
Artificial Intelligence 112 (1999) 181–211

Between MDPs and semi-MDPs:
A framework for temporal abstraction

in reinforcement learning

Richard S. Suttona,∗, Doina Precupb, Satinder Singha
a AT&T Labs.-Research, 180 Park Avenue, Florham Park, NJ 07932, USA

b Computer Science Department, University of Massachusetts, Amherst, MA 01003, USA

Received 1 December 1998

Abstract

Learning, planning, and representing knowledge at multiple levels of temporal abstraction are key,
longstanding challenges for AI. In this paper we consider how these challenges can be addressed
within the mathematical framework of reinforcement learning and Markov decision processes
(MDPs). We extend the usual notion of action in this framework to includeoptions—closed-loop
policies for taking action over a period of time. Examples of options include picking up an object,
going to lunch, and traveling to a distant city, as well as primitive actions such as muscle twitches
and joint torques. Overall, we show that options enable temporally abstract knowledge and action
to be included in the reinforcement learning framework in a natural and general way. In particular,
we show that options may be used interchangeably with primitive actions in planning methods such
as dynamic programming and in learning methods such as Q-learning. Formally, a set of options
defined over an MDP constitutes a semi-Markov decision process (SMDP), and the theory of SMDPs
provides the foundation for the theory of options. However, the most interesting issues concern the
interplay between the underlying MDP and the SMDP and are thus beyond SMDP theory. We present
results for three such cases: (1) we show that the results of planning with options can be used during
execution to interrupt options and thereby perform even better than planned, (2) we introduce new
intra-option methods that are able to learn about an option from fragments of its execution, and
(3) we propose a notion of subgoal that can be used to improve the options themselves. All of these
results have precursors in the existing literature; the contribution of this paper is to establish them
in a simpler and more general setting with fewer changes to the existing reinforcement learning
framework. In particular, we show that these results can be obtained without committing to (or ruling
out) any particular approach to state abstraction, hierarchy, function approximation, or the macro-
utility problem. 1999 Published by Elsevier Science B.V. All rights reserved.

∗ Corresponding author.

0004-3702/99/$ – see front matter 1999 Published by Elsevier Science B.V. All rights reserved.
PII: S0004-3702(99)00052-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82026921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

182 R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211

Keywords:Temporal abstraction; Reinforcement learning; Markov decision processes; Options; Macros;
Macroactions; Subgoals; Intra-option learning; Hierarchical planning; Semi-Markov decision processes

0. Introduction

Human decision making routinely involves choice among temporally extended courses
of action over a broad range of time scales. Consider a traveler deciding to undertake a
journey to a distant city. To decide whether or not to go, the benefits of the trip must be
weighed against the expense. Having decided to go, choices must be made at each leg, e.g.,
whether to fly or to drive, whether to take a taxi or to arrange a ride. Each of these steps
involves foresight and decision, all the way down to the smallest of actions. For example,
just to call a taxi may involve finding a telephone, dialing each digit, and the individual
muscle contractions to lift the receiver to the ear. How can we understand and automate
this ability to work flexibly with multiple overlapping time scales?

Temporal abstraction has been explored in AI at least since the early 1970’s,
primarily within the context of STRIPS-style planning [18,20,21,29,34,37,46,49,51,60,
76]. Temporal abstraction has also been a focus and an appealing aspect of qualitative
modeling approaches to AI [6,15,33,36,62] and has been explored in robotics and control
engineering [1,7,9,25,39,61]. In this paper we consider temporal abstraction within the
framework of reinforcement learning and Markov decision processes (MDPs). This
framework has become popular in AI because of its ability to deal naturally with
stochastic environments and with the integration of learning and planning [3,4,13,22,64].
Reinforcement learning methods have also proven effective in a number of significant
applications [10,42,50,70,77].

MDPs as they are conventionally conceived do not involve temporal abstraction or tem-
porally extended action. They are based on a discrete time step: the unitary action taken
at time t affects the state and reward at timet + 1. There is no notion of a course of
action persisting over a variable period of time. As a consequence, conventional MDP
methods are unable to take advantage of the simplicities and efficiencies sometimes avail-
able at higher levels of temporal abstraction. On the other hand, temporal abstraction can
be introduced into reinforcement learning in a variety of ways [2,8,11,12,14,16,19,26,28,
31,32,38,40,44,45,53,56,57,59,63,68,69,71,73,78–82]. In the present paper we generalize
and simplify many of these previous and co-temporaneous works to form a compact, uni-
fied framework for temporal abstraction in reinforcement learning and MDPs. We answer
the question “What is the minimal extension of the reinforcement learning framework that
allows a general treatment of temporally abstract knowledge and action?” In the second
part of the paper we use the new framework to develop new results and generalizations of
previous results.

One of the keys to treating temporal abstraction as a minimal extension of the
reinforcement learning framework is to build on the theory ofsemi-Markov decision
processes(SMDPs), as pioneered by Bradtke and Duff [5], Mahadevan et al. [41], and
Parr [52]. SMDPs are a special kind of MDP appropriate for modeling continuous-time
discrete-event systems. The actions in SMDPs take variable amounts of time and are
intended to model temporally-extended courses of action. The existing theory of SMDPs

R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211 183

specifies how to model the results of these actions and how to plan with them. However,
existing SMDP work is limited because the temporally extended actions are treated as
indivisible and unknown units. There is no attempt in SMDP theory to lookinside the
temporally extended actions, to examine or modify their structure in terms of lower-level
actions. As we have tried to suggest above, this is the essence of analyzing temporally
abstract actions in AI applications: goal directed behavior involves multiple overlapping
scales at which decisions are made and modified.

In this paper we explore the interplay between MDPs and SMDPs. The base problem
we consider is that of a conventional discrete-time MDP,1 but we also consider courses of
action within the MDP whose results are state transitions of extended and variable duration.
We use the termoptions2 for these courses of action, which include primitive actions as a
special case. Any fixed set of options defines a discrete-time SMDP embedded within the
original MDP, as suggested by Fig. 1. The top panel shows the state trajectory over discrete
time of an MDP, the middle panel shows the larger state changes over continuous time of
an SMDP, and the last panel shows how these two levels of analysis can be superimposed
through the use of options. In this case the underlying base system is an MDP, with regular,
single-step transitions, while the options define potentially larger transitions, like those of
an SMDP, that may last for a number of discrete steps. All the usual SMDP theory applies
to the superimposed SMDP defined by the options but, in addition, we have an explicit
interpretation of them in terms of the underlying MDP. The SMDP actions (the options)
are no longer black boxes, but policies in the base MDP which can be examined, changed,
learned, and planned in their own right.

The first part of this paper (Sections 1–3) develops these ideas formally and more
fully. The first two sections review the reinforcement learning framework and present its
generalization to temporally extended action. Section 3 focuses on the link to SMDP theory
and illustrates the speedups in planning and learning that are possible through the use
of temporal abstraction. The rest of the paper concerns ways of going beyond an SMDP
analysis of options to change or learn their internal structure in terms of the MDP. Section 4
considers the problem of effectively combining a given set of options into a single overall
policy. For example, a robot may have pre-designed controllers for servoing joints to
positions, picking up objects, and visual search, but still face a difficult problem of how
to coordinate and switch between these behaviors [17,32,35,39,40,43,61,79]. Sections 5
and 6 concernintra-option learning—looking inside options to learn simultaneously about
all options consistent with each fragment of experience. Finally, in Section 7 we illustrate
a notion of subgoal that can be used to improve existing options and learn new ones.

1 In fact, the base system could itself be an SMDP with only technical changes in our framework, but this would
be a larger step away from the standard framework.

2 This term may deserve some explanation. In previous work we have used other terms including “macro-
actions”, “behaviors”, “abstract actions”, and “subcontrollers” for structures closely related to options. We
introduce a new term to avoid confusion with previous formulations and with informal terms. The term “options”
is meant as a generalization of “actions”, which we use formally only for primitive choices. It might at first
seem inappropriate that “option” does not connote a course of action that is non-primitive, but this is exactly our
intention. We wish to treat primitive and temporally extended actions similarly, and thus we prefer one name for
both.

184 R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211

Fig. 1. The state trajectory of an MDP is made up of small, discrete-time transitions, whereas that of an SMDP
comprises larger, continuous-time transitions. Options enable an MDP trajectory to be analyzed in either way.

1. The reinforcement learning (MDP) framework

In this section we briefly review the standard reinforcement learning framework of
discrete-time, finiteMarkov decision processes, or MDPs, which forms the basis for our
extension to temporally extended courses of action. In this framework, a learningagent
interacts with anenvironmentat some discrete, lowest-level time scale,t = 0,1,2, On
each time step,t , the agent perceives the state of the environment,st ∈ S, and on that
basis chooses a primitive action,at ∈Ast . In response to each action,at , the environment
produces one step later a numerical reward,rt+1, and a next state,st+1. It is convenient to
suppress the differences in available actions across states whenever possible; we letA =⋃
s∈SAs denote the union of the action sets. IfS andA, are finite, then the environment’s

transition dynamics can be modeled by one-step state-transition probabilities,

pass ′ = Pr
{
st+1= s′

∣∣ st = s, at = a},
and one-step expected rewards,

ras =E
{
rt+1

∣∣ st = s, at = a},
for all s, s′ ∈ S anda ∈ As . These two sets of quantities together constitute theone-step
modelof the environment.

The agent’s objective is to learn aMarkov policy, a mapping from states to probabilities
of taking each available primitive action,π :S ×A→[0,1], that maximizes the expected
discounted future reward from each states:

V π(s)=E{rt+1+ γ rt+2+ γ 2rt+3+ · · ·
∣∣ st = s,π} (1)

=E{rt+1+ γV π (st+1)
∣∣ st = s,π}

=
∑
a∈As

π(s, a)

[
ras + γ

∑
s ′
pass ′V

π(s′)
]
, (2)

whereπ(s, a) is the probability with which the policyπ chooses actiona ∈As in states,
andγ ∈ [0,1] is adiscount-rateparameter. This quantity,V π(s), is called thevalueof state

R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211 185

s under policyπ , andV π is called thestate-value functionfor π . Theoptimalstate-value
function gives the value of each state under an optimal policy:

V ∗(s)=max
π
V π(s) (3)

= max
a∈As

E
{
rt+1+ γV ∗(st+1)

∣∣ st = s, at = a}
= max
a∈As

[
ras + γ

∑
s ′
pass ′V

∗(s′)
]
. (4)

Any policy that achieves the maximum in (3) is by definition an optimal policy. Thus, given
V ∗, an optimal policy is easily formed by choosing in each states any action that achieves
the maximum in (4). Planning in reinforcement learning refers to the use of models of the
environment to compute value functions and thereby to optimize or improve policies. Par-
ticularly useful in this regard areBellman equations, such as (2) and (4), which recursively
relate value functions to themselves. If we treat the values,V π(s) or V ∗(s), as unknowns,
then a set of Bellman equations, for alls ∈ S, forms a system of equations whose unique
solution is in factV π or V ∗ as given by (1) or (3). This fact is key to the way in which all
temporal-difference and dynamic programming methods estimate value functions.

