point of the titration

curve corresponds to an average of 20 measurements. Steady-state fluores-

cence titrations were performed using an ISS PC1 spectrofluorometer (ISS,

Urbana, IL). To avoid possible artifacts due to the fluorescence anisotropy

of the sample, polarizers were placed in excitation and emission channels

and set at 90 and 55� (magic angle), respectively. Nonlinear least-square

fits were done using the softwares KALEIDAGRAPH (Synergy Software,

Reading, PA) and MATHEMATICA (Wolfram Research, Champaign, IL).
Single-molecule atomic force microscopy

The mechanical properties of single I27-S1 protein chimeras were investi-

gated using a home-built single-molecule AFM as previously described in

the literature (26,32–36). The spring constant of each individual cantilever

(MLCT or Olympus OBL, Veeco Metrology Group, Santa Barbara, CA)

was determined experimentally bymeasuring the cantilever power spectrum

and using the equipartition theorem (37). A small volume of the purified
Biophysical Journal 107(3) 654–661
I27-S1 chimera (~1–5mL, 10–100mg/mL)was allowed to adsorb anNi-NTA

coated-glass coverslip (38) for ~10min and thenwas rinsedwith PBSpH7.4.

Proteins were picked up randomly by adsorption to the cantilever tip, which

was pressed downonto the sample for 1–2 s at forces of several nanoNewtons

and then stretched for several hundred nm. All experiments were performed

at room temperature (~25�C) at a pulling speed of 0.5–0.7 nm/ms.

A two-pulse unfolding/refolding protocol was used to estimate the

fraction of refolded domains (26,33,39). After the first stretch, a single

I27-S1 protein chimera was allowed to relax for time intervals of ~10 s.

In the second pulling, we counted the refolded domains. The number of

the domains that refolded in the second pulling divided by the number of

the unfolded domains in the first pulling gives the fraction of refolded

I27 domains. In a typical experiment, after picking up a protein, the

AFM tip was moved away from the surface (~30–50 nm) to prevent the

tip picking up new proteins due to cantilever drift.
RESULTS AND DISCUSSION

Characterization of the full-length UNC-45B and
its UCS and Central domains

In order to examine the structural integrity of the UNC-45B
constructs, the overall secondary structure was determined
using far-UV circular dichroism. We found that the se-
condary structure shows a predominantly a-helical content
(Fig. 2 B), which is consistent with the available crystal
structure data showing that UNC-45B is composed almost
entirely of a-helical armadillo repeats (9,27,28).
Tracking UCS domain binding to the myosin
motor domain

We took advantage of the environmentally sensitive fluoro-
phore BADAN attached to myosin S1 to monitor its inter-
action with the UNC-45B protein constructs (26). The
BADAN fluorophore has been shown to react preferentially
with the SH1 group (44), yielding fluorescently labeled
myosin S1 (BADAN-S1) with a reporter fluorophore at a
specific site (Cys-707) within the catalytic domain. We
found that the UCS domain induced a decrease in BADAN
fluorescence emission intensity with increasing UCS
domain concentrations, indicating that the local environ-
ment of the fluorescent probe changes due to interaction
of BADAN-S1 with the UCS domain (Fig. 3 A). This change
could be the consequence of either direct binding near the
catalytic site, or of allosteric changes in the motor domain
upon binding at a distal site.