There are similar value functions and Bellman equations for state-action pairs, rather
than for states, which are particularly important for learning methods. The value of taking
actiona in states under policyπ , denotedQπ(s, a), is the expected discounted future
reward starting ins, takinga, and henceforth followingπ :

Qπ(s, a)=E{rt+1+ γ rt+2+ γ 2rt+3+ · · ·
∣∣ st = s, at = a,π}

= ras + γ
∑
s ′
pass ′V

π(s′)

= ras + γ
∑
s ′
pass ′

∑
a′
π(s′, a′)Qπ(s′, a′).

This is known as theaction-value functionfor policyπ . Theoptimalaction-value function
is

Q∗(s, a)=max
π
Qπ(s, a)

= ras + γ
∑
s ′
pass ′max

a′
Q∗(s′, a′).

Finally, many tasks are episodic in nature, involving repeated trials, orepisodes, each
ending with a reset to a standard state or state distribution. Episodic tasks include a special
terminal state; arriving in this state terminates the current episode. The set of regular states
plus the terminal state (if there is one) is denotedS+. Thus, thes′ in pa

ss ′ in general ranges
over the setS+ rather than justS as stated earlier. In an episodic task, values are defined by
the expected cumulative reward up until termination rather than over the infinite future (or,
equivalently, we can consider the terminal state to transition to itself forever with a reward
of zero). There are also undiscounted average-reward formulations, but for simplicity we
do not consider them here. For more details and background on reinforcement learning
see [72].

186 R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211

2. Options

As mentioned earlier, we use the termoptionsfor our generalization of primitive actions
to include temporally extended courses of action. Options consist of three components: a
policy π :S × A→ [0,1], a termination conditionβ :S+ → [0,1], and an initiation set
I ⊆ S. An option 〈I,π,β〉 is available in statest if and only if st ∈ I. If the option is
taken, then actions are selected according toπ until the option terminates stochastically
according toβ . In particular, aMarkov optionexecutes as follows. First, the next action
at is selected according to probability distributionπ(st , ·). The environment then makes a
transition to statest+1, where the option either terminates, with probabilityβ(st+1), or else
continues, determiningat+1 according toπ(st+1, ·), possibly terminating inst+2 according
toβ(st+2), and so on.3 When the option terminates, the agent has the opportunity to select
another option. For example, an option namedopen-the-door might consist of a policy
for reaching, grasping and turning the door knob, a termination condition for recognizing
that the door has been opened, and an initiation set restricting consideration ofopen-
the-door to states in which a door is present. In episodic tasks, termination of an episode
also terminates the current option (i.e.,β maps the terminal state to 1 in all options).

The initiation set and termination condition of an option together restrict its range of
application in a potentially useful way. In particular, they limit the range over which the
option’s policy needs to be defined. For example, a handcrafted policyπ for a mobile robot
to dock with its battery charger might be defined only for statesI in which the battery
charger is within sight. The termination conditionβ could be defined to be 1 outside
of I and when the robot is successfully docked. A subpolicy for servoing a robot arm
to a particular joint configuration could similarly have a set of allowed starting states, a
controller to be applied to them, and a termination condition indicating that either the target
configuration has been reached within some tolerance or that some unexpected event has
taken the subpolicy outside its domain of application. For Markov options it is natural to
assume that all states where an option might continue are also states where the option might
be taken (i.e., that{s: β(s) < 1} ⊆ I). In this case,π need only be defined overI rather
than over all ofS.

Sometimes it is useful for options to “timeout”, to terminate after some period of time
has elapsed even if they have failed to reach any particular state. This is not possible
with Markov options because their termination decisions are made solely on the basis
of the current state, not on how long the option has been executing. To handle this and
other cases of interest we allowsemi-Markovoptions, in which policies and termination
conditions may make their choices dependent on all prior events since the option was
initiated. In general, an option is initiated at some time, sayt , determines the actions
selected for some number of steps, sayk, and then terminates inst+k . At each intermediate
time τ, t 6 τ < t + k, the decisions of a Markov option may depend only onsτ , whereas
the decisions of a semi-Markov option may depend on the entire preceding sequence
st , at , rt+1, st+1, at+1, . . . , rτ , sτ , but not on events prior tost (or after sτ). We call this
sequence thehistory from t to τ and denote it byhtτ . We denote the set of all histories

3 The termination conditionβ plays a role similar to theβ in β-models [71], but with an opposite sense. That
is, β(s) in this paper corresponds to 1− β(s) in [71].

R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211 187

by Ω . In semi-Markov options, the policy and termination condition are functions of
possible histories, that is, they areπ :Ω ×A→ [0,1] andβ :Ω→ [0,1]. Semi-Markov
options also arise if options use a more detailed state representation than is available
to the policy that selects the options, as inhierarchical abstract machines[52,53] and
MAXQ [16]. Finally, note that hierarchical structures, such as options that select other
options, can also give rise to higher-level options that are semi-Markov (even if all the
lower-level options are Markov). Semi-Markov options include a very general range of
possibilities.

Given a set of options, their initiation sets implicitly define a set of available options
Os for each states ∈ S. TheseOs are much like the sets of available actions,As . We can
unify these two kinds of sets by noting that actions can be considered a special case of
options. Each actiona corresponds to an option that is available whenevera is available
(I = {s: a ∈As}), that always lasts exactly one step (β(s)= 1,∀s ∈ S), and that selects
a everywhere (π(s, a)= 1,∀s ∈ I). Thus, we can consider the agent’s choice at each time
to be entirely among options, some of which persist for a single time step, others of which
are temporally extended. The former we refer to assingle-stepor primitiveoptions and the
latter asmulti-stepoptions. Just as in the case of actions, it is convenient to suppress the
differences in available options across states. We letO =⋃s∈SOs denote the set of all
available options.

Our definition of options is crafted to make them as much like actions as possible while
adding the possibility that they are temporally extended. Because options terminate in a
well defined way, we can consider sequences of them in much the same way as we consider
sequences of actions. We can also consider policies that select options instead of actions,
and we can model the consequences of selecting an option much as we model the results
of an action. Let us consider each of these in turn.

Given any two optionsa andb, we can consider taking them in sequence, that is, we
can consider first takinga until it terminates, and thenb until it terminates (or omittingb
altogether ifa terminates in a state outside ofb’s initiation set). We say that the two options
arecomposedto yield a new option, denotedab, corresponding to this way of behaving.
The composition of two Markov options will in general be semi-Markov, not Markov,
because actions are chosen differently before and after the first option terminates. The
composition of two semi-Markov options is always another semi-Markov option. Because
actions are special cases of options, we can also compose them to produce a deterministic
action sequence, in other words, a classical macro-operator.

More interesting for our purposes arepolicies over options. When initiated in a statest ,
the Markov policy over optionsµ :S ×O→ [0,1] selects an optiono ∈Ost according to
probability distributionµ(st , ·). The optiono is then taken inst , determining actions until
it terminates inst+k, at which time a new option is selected, according toµ(st+k, ·), and
so on. In this way a policy over options,µ, determines a conventional policy over actions,
or flat policy, π = flat(µ). Henceforth we use the unqualified termpolicy for policies over
options, which include flat policies as a special case. Note that even if a policy is Markov
and all of the options it selects are Markov, the corresponding flat policy is unlikely to be
Markov if any of the options are multi-step (temporally extended). The action selected by
the flat policy in statesτ depends not just onsτ but on the option being followed at that
time, and this depends stochastically on the entire historyhtτ since the policy was initiated

188 R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211

at timet . 4 By analogy to semi-Markov options, we call policies that depend on histories
in this waysemi-Markovpolicies. Note that semi-Markov policies are more specialized
thannonstationary policies. Whereas nonstationary policies may depend arbitrarily on all
preceding events, semi-Markov policies may depend only on events back to some particular
time. Their decisions must be determined solely by the event subsequence from that time
to the present, independent of the events preceding that time.

These ideas lead to natural generalizations of the conventional value functions for a
given policy. We define the value of a states ∈ S under a semi-Markov flat policyπ as the
expected return given thatπ is initiated ins:

V π(s)
def= E{rt+1+ γ rt+2+ γ 2rt+3+ · · ·

∣∣E(π, s, t)},
whereE(π, s, t) denotes the event ofπ being initiated ins at time t . The value of a
state under a general policyµ can then be defined as the value of the state under the
corresponding flat policy:V µ(s)=defV flat(µ)(s), for all s ∈ S. Action-value functions
generalize tooption-value functions. We defineQµ(s, o), the value of taking optiono
in states ∈ I under policyµ, as

Qµ(s, o)
def= E{rt+1+ γ rt+2+ γ 2rt+3+ · · ·

∣∣E(oµ, s, t)}, (5)

whereoµ, thecompositionof o andµ, denotes the semi-Markov policy that first follows
o until it terminates and then starts choosing according toµ in the resultant state. For
semi-Markov options, it is useful to defineE(o,h, t), the event ofo continuingfrom h

at timet , whereh is a history ending withst . In continuing, actions are selected as if the
history had precededst . That is,at is selected according too(h, ·), ando terminates att+1
with probabilityβ(hat rt+1st+1); if o does not terminate, thenat+1 is selected according to
o(hatrt+1st+1, ·), and so on. With this definition, (5) also holds wheres is a history rather
than a state.

This completes our generalization to temporal abstraction of the concept of value
functions for a given policy. In the next section we similarly generalize the concept of
optimalvalue functions.

3. SMDP (option-to-option) methods

Options are closely related to the actions in a special kind of decision problem known as
a semi-Markov decision process, or SMDP(e.g., see [58]). In fact, any MDP with a fixed
set of optionsis an SMDP, as we state formally below. Although this fact follows more
or less immediately from definitions, we present it as a theorem to highlight it and state
explicitly its conditions and consequences:

Theorem 1 (MDP+Options= SMDP).For any MDP, and any set of options defined on
that MDP, the decision process that selects only among those options, executing each to
termination, is an SMDP.

4 For example, the options for picking up an object and putting down an object may specify different actions in
the same intermediate state; which action is taken depends on which option is being followed.

R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211 189

Proof (Sketch). An SMDP consists of
(1) a set of states,
(2) a set of actions,
(3) for each pair of state and action, an expected cumulative discounted reward, and
(4) a well-defined joint distribution of the next state and transit time.

In our case, the set of states isS, and the set of actions is the set of options. The expected
reward and the next-state and transit-time distributions are defined for each state and
option by the MDP and by the option’s policy and termination condition,π andβ . These
expectations and distributions are well defined because MDPs are Markov and the options
are semi-Markov; thus the next state, reward, and time are dependent only on the option
and the state in which it was initiated. The transit times of options are always discrete, but
this is simply a special case of the arbitrary real intervals permitted in SMDPs.2

This relationship among MDPs, options, and SMDPs provides a basis for the theory of
planning and learning methods with options. In later sections we discuss the limitations
of this theory due to its treatment of options as indivisible units without internal structure,
but in this section we focus on establishing the benefits and assurances that it provides. We
establish theoretical foundations and then survey SMDP methods for planning and learning
with options. Although our formalism is slightly different, these results are in essence taken
or adapted from prior work (including classical SMDP work and [5,44,52–57,65–68,71,74,
75]). A result very similar to Theorem 1 was proved in detail by Parr [52]. In Sections 4–7
we present new methods that improve over SMDP methods.

Planning with options requires a model of their consequences. Fortunately, the
appropriate form of model for options, analogous to theras andpa

ss ′ defined earlier for
actions, is known from existing SMDP theory. For each state in which an option may be
started, this kind of model predicts the state in which the option will terminate and the total
reward received along the way. These quantities are discounted in a particular way. For any
optiono, let E(o, s, t) denote the event ofo being initiated in states at time t . Then the
reward part of the model ofo for any states ∈ S is

ros =E
{
rt+1+ γ rt+2+ · · · + γ k−1rt+k

∣∣E(o, s, t)}, (6)

wheret + k is the random time at whicho terminates. The state-prediction part of the
model ofo for states is

poss ′ =
∞∑
k=1

p(s′, k)γ k, (7)

for all s′ ∈ S, wherep(s′, k) is the probability that the option terminates ins′ afterk steps.
Thus,po

ss ′ is a combination of the likelihood thats′ is the state in whicho terminates
together with a measure of how delayed that outcome is relative toγ . We call this kind of
model amulti-time model[54,55] because it describes the outcome of an option not at a
single time but at potentially many different times, appropriately combined.5

5 Note that this definition of state predictions for options differs slightly from that given earlier for actions.
Under the new definition, the model of transition from states to s′ for an actiona is not simply the corresponding
transition probability, but the transition probabilitytimesγ . Henceforth we use the new definition given by (7).

190 R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211

Using multi-time models we can write Bellman equations for general policies and
options. For any Markov policyµ, the state-value function can be written

V µ(s)=E{rt+1+ · · · + γ k−1rt+k + γ kV µ(st+k)
∣∣E(µ, s, t)}

(wherek is the duration of the first option selected byµ)

=
∑
o∈Os

µ(s, o)

[
ros +

∑
s ′
poss ′V

µ(s′)
]
, (8)

which is a Bellman equation analogous to (2). The corresponding Bellman equation for the
value of an optiono in states ∈ I is

Qµ(s, o)=E{rt+1+ · · · + γ k−1rt+k + γ kV µ(st+k)
∣∣E(o, s, t)},

=E
{
rt+1+ · · · + γ k−1rt+k

+ γ k
∑
o′∈Os

µ(st+k, o′)Qµ(st+k, o′)
∣∣∣E(o, s, t)}

= ros +
∑
s ′
poss ′

∑
o′∈Os′

µ(s′, o′)Qµ(s′, o′). (9)

Note that all these equations specialize to those given earlier in the special case in whichµ

is a conventional policy ando is a conventional action. Also note thatQµ(s, o)= V oµ(s).
Finally, there are generalizations ofoptimal value functions andoptimal Bellman

equations to options and to policies over options. Of course the conventional optimal value
functionsV ∗ andQ∗ are not affected by the introduction of options; one can ultimately do
just as well with primitive actions as one can with options. Nevertheless, it is interesting
to know how well one can do with a restricted set of options that does not include all the
actions. For example, in planning one might first consider only high-level options in order
to find an approximate plan quickly. Let us denote the restricted set of options byO and
the set of all policies selecting only from options inO byΠ(O). Then the optimal value
function given that we can select only fromO is

V ∗O(s)
def= max

µ∈Π(O)
V µ(s)

= max
o∈Os

E
{
rt+1+ · · · + γ k−1rt+k + γ kV ∗O(st+k)

∣∣E(o, s, t)}
(wherek is the duration ofo when taken ins)

= max
o∈Os

[
ros +

∑
s ′
poss ′V

∗
O(s
′)
]

(10)

= max
o∈Os

E
{
r + γ kV ∗O(s′)

∣∣E(o, s)}, (11)

whereE(o, s) denotes optiono being initiated in states. Conditional on this event are the
usual random variables:s′ is the state in whicho terminates,r is the cumulative discounted
reward along the way, andk is the number of time steps elapsing betweens ands′. The
value functions and Bellman equations for optimal option values are

R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211 191

Q∗O(s, o)
def= max

µ∈Π(O)
Qµ(s, o)

= E{rt+1+ · · · + γ k−1rt+k + γ kV ∗O(st+k)
∣∣E(o, s, t)}

(wherek is the duration ofo from s)

= E
{
rt+1+ · · · + γ k−1rt+k + γ k max

o′∈Ost+k
Q∗O(st+k, o

′)
∣∣∣E(o, s, t)},

= ros +
∑
s ′
poss ′ max

o′∈Os′
Q∗O(s

′, o′)

= E
{
r + γ k max

o′∈Os′
Q∗O(s

′, o′)
∣∣∣E(o, s)}, (12)

wherer, k, and s′ are again the reward, number of steps, and next state due to taking
o ∈Os .

Given a set of options,O, a correspondingoptimal policy, denotedµ∗O , is any policy

that achievesV ∗O , i.e., for whichV µ
∗
O (s)= V ∗O(s) in all statess ∈ S. If V ∗O and models of

the options are known, then optimal policies can be formed by choosing in any proposition
among the maximizing options in (10) or (11). Or, ifQ∗O is known, then optimal policies
can be found without a model by choosing in each states in any proportion among the
optionso for whichQ∗O(s, o)=maxo′Q∗O(s, o

′). In this way, computing approximations
to V ∗O orQ∗O become key goals of planning and learning methods with options.

3.1. SMDP planning

With these definitions, an MDP together with the set of optionsO formally comprises
an SMDP, and standard SMDP methods and results apply. Each of the Bellman equations
for options, (8), (9), (10), and (12), defines a system of equations whose unique solution
is the corresponding value function. These Bellman equations can be used as update rules
in dynamic-programming-like planning methods for finding the value functions. Typically,
solution methods for this problem maintain an approximation ofV ∗O(s) orQ∗O(s, o) for all
statess ∈ S and all optionso ∈Os . For example,synchronous value iteration(SVI) with
options starts with an arbitrary approximationV0 to V ∗O and then computes a sequence of
new approximations{Vk} by

Vk(s)= max
o∈Os

[
ros +

∑
s ′∈S

poss ′Vk−1(s
′)
]

(13)

for all s ∈ S. The option-value form of SVI starts with an arbitrary approximationQ0 to
Q∗O and then computes a sequence of new approximations{Qk} by

Qk(s, o)= ros +
∑
s ′∈S

poss ′ max
o′∈Os′

Qk−1(s
′, o′)

for all s ∈ S and o ∈ Os . Note that these algorithms reduce to the conventional value
iteration algorithms in the special case thatO = A. Standard results from SMDP theory
guarantee that these processes converge for general semi-Markov options: limk→∞ Vk =
V ∗O and limk→∞Qk =Q∗O , for anyO.

192 R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211

Fig. 2. The rooms example is a gridworld environment with stochastic cell-to-cell actions and room-to-room
hallway options. Two of the hallway options are suggested by the arrows labeledo1 ando2. The labelsG1 and
G2 indicate two locations used as goals in experiments described in the text.

The plans (policies) found using temporally abstract options are approximate in the sense
that they achieve onlyV ∗O, which may be less than the maximum possible,V ∗. On the other
hand, if the models used to find them are correct, then they are guaranteed to achieveV ∗O .
We call this thevalue achievementproperty of planning with options. This contrasts with
planning methods that abstract over state space, which generally cannot be guaranteed to
achieve their planned values even if their models are correct.

As a simple illustration of planning with options, consider therooms example, a
gridworld environment of four rooms as shown in Fig. 2. The cells of the grid correspond to
the states of the environment. From any state the agent can perform one of four actions,up ,
down, left or right , which have a stochastic effect. With probability 2/3, the actions
cause the agent to move one cell in the corresponding direction, and with probability 1/3,
the agent moves instead in one of the other three directions, each with probability 1/9. In
either case, if the movement would take the agent into a wall then the agent remains in the
same cell. For now we consider a case in which rewards are zero on all state transitions.

In each of the four rooms we provide two built-inhallway optionsdesigned to take the
agent from anywhere within the room to one of the two hallway cells leading out of the
room. A hallway option’s policyπ follows a shortest path within the room to its target
hallway while minimizing the chance of stumbling into the other hallway. For example,
the policy for one hallway option is shown in Fig. 3. The termination conditionβ(s) for
each hallway option is zero for statess within the room and 1 for states outside the room,
including the hallway states. The initiation setI comprises the states within the room plus
the non-target hallway state leading into the room. Note that these options are deterministic
and Markov, and that an option’s policy is not defined outside of its initiation set. We denote
the set of eight hallway options byH. For each optiono ∈H, we also provide a priori its
accurate model,ros andpo

ss ′ , for all s ∈ I ands′ ∈ S (assuming there is no goal state, see
below). Note that although the transition modelspo

ss ′ are nominally large (order|I|× |S|),

R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211 193

Fig. 3. The policy underlying one of the eight hallway options.