The simplest model that describes this titration curve is a
binding system that assumes complex formation with a 1:1
stoichiometry of UCS and BADAN-S1, described by Eq. 1
(see Appendix in the Supporting Material for derivation of
Eq. 1 and for Eqs. S9–S15),

DFobs ¼ Fobs

FF½S1�T
¼ 1

1þ K1½UCS�F
þ DFmax

�
K1½UCS�F

1þ K1½UCS�F

�
; (1)

http://www.ogic.ca/projects/k2d3/


FIGURE 3 Tracking UNC-45B–myosin head

interactions using an environmentally sensitive

fluorescent probe. (A) BADAN-S1 fluorescence

emission as a function of the total UCS domain

concentration; (solid line) fit of Eq. 1 to the data

assuming a complex formation with a 1:1 stoichi-

ometry of UCS and BADAN-S1, yielding an

apparent binding constant of K1 ¼ 4.3 � 106

M�1. The BADAN-S1 concentration was 2.5 �
10�7 M. (B) Titration of BADAN-S1 (2.5 � 10�7

M) with the UCS domain in the presence of full-

length UNC-45B (3 � 10�6 M). (Solid line) Best-

fit of Eq. S9 in the Supporting Material to the

data using K2 ¼ 2.8 � 106 M�1. (C) Titration of

BADAN-S1 (2.5 � 10�7 M) with the UCS domain

in the presence of the Central domain (3 � 10�6

M). Data show no competition between both

domains. (Solid line) Best-fit to the data yielding

K1 ¼ 4.5 � 106 M�1. (D) Titration of BADAN-S1

with the UCS domain in the presence of UNC-45B

and Central domain. BADAN-S1 (2.5 � 10�7 M)

fluorescence emission as a function of the total

UCS domain concentration in the presence of

full-length UNC-45B (3 � 10�6 M) and Central

domain (3 � 10�6 M). (Dotted black lines) Anal-

ysis of the experimental data using a triple compe-

tition single-binding site model (see Eq. S14 in the Supporting Material); the binding constants for UCS, UNC-45B, K1, and K2, respectively, were from the

experiments shown in panels A and B. (Lines) Different values for the association constant for the Central domain,K3, ranging from 6� 106 to 6� 103. (Solid

red line) Best-fit to a triple competition two-binding site model (see Eq. S15 in the Supporting Material) yielding a K3 ¼ 6 � 105 M�1. To see this figure in

color, go online.
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where Fobs is the measured emission fluorescence, K1 is the
UCS association constant, [UCS]F is the free concentration
of the UCS domain, S1 is BADAN-S1, FF and FC are the
molar fluorescence intensities of the free BADAN-S1 and
the complex BADAN-S1-UCS, and DFmax ¼ FC/FF is the
maximum value of the observed relative fluorescence
quenching. Because, under our experimental conditions
the total [UCS]T >> [BADAN-S1]T, we can assume that
[UCS]F z [UCS]T. The solid line in Fig. 3 A corresponds
to a nonlinear least-squares fit of Eq. 1 to the experimental
data, yielding an equilibrium association constant, K1 ¼
(4.3 5 1.5) � 106 M�1. The observed quenching of
BADAN-S1 with the UCS domain (~7%) indicates the
domain induces changes in the chemical environment
around the fluorophore, likely increasing the solvent acces-
sibility in the near proximity of BADAN and/or enhancing
short-range interactions between the fluorophore and local
molecular environments (45).
UNC-45B and its UCS domain compete for a
binding site on the myosin motor domain

We found that, under the same salt conditions (100 mM
KCl, 1 mM MgCl2, 30 mM TRIS pH 7.4), titrating
BADAN-S1 with full-length UNC-45B interaction does
not result in a change of the fluorophore emission intensity.
Because the presence of the chaperone does not induce
any change of fluorescence signal, we performed direct
competition studies of the UCS domain binding to myosin
in the presence of UNC-45B. The relative fluorescence in-
tensity of the BADAN-S1, as a function of the UCS con-
centration, in the presence of 3 � 10�6 M UNC-45B is
shown in Fig. 3 B (solid circles). The curve is shifted
toward higher fluorescence values than in the absence of
UNC-45B, suggesting that they compete for the same
binding site. The titration curve was analyzed using a
macromolecular competition titration method (46–48) and
Eq. S9 (see Appendix in the Supporting Material). This
method provides a way to quantitatively examine binding
of multiple protein ligands to any macromolecule with sin-
gle or multiple binding sites (46–48). The line in Fig. 3 B
corresponds to a nonlinear least-squares fit of Eq. S9 in the
Supporting Material to the experimental data yielding a
K2 ¼ (2.8 5 0.8) � 106 M�1. This value, obtained at
100 mM KCl, is similar to our previously reported affinity
of the UNC-45B–myosin complex (1.4 5 0.5) � 106 M�1,
determined using a lower salt concentration (30 mM KCl)
buffer (26).
The Central domain of UNC-45B binds to the
myosin motor domain