Fig. 4. Value functions formed over iterations of planning by synchronous value iteration with primitive
options (above) and with multi-step hallway options (below). The hallway options enabled planning to proceed
room-by-room rather than cell-by-cell. The area of the disk in each cell is proportional to the estimated value of
the state, where a disk that just fills a cell represents a value of 1.0.

in fact they are sparse, and relatively little memory (order|I| × 2) is actually needed to
hold the nonzero transitions from each state to the two adjacent hallway states.6

Now consider a sequence of planning tasks for navigating within the grid to a designated
goal state, in particular, to the hallway state labeledG1 in Fig. 2. Formally, the goal state
is a state from which all actions lead to the terminal state with a reward of+1. Throughout
this paper we discount withγ = 0.9 in the rooms example.

As a planning method, we used SVI as given by (13), with various sets of options
O. The initial value functionV0 was 0 everywhere except the goal state, which was
initialized to its correct value,V0(G1) = 1, as shown in the leftmost panels of Fig. 4.

6 The off-target hallway states are exceptions in that they have three possible out-comes: the target hallway,
themselves, and the neighboring state in the off-target room.

194 R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211

This figure contrasts planning with the original actions(O = A) and planning with the
hallway options and not the original actions(O =H). The upper part of the figure shows
the value function after the first two iterations of SVI using just primitive actions. The
region of accurately valued states moved out by one cell on each iteration, but after two
iterations most states still had their initial arbitrary value of zero. In the lower part of
the figure are shown the corresponding value functions for SVI with the hallway options.
In the first iteration all states in the rooms adjacent to the goal state became accurately
valued, and in the second iteration all the states became accurately valued. Although the
values continued to change by small amounts over subsequent iterations, a complete and
optimal policy was known by this time. Rather than planning step-by-step, the hallway
options enabled the planning to proceed at a higher level, room-by-room, and thus be much
faster.

This example is a particularly favorable case for the use of multi-step options because
the goal state is a hallway, the target state of some of the options. Next we consider a case
in which there is no such coincidence, in which the goal lies in the middle of a room, in
the state labeledG2 in Fig. 2. The hallway options and their models were just as in the
previous experiment. In this case, planning with (models of) the hallway options alone
could never completely solve the task, because these take the agent only to hallways and
thus never to the goal state. Fig. 5 shows the value functions found over five iterations of
SVI usingboththe hallway options and the primitive options corresponding to the actions
(i.e., usingO =A ∪H). In the first two iterations, accurate values were propagated from
G2 by one cell per iteration by the models corresponding to the primitive options. After two
iterations, however, the first hallway state was reached, and subsequently room-to-room
planning using the multi-step hallway options dominated. Note how the state in the lower

Fig. 5. An example in which the goal is different from the subgoal of the hallway options. Planning here was by
SVI with optionsO =A ∪H. Initial progress was due to the models of the primitive options (the actions), but
by the third iteration room-to-room planning dominated and greatly accelerated planning.

R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211 195

right corner was given a nonzero value during iteration three. This value corresponds to the
plan of first going to the hallway state above and then down to the goal; it was overwritten
by a larger value corresponding to a more direct route to the goal in the next iteration.
Because of the multi-step options, a close approximation to the correct value function was
found everywhere by the fourth iteration; without them only the states within three steps
of the goal would have been given non-zero values by this time.

We have used SVI in this example because it is a particularly simple planning method
which makes the potential advantage of multi-step options clear. In large problems, SVI
is impractical because the number of states is too large to complete many iterations, often
not even one. In practice it is often necessary to be very selective about the states updated,
the options considered, and even the next states considered. These issues are not resolved
by multi-step options, but neither are they greatly aggravated. Options provide a tool for
dealing with them more flexibly.

Planning with options is not necessarily more complex than planning with actions. For
example, in the first experiment described above there were four primitive options and
eight hallway options, but in each state only two hallway options needed to be considered.
In addition, the models of the primitive options generated four possible successors with
non-zero probability whereas the multi-step options generated only two. Thus planning
with the multi-step options was actually computationally cheaper than conventional SVI
in this case. In the second experiment this was not the case, but the use of multi-step
options did not greatly increase the computational costs. In general, of course, there is no
guarantee that multi-step options will reduce the overall expense of planning. For example,
Hauskrecht et al. [26] have shown that adding multi-step options may actually slow SVI
if the initial value function is optimistic. Research with deterministic macro-operators has
identified a related “utility problem” when too many macros are used (e.g., see [20,23,
24,47,76]). Temporal abstraction provides the flexibility to greatly reduce computational
complexity, but can also have the opposite effect if used indiscriminately. Nevertheless,
these issues are beyond the scope of this paper and we do not consider them further.

3.2. SMDP value learning

The problem of finding an optimal policy over a set of optionsO can also be addressed
by learning methods. Because the MDP augmented by the options is an SMDP, we
can apply SMDP learning methods [5,41,44,52,53]. Much as in the planning methods
discussed above, each option is viewed as an indivisible, opaque unit. When the execution
of optiono is started in states, we next jump to the states′ in which o terminates. Based
on this experience, an approximate option-value functionQ(s, o) is updated. For example,
the SMDP version of one-step Q-learning [5], which we callSMDP Q-learning, updates
after each option termination by

Q(s, o)←Q(s, o)+ α
[
r + γ k max

o′∈Os′
Q(s′, o′)−Q(s, o)

]
,

where k denotes the number of time steps elapsing betweens and s′, r denotes the
cumulative discounted reward over this time, and it is implicit that the step-size parameterα

may depend arbitrarily on the states, option, and time steps. The estimateQ(s, o) converges

196 R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211

Fig. 6. Performance of SMDP Q-learning in the rooms example with various goals and sets of options. After
100 episodes, the data points are averages over groups of 10 episodes to make the trends clearer. The step size
parameter was optimized to the nearest power of 2 for each goal and set of options. The results shown used
α = 1/8 in all cases except that withO =H andG1 (α = 1/16), and that withO =A ∪H andG2 (α = 1/4).

toQ∗O(s, o) for all s ∈ S ando ∈O under conditions similar to those for conventional Q-
learning [52], from which it is easy to determine an optimal policy as described earlier.

As an illustration, we applied SMDP Q-learning to the rooms example with the goal at
G1 and atG2 (Fig. 2). As in the case of planning, we used three different sets of options,
A,H, andA∪H. In all cases, options were selected from the set according to anε-greedy
method. That is, options were usually selected at random from among those with maximal
option value (i.e.,ot was such thatQ(st , ot) = maxo∈Ost Q(st , o)), but with probability
ε the option was instead selected randomly from all available options. The probability of
random action,ε, was 0.1 in all our experiments. The initial state of each episode was in
the upper-left corner. Fig. 6 shows learning curves for both goals and all sets of options.
In all cases, multi-step options enabled the goal to be reached much more quickly, even
on the very first episode. With the goal atG1, these methods maintained an advantage
over conventional Q-learning throughout the experiment, presumably because they did
less exploration. The results were similar with the goal atG2, except that theH method
performed worse than the others in the long term. This is because the best solution requires
several steps of primitive options (the hallway options alone find the best solution running
between hallways that sometimes stumbles uponG2). For the same reason, the advantages
of theA∪H method over theA method were also reduced.

4. Interrupting options

SMDP methods apply to options, but only when they are treated as opaque indivisible
units. More interesting and potentially more powerful methods are possible by looking
inside options or by altering their internal structure, as we do in the rest of this paper. In
this section we take a first step in altering options to make them more useful. This is the
area where working simultaneously in terms of MDPs and SMDPs is most relevant. We
can analyze options in terms of the SMDP and then use their MDP interpretation to change
them and produce a new SMDP.

R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211 197

In particular, in this section we considerinterrupting options before they would
terminate naturally according to their termination conditions. Note that treating options
as indivisible units, as SMDP methods do, is limiting in an unnecessary way. Once an
option has been selected, such methods require that its policy be followed until the option
terminates. Suppose we have determined the option-value functionQµ(s, o) for some
policy µ and for all state-option pairss, o that could be encountered while following
µ. This function tells us how well we do while followingµ, committing irrevocably to
each option, but it can also be used to re-evaluate our commitment on each step. Suppose
at time t we are in the midst of executing optiono. If o is Markov in st , then we can
compare the value of continuing witho, which isQµ(st , o), to the value of interruptingo
and selecting a new option according toµ, which isV µ(s)=∑q µ(s, q)Q

µ(s, q). If the
latter is more highly valued, then why not interrupto and allow the switch? If these were
simple actions, the classical policy improvement theorem [27] would assure us that the new
way of behaving is indeed better. Here we prove the generalization to semi-Markov options.
The first empirical demonstration of this effect—improved performance by interrupting
a temporally extended substep based on a value function found by planning at a higher
level—may have been by Kaelbling [31]. Here we formally prove the improvement in a
more general setting.

In the following theorem we characterize the new way of behaving as following a
policy µ′ that is the same as the original policy,µ, but over a new set of options;
µ′(s, o′) = µ(s, o), for all s ∈ S. Each new optiono′ is the same as the corresponding
old optiono except that it terminates whenever switching seems better than continuing
according toQµ. In other words, the termination conditionβ ′ of o′ is the same as that of
o except thatβ ′(s) = 1 if Qµ(s, o) < V µ(s). We call such aµ′ an interrupted policy
of µ. The theorem is slightly more general in that it does not require interruption at
each state in which it could be done. This weakens the requirement thatQµ(s, o) be
completely known. A more important generalization is that the theorem applies to semi-
Markov options rather than just Markov options. This generalization may make the result
less intuitively accessible on first reading. Fortunately, the result can be read as restricted
to the Markov case simply by replacing every occurrence of “history” with “state” and set
of histories,Ω , with set of states,S.

Theorem 2 (Interruption).For any MDP, any set of optionsO, and any Markov policy
µ :S × O→ [0,1], define a new set of options,O′, with a one-to-one mapping between
the two option sets as follows: for everyo = 〈I,π,β〉 ∈ O we define a corresponding
o′ = 〈I,π,β ′〉 ∈O′, whereβ ′ = β except that for any historyh that ends in states and in
whichQµ(h,o) < V µ(s), we may choose to setβ ′(h)= 1. Any histories whose termination
conditions are changed in this way are calledinterrupted histories. Let the interrupted
policyµ′ be such that for alls ∈ S, and for allo′ ∈O′, µ′(s, o′)= µ(s, o), whereo is the
option inO corresponding too′. Then

(i) V µ
′
(s)> V µ(s) for all s ∈ S.

(ii) If from states ∈ S there is a non-zero probability of encountering an interrupted
history upon initiatingµ′ in s, thenV µ

′
(s) > V µ(s).

198 R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211

Proof. Shortly we show that, for an arbitrary start states, executing the option given by
the interrupted policyµ′ and then following policyµ thereafter is no worse than always
following policyµ. In other words, we show that the following inequality holds:∑

o′
µ′(s, o′)

[
ro
′
s +

∑
s ′
po
′
ss ′V

µ(s′)
]

> V µ(s)=
∑
o

µ(s, o)

[
ros +

∑
s ′
poss ′V

µ(s′)
]
. (14)

If this is true, then we can use it to expand the left-hand side, repeatedly replacing every
occurrence ofV µ(x) on the left by the corresponding

∑
o′ µ
′(x, o′)[ro′x +

∑
x ′ p

o′
xx ′V

µ(x ′)].
In the limit, the left-hand side becomesV µ

′
, proving thatV µ

′ > V µ.
To prove the inequality in (14), we note that for alls,µ′(s, o′)= µ(s, o), and show that

ro
′
s +

∑
s ′
po
′
ss ′V

µ(s′)> ros +
∑
s ′
poss ′V

µ(s′) (15)

as follows. LetΓ denote the set of all interrupted histories:Γ = {h ∈Ω : β(h) 6= β ′(h)}.
Then,

ro
′
s +

∑
s ′
po
′
ss ′V

µ(s′)=E{r + γ kV µ(s′) ∣∣E(o′, s), h /∈ Γ }
+E{r + γ kV µ(s′) ∣∣E(o′, s), h ∈ Γ }

wheres′, r, andk are the next state, cumulative reward, and number of elapsed steps
following optiono from s, and whereh is the history froms to s′. Trajectories that end
because of encountering a history not inΓ never encounter a history inΓ , and therefore
also occur with the same probability and expected reward upon executing optiono in state
s. Therefore, if we continue the trajectories that end because of encountering a history in
Γ with optiono until termination and thereafter follow policyµ, we get

E
{
r + γ kV µ(s′) ∣∣E(o′, s), h /∈ Γ }
+E{β(s′)[r + γ kV µ(s′)]+ (1− β(s′))[r + γ kQµ(h, o)] ∣∣E(o′, s), h ∈ Γ }
= ros +

∑
s ′
poss ′V

µ(s′),

because optiono is semi-Markov. This proves (14) because for allh ∈ Γ ,

Qµ(h,o)6 V µ(s′).

Note that strict inequality holds in (15) ifQµ(h,o) < V µ(s′) for at least one historyh ∈ Γ
that ends a trajectory generated byo′ with non-zero probability. 2

As one application of this result, consider the case in whichµ is an optimal policy
for some given set of Markov optionsO. We have already discussed how we can, by
planning or learning, determine the optimal value functionsV ∗O andQ∗O and from them
the optimal policyµ∗O that achieves them. This is indeed the best that can be done without

R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211 199

changingO, that is, in the SMDP defined byO, but less than the best possible achievable in
the MDP, which isV ∗ = V ∗A. But of course we typically do not wish to work directly with
the (primitive) actionsA because of the computational expense. The interruption theorem
gives us a way of improving overµ∗O with little additional computation by stepping
outsideO. That is, at each step we interrupt the current option and switch to any new option
that is valued more highly according toQ∗O . Checking for such options can typically be
done at vastly less expense per time step than is involved in the combinatorial process of
computingQ∗O . In this sense, interruption gives us a nearly free improvement over any
SMDP planning or learning method that computesQ∗O as an intermediate step.

In the extreme case, we might interrupton every stepand switch to the greedy option—
the option in that state that is most highly valued according toQ∗O (as in polling
execution[16]). In this case, options are never followed for more than one step, and they
might seem superfluous. However, the options still play a role in determiningQ∗O , the
basis on which the greedy switches are made, and recall that multi-step options may enable
Q∗O to be found much more quickly thanQ∗ could (Section 3). Thus, even if multi-step
options are never actually followed for more than one step they can still provide substantial
advantages in computation and in our theoretical understanding.

Fig. 7 shows a simple example. Here the task is to navigate from a start location to a
goal location within a continuous two-dimensional state space. The actions are movements
of 0.01 in any direction from the current state. Rather than work with these low-level
actions, infinite in number, we introduce seven landmark locations in the space. For each
landmark we define a controller that takes us to the landmark in a direct path (cf. [48]). Each
controller is only applicable within a limited range of states, in this case within a certain
distance of the corresponding landmark. Each controller then defines an option: the circular
region around the controller’s landmark is the option’s initiation set, the controller itself is
the policy, and arrival at the target landmark is the termination condition. We denote the set
of seven landmark options byO. Any action within 0.01 of the goal location transitions to
the terminal state, the discount rateγ is 1, and the reward is−1 on all transitions, which
makes this a minimum-time task.

One of the landmarks coincides with the goal, so it is possible to reach the goal while
picking only fromO. The optimal policy withinO runs from landmark to landmark, as
shown by the thin line in the upper panel of Fig. 7. This is the optimal solution to the
SMDP defined byO and is indeed the best that one can do while picking only from these
options. But of course one can do better if the options are not followed all the way to each
landmark. The trajectory shown by the thick line in Fig. 7 cuts the corners and is shorter.
This is the interrupted policy with respect to the SMDP-optimal policy. The interrupted
policy takes 474 steps from start to goal which, while not as good as the optimal policy in
primitive actions (425 steps), is much better, for nominal additional cost, than the SMDP-
optimal policy, which takes 600 steps. The state-value functions,V µ = V ∗O andV µ

′
for the

two policies are shown in the lower part of Fig. 7. Note how the values for the interrupted
policy are everywhere greater than the values of the original policy. A related but larger
application of the interruption idea to mission planning for uninhabited air vehicles is given
in [75].

Fig. 8 shows results for an example using controllers/options with dynamics. The task
here is to move a mass along one dimension from rest at position 0 to rest at position 2,

200 R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211

Fig. 7. Using interruption to improve navigation with landmark-directed controllers. The task (top) is to navigate
from S to G in minimum time using options based on controllers that run each to one of seven landmarks (the
black dots.) The circles show the region around each landmark within which the controllers operate. The thin line
shows the SMDP solution, the optimal behavior that uses only these controllers without interrupting them, and
the thick line shows the corresponding solution with interruption, which cuts the corners. The lower two panels
show the state-value functions for the SMDP and interrupted solutions.

again in minimum time. There is no option that takes they system all the way from 0
to 2, but we do have an option that takes it from 0 to 1 and another option that takes it
from any position greater than 0.5 to 2. Both options control the system precisely to its
target position and to zero velocity, terminating only when both of these are correct to
within ε = 0.0001. Using just these options, the best that can be done is to first move
precisely to rest at 1, using the first option, then re-accelerate and move to 2 using
the second option. This SMDP-optimal solution is much slower than the corresponding
interrupted solution, as shown in Fig. 8. Because of the need to slow down to near-zero
velocity at 1, it takes over 200 time steps, whereas the interrupted solution takes only 121
steps.

R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211 201

Fig. 8. Phase-space plot of the SMDP and interrupted policies in a simple dynamical task. The system is a mass
moving in one dimension:xt+1= xt + ẋt+1, ẋt+1 = ẋt + at − 0.175ẋt wherext is the position,ẋt the velocity,
0.175 a coefficient of friction, and the actionat an applied force. Two controllers are provided as options, one
that drives the position to zero velocity atx∗ = 1 and the other tox∗ = 2. Whichever option is being followed at
time t , its target positionx∗ determines the action taken, according toat = 0.01(x∗ − xt).

5. Intra-option model learning

In this section we introduce a new method for learning the model,ros andpo
ss ′ , of an

option o, given experience and knowledge ofo (i.e., of its I, π , andβ). Our method
requires thatπ be deterministic and that the option be Markov. For a semi-Markov option,
the only general approach is to execute the option to termination many times in each state
s, recording in each case the resultant next states′, cumulative discounted rewardr, and
elapsed timek. These outcomes are then averaged to approximate the expected values for
ros andpo

ss ′ given by (6) and (7). For example, an incremental learning rule for this could
update its model after each execution ofo by

r̂ os = r̂ os + α[r − r̂ os], (16)

and

p̂ osx = p̂ osx + α
[
γ kδs ′x − p̂ osx

]
, (17)

for all x ∈ S+, whereδs ′x = 1 if s′ = x and is 0 else, and where the step-size parameter,α,
may be constant or may depend on the state, option, and time. For example, ifα is 1 divided
by the number of times thato has been experienced ins, then these updates maintain the
estimates as sample averages of the experienced outcomes. However the averaging is done,
we call theseSMDP model-learning methodsbecause, like SMDP value-learning methods,
they are based on jumping from initiation to termination of each option, ignoring what
happens along the way. In the special case in whicho is a primitive option, SMDP model-
learning methods reduce to those used to learn conventional one-step models of actions.

One disadvantage of SMDP model-learning methods is that they improve the model
of an option only when the option terminates. Because of this, they cannot be used for
nonterminating options and can only be applied to one option at a time—the one option

202 R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211

that is executing at that time. For Markov options, special temporal-difference methods
can be used to learn usefully about the model of an option before the option terminates.
We call theseintra-optionmethods because they learn about an option from a fragment of
experience “within” the option. Intra-option methods can even be used to learn about an
option without ever executing it, as long as some selections are made that are consistent
with the option. Intra-option methods are examples ofoff-policy learning methods [72]
because they learn about the consequences of one policy while actually behaving according
to another. Intra-option methods can be used to simultaneously learn models of many
different options from the same experience. Intra-option methods were introduced in [71],
but only for a prediction problem with a single unchanging policy, not for the full control
case we consider here and in [74].