Similar to the full-length UNC-45B, in our buffer conditions
the isolated Central domain does not induce any change of
the BADAN-labeled myosin fluorescence intensity (data
not shown). Fig. 3 C shows an example of a fluorescence
Biophysical Journal 107(3) 654–661
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titration experiment of BADAN-S1 with the UCS domain in
the presence of the Central domain (3 � 10�6 M). The data
indicate that the Central domain does not affect UCS–S1 in-
teractions. This may result either from the lack of interac-
tions between the Central domain and the myosin motor
domain or from the lack of competition between the do-
mains for myosin.

Because neither UNC-45B nor the Central domain
induce any fluorescence change of the BADAN-S1, we car-
ried out direct competition studies of the UCS binding to
myosin in the presence of the UNC-45B chaperone and
the Central domain. The fluorescence titration of
BADAN-S1 with the UCS domain in the presence of full-
length UNC-45B (3 � 10�6 M) and Central domain (3 �
10�6 M) is shown in Fig. 3 D (black triangles). Surpris-
ingly, the presence of the Central domain shifts the titration
curve to lower fluorescence values compared to UNC-45B
alone, suggesting a complex type of interaction with the
motor domain. We first consider a model where UNC-
45B and its UCS and Central domains compete for the
same binding site on the myosin head. The dotted black
lines represent the predictions of a triple-competition sin-
gle-binding site model (Fig. 3 D) as described by Eq. S13
(see the Supporting Material). Each dotted line corresponds
to different values calculated using Eq. S13 in the Support-
ing Material using an association constant, K3, ranging from
6 � 106 to 6 � 103 for the Central domain. It is clear that a
single-binding site model is inadequate to describe the
experimental data.

Next, we consider a model where UNC-45B binds to two
binding sites on the myosin motor domain. The data was
analyzed using a triple-competition two-binding model
(see Eq. S15 in the Supporting Material). The solid red
line corresponds to the best-fit of Eq. S15 in the Supporting
Material to the experimental data, yielding an apparent
association constant, K3, of (6.0 5 2.1) � 105 M�1. This
analysis indicates that the Central domain also binds to
the myosin head but to a different subsite than the UCS
domain. The data show that:

1. The UCS domain engages myosin with higher affinity
than full-length UNC-45B, and

2. The Central domain binds with a weaker affinity than
full-length UNC-45B and the UCS domain.

The fact that the UCS domain and the Central domain do not
compete for the same binding site on myosin suggests they
may have different functional roles in forming the myo-
sin�UNC-45B complex.
TABLE 1 Estimated equilibrium association constants and change

Central domains for myosin S1

Protein Full-length UNC-45B

Association constant (M�1) K2 ¼ (2.8 5 0.8) � 106

DG0 (kcal/mol) 8.6
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Allosteric interactions between the UCS and
Central domains and myosin motor domain

Having determined the intrinsic affinities of the UCS and
Central domains and the full-length UNC-45B chaperone
for myosin S1 we estimated the energetics of these inter-
actions. The binding of the full-length UNC-45B to S1
occurs with an affinity, K2, of 2.8 � 106 M�1, which gives
a Gibbs free energy change of DG0