Just as there are Bellman equations for value functions, there are also Bellman equations
for models of options. Consider the intra-option learning of the model of a Markov option
o= 〈I,π,β〉. The correct model ofo is related to itself by

ros =
∑
a∈As

π(s, a)E
{
r + γ (1− β(s′))ros ′}

(wherer ands′ are the reward and next state
given that actiona is taken in states)

=
∑
a∈As

π(s, a)

[
ras +

∑
s ′
pass ′

(
1− β(s′))ros ′],

and

posx =
∑
a∈As

π(s, a)γE
{(

1− β(s′))pos ′x + β(s′)δs ′x}
=
∑
a∈As

π(s, a)
∑
s ′
pass ′

[(
1− β(s′))pos ′x + β(s′)δs ′x],

for all s, x ∈ S. How can we turn these Bellman-like equations into update rules for
learning the model? First consider that actionat is taken inst , and that the way it was
selected is consistent witho = 〈I,π,β〉, that is, thatat was selected with the distribution
π(st , ·). Then the Bellman equations above suggest the temporal-difference update rules

r̂ ost ← r̂ ost + α
[
rt+1+ γ

(
1− β(st+1)

)̂
r ost+1
− r̂ ost

]
(18)

and

p̂ ost x← p̂ ost x + α
[
γ
(
1− β(st+1)

)
p̂ ost+1x

+ γβ(st+1)δst+1x − p̂ ost x
]
, (19)

for all x ∈ S+, wherep̂ o
ss ′ and r̂ os are the estimates ofpo

ss ′ andros , respectively, andα is
a positive step-size parameter. The method we callone-step intra-option model learning
applies these updates to every option consistent with every action taken,at . Of course,
this is just the simplest intra-option model-learning method. Others may be possible using
eligibility traces and standard tricks for off-policy learning (as in [71]).

As an illustration, consider model learning in the rooms example using SMDP and intra-
option methods. As before, we assume that the eight hallway options are given, but now we

R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211 203

Fig. 9. Model learning by SMDP and intra-option methods. Shown are the average and maximum overI of the
absolute errors between the learned and true models, averaged over the eight hallway options and 30 repetitions
of the whole experiment. The lines labeled ‘SMDP 1/t ’ are for the SMDP method using sample averages; all the
others usedα = 1/4.

assume that their models are not given and must be learned. In this experiment, the rewards
were selected according to a normal probability distribution with a standard deviation
of 0.1 and a mean that was different for each state–action pair. The means were selected
randomly at the beginning of each run uniformly from the[−1,0] interval. Experience was
generated by selecting randomly in each state among the two possible options and four pos-
sible actions, with no goal state. In the SMDP model-learning method, Eqs. (16) and (17)
were applied whenever an option terminated, whereas, in the intra-option model-learning
method, Eqs. (18) and (19) were applied on every step to all options that were consistent
with the action taken on that step. In this example, all options are deterministic, so consis-
tency with the action selected means simply that the option would have selected that action.

For each method, we tried a range of values for the step-size parameter,α =
1/2,1/4,1/8, and 1/16. Results are shown in Fig. 9 for the value that seemed to be best for
each method, which happened to beα = 1/4 in all cases. For the SMDP method, we also
show results with the step-size parameter set such that the model estimates were sample
averages, which should give the best possible performance of this method (these lines are
labeled 1/t). The figure shows the average and maximum errors over the state–option space
for each method, averaged over the eight options and 30 repetitions of the experiment. As
expected, the intra-option method was able to learn significantly faster than the SMDP
methods.

6. Intra-option value learning

We turn now to the intra-option learning of option values and thus of optimal policies
over options. If the options are semi-Markov, then again the SMDP methods described in
Section 3.2 may be the only feasible methods; a semi-Markov option must be completed
before it can be evaluated. But if the options are Markov and we are willing to lookinside
them, then we can consider intra-option methods. Just as in the case of model learning,

204 R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211

intra-option methods for value learning are potentially more efficient than SMDP methods
because they extract more training examples from the same experience.

For example, suppose we are learning to approximateQ∗O(s, o) and thato is Markov.
Based on an execution ofo from t to t+k, SMDP methods extract a single training example
for Q∗O(s, o). But becauseo is Markov, it is, in a sense, also initiated at each of the steps
betweent andt+k. The jumps from each intermediatesi to st+k are also valid experiences
with o, experiences that can be used to improve estimates ofQ∗O(si , o). Or consider an
option that is very similar too and which would have selected the same actions, but which
would have terminated one step later, att + k + 1 rather than att + k. Formally this is
a different option, and formally itwas not executed, yet all this experience could be used
for learning relevant to it. In fact, an option can often learn something from experience
that is only slightly related (occasionally selecting the same actions) to what would be
generated by executing the option. This is the idea of off-policy training—to make full use
of whatever experience occurs to learn as much as possible about all options irrespective
of their role in generating the experience. To make the best use of experience we would
like off-policy and intra-option versions of value-learning methods such as Q-learning.

It is convenient to introduce new notation for the value of a state–option pair given that
the option is Markov and executing uponarrival in the state:

U∗O(s, o)=
(
1− β(s))Q∗O(s, o)+ β(s)max

o′∈O
Q∗O(s, o

′).

Then we can write Bellman-like equations that relateQ∗O(s, o) to expected values of
U∗O(s

′, o), wheres′ is the immediate successor tos after initiating Markov optiono =
〈I,π,β〉 in s:

Q∗O(s, o)=
∑
a∈As

π(s, a)E
{
r + γU∗O(s′, o)

∣∣ s, a}
=
∑
a∈As

π(s, a)

[
ras +

∑
s ′
pass ′U

∗
O(s
′, o)

]
, (20)

wherer is the immediate reward upon arrival ins′. Now consider learning methods based
on this Bellman equation. Suppose actionat is taken in statest to produce next statest+1
and rewardrt+1, and thatat was selected in a way consistent with the Markov policy
π of an optiono = 〈I,π,β〉. That is, suppose thatat was selected according to the
distributionπ(st , ·). Then the Bellman equation above suggests applying the off-policy
one-step temporal-difference update:

Q(st , o)←Q(st , o)+ α
[(
rt+1+ γU(st+1, o)

)−Q(st , o)], (21)

where

U(s, o)= (1− β(s))Q(s, o)+ β(s)max
o′∈O

Q(s, o′).

The method we callone-step intra-option Q-learningapplies this update rule to every
option o consistent with every action taken,at . Note that the algorithm is potentially
dependent on the order in which options are updated because, in each update,U(s, o)

depends on the current values ofQ(s, o) for other optionso′. If the options’ policies are

R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211 205

deterministic, then the concept of consistency above is clear, and for this case we can prove
convergence. Extensions to stochastic options are a topic of current research.

Theorem 3 (Convergence of intra-option Q-learning).For any set of Markov options,O,
with deterministic policies, one-step intra-option Q-learning converges with probability1
to the optimal Q-values,Q∗O , for every option regardless of what options are executed
during learning, provided that every action gets executed in every state infinitely often.

Proof (Sketch). On experiencing the transition,(s, a, r ′, s′), for every optiono that picks
actiona in states, intra-option Q-learning performs the following update:

Q(s, o)←Q(s, o)+ α(s, o)[r ′ + γU(s′, o)−Q(s, o)].
Our result follows directly from Theorem 1 of [30] and the observation that the expected
value of the update operatorr ′ + γU(s′, o) yields a contraction, proved below:∣∣E{r ′ + γU(s′, o)}−Q∗O(s, o)∣∣

=
∣∣∣∣ras +∑

s ′
pass ′U(s

′, o)−Q∗O(s, o)
∣∣∣∣

=
∣∣∣∣ras +∑

s ′
pass ′U(s

′, o)− ras −
∑
s ′
pass ′U

∗
O(s
′, o)

∣∣∣∣
6
∣∣∣∣∑
s ′
pass ′

[(
1− β(s′))(Q(s′, o)−Q∗O(s′, o))
+β(s′)max

o′∈O
Q(s′, o′)−max

o′∈O
Q∗O(s

′, o′)
]∣∣∣∣

6
∑
s ′
pass ′max

s ′′,o′′
∣∣Q(s′′, o′′)−Q∗O(s′′, o′′)∣∣

6 γ max
s ′′,o′′

∣∣Q(s′′, o′′)−Q∗O(s′′, o′′)∣∣. 2

As an illustration, we applied this intra-option method to the rooms example, this time
with the goal in the rightmost hallway, cellG1 in Fig. 2. Actions were selected randomly
with equal probability from the four primitives. The update (21) was applied first to the
primitive options, then to any of the hallway options that were consistent with the action.
The hallway options were updated in clockwise order, starting from any hallways that faced
up from the current state. The rewards were the same as in the experiment in the previous
section. Fig. 10 shows learning curves demonstrating the effective learning of option values
without ever selecting the corresponding options.

Intra-option versions of other reinforcement learning methods such as Sarsa, TD(λ), and
eligibility-trace versions of Sarsa and Q-learning should be straightforward, although there
has been no experience with them. The intra-option Bellman equation (20) could also be
used for intra-option sample-based planning.

206 R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211

Fig. 10. The learning of option values by intra-option methods without ever selecting the options. Experience was
generated by selecting randomly among actions, with the goal atG1. Shown on the left is the value of the greedy
policy, averaged over all states and 30 repetitions of the experiment, as compared with the value of the optimal
policy. The right panel shows the learned option values for stateG2 approaching their correct values.

7. Subgoals for learning options

Perhaps the most important aspect of working between MDPs and SMDPs is that the
options making up the SMDP actions may be changed. We have seen one way in which
this can be done by changing their termination conditions. Perhaps more fundamental than
that is changing theirpolicies, which we consider briefly in this section. It is natural to think
of options as achieving subgoals of some kind, and to adapt each option’s policy to better
achieve its subgoal. For example, if the option isopen-the-door , then it is natural to
adapt its policy over time to make it more effective and efficient at opening the door, which
may make it more generally useful. It is possible to have many such subgoals and learn
about them each independently using an off-policy learning method such as Q-learning, as
in [17,31,38,66,78]. In this section we develop this idea within the options framework and
illustrate it by learning the hallway options in the rooms example. We assume the subgoals
are given and do not address the larger question of the source of the subgoals.

A simple way to formulate a subgoal for an option is to assign aterminal subgoal value,
g(s), to each states in a subset of statesG ⊆ S. These values indicate how desirable it is
for the option to terminate in each state inG. For example, to learn a hallway option in the
rooms task, the target hallway might be assigned a subgoal value of+1 while the other
hallway and all states outside the room might be assigned a subgoal value of 0. LetOg
denote the set of options that terminate only and always inG (i.e., for whichβ(s)= 0 for
s /∈ G andβ(s)= 1 for s ∈ G). Given a subgoal-value functiong :G→R, one can define
a new state-value function, denotedV og (s), for optionso ∈ Og , as the expected value of
the cumulative reward if optiono is initiated in states, plus the subgoal valueg(s′) of the
states′ in which it terminates, both discounted appropriately. Similarly, we can define a
new action-value functionQog(s, a)= V aog (s) for actionsa ∈As and optionso ∈Og .

Finally, we can defineoptimalvalue functions for any subgoalg:

V ∗g (s)= max
o∈Og

V og (s) and Q∗g(s, a)= max
o∈Og

Qog(s, a).

R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211 207

Fig. 11. Learning subgoal-achieving hallway options under random behavior. Shown on the left is the error
betweenQg(s, a) andQ∗g(s, a) averaged overs ∈ I, a ∈A, and 30 repetitions. The right panel shows the learned
state values (maximum over action values) for two options at stateG2 approaching their correct values.

Finding an option that achieves these maximums (anoptimal optionfor the subgoal) is
then a well defined subtask. For Markov options, this subtask has Bellman equations and
methods for learning and planning just as in the original task. For example, the one-step
tabular Q-learning method for updating an estimateQg(st , at) ofQ∗g(st , at) is

Qg(st , at)←Qg(st , at)+ α
[
rt+1+ γ max

a
Qg(st+1, a)−Qg(st , at)

]
,

if st+1 /∈ G,

Qg(st , at)←Qg(st , at)+ α
[
rt+1+ γg(st+1)−Qg(st , at)

]
,

if st+1 ∈ G.

As a simple example, we applied this method to learn the policies of the eight hallway
options in the rooms example. Each option was assigned subgoal values of+1 for the target
hallway and 0 for all states outside the option’s room, including the off-target hallway. The
initial state was that in the upper left corner, actions were selected randomly with equal
probability, and there was no goal state. The parameters wereγ = 0.9 andα = 0.1. All
rewards were zero. Fig. 11 shows the learned values for the hallway subgoals reliably
approaching their ideal values.

8. Conclusion

Representing knowledge flexibly at multiple levels of temporal abstraction has the
potential to greatly speed planning and learning on large problems. We have introduced
a framework for doing this within the context of reinforcement learning and MDPs. This
context enables us to handle stochastic environments, closed-loop policies, and goals
in a more general way than has been possible in classical AI approaches to temporal
abstraction. Our framework is also clear enough to be learned, used, and interpreted
mechanically, as we have shown by exhibiting simple procedures for learning and planning
with options, for learning models of options, and for creating new options from subgoals.

208 R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211

The foundation of the theory of options is provided by the existing theory of SMDPs and
associated learning methods. The fact that each set of options defines an SMDP provides
a rich set of planning and learning methods, convergence theory, and an immediate,
natural, and general way of analyzing mixtures of actions at different time scales. This
theory offers a lot, but still the most interesting cases are beyond it because they involve
interrupting, constructing, or otherwise decomposing options into their constituent parts.
It is the intermediate ground between MDPs and SMDPs that seems richest in possibilities
for new algorithms and results. In this paper we have broken this ground and touched on
many of the issues, but there is far more left to be done. Key issues such as transfer between
subtasks, the source of subgoals, and integration with state abstraction remain incompletely
understood. The connection between options and SMDPs provides only a foundation for
addressing these and other issues.

Finally, although this paper has emphasized temporally extendedaction, it is interesting
to note that there may be implications for temporally extendedperceptionas well. It is
now common to recognize that action and perception are intimately linked. To see the
objects in a room is not so much to label or locate them as it is to know what opportunities
they afford for action: a door to open, a chair to sit on, a book to read, a person to talk
to. If the temporally extended actions are modeled as options, then perhaps the models of
the options correspond well to these perceptions. Consider a robot learning to recognize
its battery charger. The most useful concept for it is the set of states from which it can
successfully dock with the charger, and this is exactly what would be produced by the
model of a docking option. These kinds of action-oriented concepts are appealing because
they can be tested and learned by the robot without external supervision, as we have shown
in this paper.

Acknowledgement

The authors gratefully acknowledge the substantial help they have received from many
colleagues who have shared their related results and ideas with us over the long period
during which this paper was in preparation, especially Amy McGovern, Ron Parr, Tom
Dietterich, Andrew Fagg, B. Ravindran, Manfred Huber, and Andy Barto. We also thank
Leo Zelevinsky, Csaba Szepesvári, Paul Cohen, Robbie Moll, Mance Harmon, Sascha
Engelbrecht, and Ted Perkins. This work was supported by NSF grant ECS-9511805 and
grant AFOSR-F49620-96-1-0254,both to Andrew Barto and Richard Sutton. Doina Precup
also acknowledges the support of the Fulbright foundation. Satinder Singh was supported
by NSF grant IIS-9711753. An earlier version of this paper appeared as University of
Massachusetts Technical Report UM-CS-1998-074.

References

[1] E.G. Araujo, R.A. Grupen, Learning control composition in a complex environment, in: Proc. 4th
International Conference on Simulation of Adaptive Behavior, 1996, pp. 333–342.

[2] M. Asada, S. Noda, S. Tawaratsumida, K. Hosada, Purposive behavior acquisition for a real robot by vision-
based reinforcement learning, Machine Learning 23 (1996) 279–303.

R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211 209

[3] A.G. Barto, S.J. Bradtke, S.P. Singh, Learning to act using real-time dynamic programming, Artificial
Intelligence 72 (1995) 81–138.

[4] C. Boutilier, R.I. Brafman, C. Geib, Prioritized goal decomposition of Markov decision processes: Toward
a synthesis of classical and decision theoretic planning, in: Proc. IJCAI-97, Nagoya, Japan, 1997, pp. 1162–
1165.

[5] S.J. Bradtke, M.O. Duff, Reinforcement learning methods for continuous-time Markov decision problems,
in: Advances in Neural Information Processing Systems 7, MIT Press, Cambridge, MA, 1995, pp. 393–400.

[6] R.I. Brafman, M. Tennenholtz, Modeling agents as qualitative decision makers, Artificial Intelligence 94 (1)
(1997) 217–268.

[7] R.W. Brockett, Hybrid models for motion control systems, in: Essays in Control: Perspectives in the Theory
and its Applications, Birkhäuser, Boston, MA, 1993, pp. 29–53.

[8] L. Chrisman, Reasoning about probabilistic actions at multiple levels of granularity, in: Proc. AAAI Spring
Symposium: Decision-Theoretic Planning, Stanford University, 1994.

[9] M. Colombetti, M. Dorigo, G. Borghi, Behavior analysis and training: A methodology for behavior
engineering, IEEE Trans. Systems Man Cybernet. Part B 26 (3) (1996) 365–380.

[10] R.H. Crites, A.G. Barto, Improving elevator performance using reinforcement learning, in: Advances in
Neural Information Processing Systems 8, MIT Press, Cambridge, MA, 1996, pp. 1017–1023.

[11] P. Dayan, Improving generalization for temporal difference learning: The successor representation, Neural
Computation 5 (1993) 613–624.

[12] P. Dayan, G.E. Hinton, Feudal reinforcement learning, in: Advances in Neural Information Processing
Systems 5, Morgan Kaufmann, San Mateo, CA, 1993, pp. 271–278.

[13] T. Dean, L.P. Kaelbling, J. Kirman, A. Nicholson, Planning under time constraints in stochastic domains,
Artificial Intelligence 76 (1–2) (1995) 35–74.

[14] T. Dean, S.-H. Lin, Decomposition techniques for planning in stochastic domains, in: Proc. IJCAI-95,
Montreal, Quebec, Morgan Kaufmann, San Mateo, CA, 1995, pp. 1121–1127. See also Technical Report
CS-95-10, Brown University, Department of Computer Science, 1995.

[15] G.F. DeJong, Learning to plan in continuous domains, Artificial Intelligence 65 (1994) 71–141.
[16] T.G. Dietterich, The MAXQ method for hierarchical reinforcement learning, in: Machine Learning: Proc.

15th International Conference, Morgan Kaufmann, San Mateo, CA, 1998, pp. 118–126.
[17] M. Dorigo, M. Colombetti, Robot shaping: Developing autonomous agents through learning, Artificial

Intelligence 71 (1994) 321–370.
[18] G.L. Drescher, Made Up Minds: A Constructivist Approach to Artificial Intelligence, MIT Press, Cambridge,

MA, 1991.
[19] C. Drummond, Composing functions to speed up reinforcement learning in a changing world, in: Proc. 10th

European Conference on Machine Learning, Springer, Berlin, 1998.
[20] O. Etzioni, Why PRODIGY/EBL works, in: Proc. AAAI-90, Boston, MA, MIT Press, Cambridge, MA,

1990, pp. 916–922.
[21] R.E. Fikes, P.E. Hart, N.J. Nilsson, Learning and executing generalized robot plans, Artificial Intelligence 3

(1972) 251–288.
[22] H. Geffner, B. Bonet, High-level planning and control with incomplete information using POMDPs, in:

Proc. AIPS-98 Workshop on Integrating Planning, Scheduling and Execution in Dynamic and Uncertain
Environments, 1998.

[23] J. Gratch, G. DeJong, A statistical approach to adaptive problem solving, Artificial Intelligence 88 (1–2)
(1996) 101–161.

[24] R. Greiner, I. Jurisica, A statistical approach to solving the EBL utility problem, in: Proc. AAAI-92, San
Jose, CA, 1992, pp. 241–248.

[25] R.L. Grossman, A. Nerode, A.P. Ravn, H. Rischel, Hybrid Systems, Springer, New York, 1993.
[26] M. Hauskrecht, N. Meuleau, C. Boutilier, L.P. Kaelbling, T. Dean, Hierarchical solution of Markov decision

processes using macro-actions, in: Uncertainty in Artificial Intelligence: Proc. 14th Conference, 1998,
pp. 220–229.