UNC-45 ¼ 8.6 kcal/mol.
The Gibbs free energy change of the UCS and Central
domains are tabulated below (Table 1). Therefore, free
energy of UNC-45-S1 interaction is not a simple sum of
the UCS and Central domain interactions with S1.The
overall energetic contributions to the UNC-45-S1 complex
can be described using the general approach proposed by
Jencks (49),

DG0
UNC-45 ¼ DG0

UCS þ DG0
Central þ DG0

C; (2)

where DG0
UCS and DG0

Central are the intrinsic free energy
changes accompanying binding of the isolated UCS and
Central domains to the myosin S1, respectively. The single
unknown in Eq. 2 is DG0

C, the additional intrinsic free en-
ergy change as a consequence of the allosteric conforma-
tional changes accompanying the UNC-45B–S1 complex
formation. The estimated DG0

C is �8 kcal/mol. Thus, these
data indicate that the total free energy of UNC-45B–S1
interaction is not the simple sum of the energetic contribu-
tions of the UCS and Central domains; this suggests that
the domains are not thermodynamically autonomous and
allosteric interactions between them may play an important
role in controlling the UNC-45B affinity for myosin.
The UCS but not Central domain acts as a
classical chaperone

Our BADAN fluorescence data clearly show that both UCS
and Central domains interact with the myosin motor
domain. To test the chaperone activity of the UCS and Cen-
tral domains, we used two independent methods:

1. Prevention of S1 misfolding using single-molecule AFM
(26), and

2. Prevention of heat-induced aggregation of S1 using
dynamic light scattering (10,25).

In the first method, we used a titin molecular reporter
approach to track chaperone-myosin interactions using
AFM techniques (26). By chemically coupling a titin I27
s in Gibbs free energy of full-length UNC-45B and its UCS and

UCS domain Central domain

K1 ¼ (4.3 5 1.5) � 106 K3 ¼ (6.0 5 2.1) � 105

8.5 7.7
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polyprotein to the motor domain of myosin, we introduced a
molecular reporter, providing a specific attachment point
and a well-characterized mechanical fingerprint in single-
molecule AFM experiments (33,50). This approach enabled
us to study the folding/misfolding behavior of the motor
domain and directly observe the effect of the chaperone
UNC-45B (26). We found that the motor domain in the
I27-S1 protein chimera is fully functional because it binds
actin filaments in an ATP-dependent manner (not shown),
and most importantly, is able to support actin-filament
gliding (see Fig. S2). We subjected single titin I27-derivat-
ized S1 molecules (Fig. 4 A) to repeated mechanical stretch-
ing in the AFM (Fig. 4 B), separated by pause intervals of
10 s at zero force (see Fig. 4 B, inset). I27 polyproteins un-
fold with a characteristic fingerprint (unfolding forces of
~200 pN and increases in contour length of ~30 nm) and
readily refold through many repetitions without any signs
of fatigue (33). However, when chemically linked to the
myosin S1, the characteristic I27 sawtooth pattern is
apparent only in the initial unfolding trace and absent in
the second and third traces, indicating that the unfolded mo-
tor domain interferes with refolding of the otherwise robust
I27 modules, presumably by recruiting them into a mis-
folded state (26) (Fig. 4 B, left panel). In the presence of
1 mM UCS (Fig. 4 B, right panel), full recovery of folded
I27 domains is observed. Control experiments show that
the UCS domain does not affect the refolding efficiency of
the I27 polyprotein alone. Similar results were obtained
when using full-length UNC-45B (Fig. 4 C). In contrast,
we found that the Central domain does not prevent misfold-
ing of the titin domains in the I27–S1 protein chimera
(Fig. 4 C). Hence, these results show that the presence of
the UCS domain alone is sufficient to prevent misfolding
of the myosin motor domain.