[27] R. Howard, Dynamic Programming and Markov Processes, MIT Press, Cambridge, MA, 1960.
[28] M. Huber, R.A. Grupen, A feedback control structure for on-line learning tasks, Robotics and Autonomous

Systems 22 (3–4) (1997) 303–315.
[29] G.A. Iba, A heuristic approach to the discovery of macro-operators, Machine Learning 3 (1989) 285–317.

210 R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211

[30] T. Jaakkola, M.I. Jordan, S. Singh, On the convergence of stochastic iterative dynamic programming
algorithms, Neural Computation 6 (6) (1994) 1185–1201.

[31] L.P. Kaelbling, Hierarchical learning in stochastic domains: Preliminary results, in: Proc. 10th International
Conference on Machine Learning, Morgan Kaufmann, San Mateo, CA, 1993, pp. 167–173.

[32] Zs. Kalmár, Cs. Szepesvári, A. Lörincz, Module based reinforcement learning: Experiments with a real
robot, Machine Learning 31 (1998) 55–85 and Autonomous Robots 5 (1998) 273–295 (special joint issue).

[33] J. de Kleer, J.S. Brown, A qualitative physics based on confluences, Artificial Intelligence 24 (1–3) (1984)
7–83.

[34] R.E. Korf, Learning to Solve Problems by Searching for Macro-Operators, Pitman Publishers, Boston, MA,
1985.

[35] J.R. Koza, J.P. Rice, Automatic programming of robots using genetic programming, in: Proc. AAAI-92, San
Jose, CA, 1992, pp. 194–201.

[36] B.J. Kuipers, Commonsense knowledge of space: Learning from experience, in: Proc. IJCAI-79, Tokyo,
Japan, 1979, pp. 499–501.

[37] J.E. Laird, P.S. Rosenbloom, A. Newell, Chunking in SOAR: The anatomy of a general learning mechanism,
Machine Learning 1 (1986) 11–46.

[38] L.-J. Lin, Reinforcement learning for robots using neural networks, Ph.D. Thesis, Carnegie Mellon
University, Technical Report CMU-CS-93-103, 1993.

[39] P. Maes, R. Brooks, Learning to coordinate behaviors, in: Proc. AAAI-90, Boston, MA, 1990, pp. 796–802.
[40] S. Mahadevan, J. Connell, Automatic programming of behavior-based robots using reinforcement learning,

Artificial Intelligence 55 (2–3) (1992) 311–365.
[41] S. Mahadevan, N. Marchalleck, T. Das, A. Gosavi, Self-improving factory simulation using continuous-time

average-reward reinforcement learning, in: Proc. 14th International Conference on Machine Learning, 1997,
pp. 202–210.

[42] P. Marbach, O. Mihatsch, M. Schulte, J.N. Tsitsiklis, Reinforcement learning for call admission control in
routing in integrated service networks, in: Advances in Neural Information Processing Systems 10, Morgan
Kaufmann, San Mateo, CA, 1998, pp. 922–928.

[43] M.J. Mataric, Behavior-based control: Examples from navigation, learning, and group behavior, J. Experi-
ment. Theoret. Artificial Intelligence 9 (2–3) (1997) 323–336.

[44] A. McGovern, R.S. Sutton, Macro-actions in reinforcement learning: An empirical analysis, Technical
Report 98-70, University of Massachusetts, Department of Computer Science, 1998.

[45] N. Meuleau, M. Hauskrecht, K.-E. Kim, L. Peshkin, L.P. Kaelbling, T. Dean, C. Boutilier, Solving very large
weakly coupled Markov decision processes, in: Proc. AAAI-98, Madison, WI, 1998, pp. 165–172.

[46] S. Minton, Learning Search Control Knowledge: An Explanation-Based Approach, Kluwer Academic,
Dordrecht, 1988.

[47] S. Minton, Quantitative results concerning the utilty of explanation-based learning, Artificial Intelligence 42
(2–3) (1990) 363–391.

[48] A.W. Moore, The parti-game algorithm for variable resolution reinforcement learning in multidimensional
spaces, in: Advances in Neural Information Processing Systems 6, MIT Press, Cambridge, MA, 1994,
pp. 711–718.

[49] A. Newell, H.A. Simon, Human Problem Solving, Prentice-Hall, Englewood Cliffs, NJ, 1972.
[50] J. Nie, S. Haykin, A Q-learning based dynamic channel assignment technique for mobile communication

systems, IEEE Transactions on Vehicular Technology, to appear.
[51] N. Nilsson, Teleo-reactive programs for agent control, J. Artificial Intelligence Res. 1 (1994) 139–158.
[52] R. Parr, Hierarchical control and learning for Markov decision processes, Ph.D. Thesis, University of

California at Berkeley, 1998.
[53] R. Parr, S. Russell, Reinforcement learning with hierarchies of machines, in: Advances in Neural Information

Processing Systems 10, MIT Press, Cambridge, MA, 1998, pp. 1043–1049.
[54] D. Precup, R.S. Sutton, Multi-time models for reinforcement learning, in: Proc. ICML’97 Workshop on

Modeling in Reinforcement Learning, 1997.
[55] D. Precup, R.S. Sutton, Multi-time models for temporally abstract planning, in: Advances in Neural

Information Processing Systems 10, MIT Press, Cambridge, MA, 1998, pp. 1050–1056.
[56] D. Precup, R.S. Sutton, S.P. Singh, Planning with closed-loop macro actions, in: Working Notes 1997 AAAI

Fall Symposium on Model-directed Autonomous Systems, 1997, pp. 70–76.

R.S. Sutton et al. / Artificial Intelligence 112 (1999) 181–211 211

[57] D. Precup, R.S. Sutton, S.P. Singh, Theoretical results on reinforcement learning with temporally abstract
options, in: Proc. 10th European Conference on Machine Learning, Springer, Berlin, 1998.

[58] M.L. Puterman, Markov Decision Problems, Wiley, New York, 1994.
[59] M. Ring, Incremental development of complex behaviors through automatic construction of sensory-motor

hierarchies, in: Proc. 8th International Conference on Machine Learning, Morgan Kaufmann, San Mateo,
CA, 1991, pp. 343–347.

[60] E.D. Sacerdoti, Planning in a hierarchy of abstraction spaces, Artificial Intelligence 5 (1974) 115–135.
[61] S. Sastry, Algorithms for design of hybrid systems, in: Proc. International Conference of Information

Sciences, 1997.
[62] A.C.C. Say, S. Kuru, Qualitative system identification: Deriving structure from behavior, Artificial

Intelligence 83 (1) (1996) 75–141.
[63] J. Schmidhuber, Neural sequence chunkers, Technische Universität München, TR FKI-148-91, 1991.
[64] R. Simmons, S. Koenig, Probabilistic robot navigation in partially observable environments, in: Proc. IJCAI-

95, Montreal, Quebec, Morgan Kaufmann, San Mateo, CA, 1995, pp. 1080–1087.
[65] S.P. Singh, Reinforcement learning with a hierarchy of abstract models, in: Proc. AAAI-92, San Jose, CA,

MIT/AAAI Press, Cambridge, MA, 1992, pp. 202–207.
[66] S.P. Singh, Scaling reinforcement learning by learning variable temporal resolution models, in: Proc. 9th

International Conference on Machine Learning, Morgan Kaufmann, San Mateo, CA, 1992, pp. 406–415.
[67] S.P. Singh, The efficient learning of multiple task sequences, in: Advances in Neural Information Processing

Systems 4, Morgan Kaufmann, San Mateo, CA, 1992, pp. 251–258.
[68] S.P. Singh, Transfer of learning by composing solutions of elemental sequential tasks, Machine Learning 8

(3/4) (1992) 323–340.
[69] S.P. Singh, A.G. Barto, R.A. Grupen, C.I. Connolly, Robust reinforcement learning in motion planning, in:

Advances in Neural Information Processing Systems 6, Morgan Kaufmann, San Mateo, CA, 1994, pp. 655–
662.

[70] S.P. Singh, D. Bertsekas, Reinforcement learning for dynamic channel allocation in cellular telephone
systems, in: Advances in Neural Information Processing Systems 9, MIT Press, Cambridge, MA, 1997,
pp. 974–980.

[71] R.S. Sutton, TD models: Modeling the world at a mixture of time scales, in: Proc. 12th International
Conference on Machine Learning, Morgan Kaufmann, San Mateo, CA, 1995, pp. 531–539.

[72] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA, 1998.
[73] R.S. Sutton, B. Pinette, The learning of world models by connectionist networks, in: Proc. 7th Annual

Conference of the Cognitive Science Society, 1985, pp. 54–64.
[74] R.S. Sutton, D. Precup, S. Singh, Intra-option learning about temporally abstract actions, in: Proc. 15th

International Conference on Machine Learning, Morgan Kaufmann, San Mateo, CA, 1998, pp. 556–564.
[75] R.S. Sutton, S. Singh, D. Precup, B. Ravindran, Improved switching among temporally abstract actions, in:

Advances in Neural Information Processing Systems 11, MIT Press, Cambridge, MA, 1999, pp. 1066–1072.
[76] M. Tambe, A. Newell, P. Rosenbloom, The problem of expensive chunks and its solution by restricting

expressiveness, Machine Learning 5 (3) (1990) 299–348.
[77] G.J. Tesauro, Temporal difference learning and TD-Gammon, Comm. ACM 38 (1995) 58–68.
[78] T. Thrun, A. Schwartz, Finding structure in reinforcement learning, in: Advances in Neural Information

Processing Systems 7, Morgan Kaufmann, San Mateo, CA, 1995, pp. 385–392.
[79] M. Uchibe, M. Asada, K. Hosada, Behavior coordination for a mobile robot using modular reinforcement

learning, in: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, 1996, pp. 1329–
1336.

[80] C.J.C.H. Watkins, Learning with delayed rewards, Ph.D. Thesis, Cambridge University, 1989.
[81] M. Wiering, J. Schmidhuber, HQ-learning, Adaptive Behavior 6 (2) (1997) 219–246.
[82] L.E. Wixson, Scaling reinforcement learning techniques via modularity, in: Proc. 8th International

Conference on Machine Learning, Morgan Kaufmann, San Mateo, CA, 1991, pp. 368–372.