In the second method, we examined the thermal aggrega-
tion of S1 in the presence of full-length UNC-45B, UCS or
Central domain. The time-dependent aggregation of myosin
S1 in the presence of BSA (control) at 43�C is shown in
Fig. 4 D (solid squares). In the presence of 1 mM UNC-
45B (open triangles) or 1 mM UCS (solid circles) aggrega-
tion was reduced by >90%. In contrast, we found that the
Central domain does not protect against S1 aggregation.
These results are in agreement with the AFM experiments
and indicate that the UCS domain alone is sufficient to pre-
vent aggregation of myosin motor domain, and that the Cen-
tral domain does not possess these features.
CONCLUSIONS

UNC-45B has a unique architecture for a molecular chap-
erone. It contains three domains with distinct functions:
the N-terminal TPR domain that binds and recruits Hsp90,
the Central domain that independently binds the myosin
head (Fig. 3), and the C-terminal UCS domain that indepen-
dently interacts with the myosin head (Fig. 3) and prevents
thermal aggregation and maintains mechanically unfolded
FIGURE 4 The UCS but not the Central domain

is sufficient to prevent misfolding and aggregation

of the myosin motor domain. (A) The myosin

motor domain (purple) was derivatized with a me-

chanical reporter, a tandem repeat I27 polyprotein

(gray) carrying an N-terminal cysteine residue, and

a C-terminal His6 tag. The I27 polyprotein serves

both a handle attached to the reactive cysteines in

S1 and a reporter of force-driven unfolding and re-

folding reactions. The handle introduces a means

of site-specific attachment via the His6 tag. (B) Sin-

gle I27�S1 molecules were repeatedly unfolded

and refolded. Misfolding of the I27-S1 chimera is

observed in the absence of the chaperone (control),

whereas full recovery is observed in the presence

of 1 mM UCS domain (right panel). (C) Plot of

the fraction of refolded I27 domains as a function

of the refolding cycles. Single- I27�S1 molecules

in the absence of chaperone (solid squares), þ
1 mM Central (open squares), þ 1 mM full-length

UNC-45B (triangles) or þ 1 mM UCS (solid cir-

cles) were subjected to repeated cycles of unfold-

ing/refolding. (D) Thermal aggregation of the

myosin S1 (1 mM) at 43�C measured by dynamic

light scattering (532 nm) in the presence of BSA

(squares), UCS (solid circles), Central domain

(open circles), and full-length UNC-45 (triangles),

all at 1 mM. To see this figure in color, go online.
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FIGURE 5 Hypothetical model for UNC-45B�Myosin motor domain

complex formation. We propose that each UNC-45B domain engages

different binding subsites on the myosin client protein. To see this figure

in color, go online.
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intermediates of the myosin head competent for refolding
(Fig. 4).

Our experiments indicate that the UNC-45B�myosin
head binding site is built of two binding subsites, each
engaging a different UNC-45B domain. The domains
display different interaction energetics; the affinity of
myosin for UCS domain is higher (~4.3 � 106 M�1) than
for the Central domain (~6 � 105 M�1). Interestingly, the
affinity of myosin for the UCS domain is higher than for
full-length UNC-45B (~2.8 � 106 M�1). We propose a
model in which different domains of UNC-45B bind to
distinct subsites on the myosin motor domain with different
functional consequences (Fig. 5). While both the UCS and
the Central domain bind the myosin head with high affinity,
only the UCS domain displays chaperone activity. Our
data suggest that the formation of the UNC-45B�motor
domain complex is accompanied by allosteric and confor-
mational transitions. We calculated a free energy change
accompanying the allosteric conformational transitions
of ~�8 kcal/mol. The significant energetic penalty of the
simultaneous engagement of the two UNC-45B domains
with the myosin head indicates that the domains are not
thermodynamically autonomous and that allosteric inter-
actions may play a role in modulating the chaperone-myosin
interactions. Although our results indicate that the Central
domain might be involved in the formation of the UNC-
45B–myosin complex, its exact function still remains un-
clear and may be related to the dynamics of the chaperone
release from the myosin. Our laboratory is currently exam-
ining these processes.
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