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a IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA
b Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

c Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, USA
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Abstract

This paper is motivated by the fact that mixed integer nonlinear programming is an important and difficult area for which
there is a need for developing new methods and software for solving large-scale problems. Moreover, both fundamental building
blocks, namely mixed integer linear programming and nonlinear programming, have seen considerable and steady progress in
recent years. Wishing to exploit expertise in these areas as well as on previous work in mixed integer nonlinear programming,
this work represents the first step in an ongoing and ambitious project within an open-source environment. COIN-OR is our
chosen environment for the development of the optimization software. A class of hybrid algorithms, of which branch-and-
bound and polyhedral outer approximation are the two extreme cases, are proposed and implemented. Computational results that
demonstrate the effectiveness of this framework are reported. Both the library of mixed integer nonlinear problems that exhibit
convex continuous relaxations, on which the experiments are carried out, and a version of the software used are publicly available.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Solution algorithms for mixed integer nonlinear programs (MINLPs) have become an active area of research [10,
11,14,20,31,36]. Owing to the steady progress over the years in the development and successful implementation
of algorithms for mixed integer linear programs (MILPs) and nonlinear programs (NLPs), it is natural to expect
that combining expertise from both fields might yield significant advances. The recent creation of COIN-OR [7]
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provides a useful vehicle for facilitating the development and dissemination of open-source software for problems in
operations research. In particular, COIN-OR contains reusable software components for MILP (e.g., Cbc) and NLP
(e.g., Ipopt). In 2004, researchers at IBM and CMU joined forces to study algorithms for MINLPs and develop
associated open-source software, leveraging components already available from COIN-OR. This paper introduces
an algorithmic framework for MINLP resulting from this collaboration. For MINLPs with convex relaxation, this
framework is an exact algorithm, but it can also be applied to nonconvex MINLPs as a heuristic.

Thus far, the main contributions of this effort are:

(i) a new publicly available library of test instances of convex MINLPs1;
(ii) a new family of hybrid algorithms, of which branch-and-bound (BB) and polyhedral outer approximation (OA)

are two extreme (classical) cases;
(iii) a new open-source framework Bonmin [5] which uses existing software in COIN-OR. In particular Cbc, Cgl,

Clp and Ipopt are used as building blocks. The package has been available on the COIN-OR site since July
2006;

(iv) computational results on publicly available test problems.

We consider the mixed integer nonlinear program

P


min f (x, y)

s.t.
g(x, y) ≤ 0,

x ∈ X ∩ Zn, y ∈ Y,

(1)

where X and Y are polyhedral subsets of Rn and Rp respectively, and X is bounded. The functions f : X × Y → R
and g : X × Y → Rm are continuously differentiable. When f and g are convex functions, P is said to be convex. For
convenience, we assume in the algorithms that the continuous relaxation of P obtained by removing the integrality
requirement x ∈ Zn is bounded. When needed in the algorithms, we also assume that f and g are twice continuously
differentiable.

Two main ideas have been proposed for solving convex MINLPs. The first one is a branch-and-bound (BB)
approach [16,20], where lower bounds for subproblems

PX̄


min f (x, y)

s.t.
g(x, y) ≤ 0,

x ∈ X̄ ∩ Zn, y ∈ Y,

with polyhedral subsets X̄ of X , are computed by solving their continuous relaxations P̃X̄ ; here and elsewhere P̃
denotes the continuous relaxation of the associated problem P , e.g.,

P̃X̄


min f (x, y)

s.t.
g(x, y) ≤ 0,

x ∈ X̄ , y ∈ Y.

We note that the lower bound in the BB approach can be strengthened with cutting planes like the ones described
in [30], which represent a generalization to the nonlinear case of the lift-and-project cuts of [2].

The second approach alternates between solving a MILP and a convex NLP. We know of two different methods
that follow this approach: generalized Benders decomposition [13] and Outer Approximation (OA) [10]. The MILP
solved in both approaches is obtained from P by replacing the nonlinear functions by polyhedral outer approximations.
Calling (x̄, ȳ) the optimal solution of this MILP, the convex NLP is P with x fixed to x̄ (which we denote by Px̄ ).
We note that a related approach is the extended cutting-plane method [36], which relies on successive solutions of the
MILP problem.

1 The library is available at the IBM–CMU Open Source MINLP Project website: http://egon.cheme.cmu.edu/ibm/page.htm.

http://egon.cheme.cmu.edu/ibm/page.htm
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Our computational framework uses outer approximations and subproblem relaxations P̃X̄ to compute lower bounds,
and Px̄ to compute upper bounds in a flexible branch-and-cut scheme. When only subproblem relaxations P̃X̄ are
used to compute lower bounds, we have the classical BB algorithm. When outer approximations and Px̄ are used
alternatingly at the root node, we obtain the classical OA algorithm.

In Section 1, the OA algorithm is presented in more detail. In Section 2, three related algorithms are presented.
Section 2.1 presents the NLP Branch-and-Bound framework and details of our implementation (named B-BB) based
on the interior-point NLP solver Ipopt. Section 2.2 presents the OA framework and details of our implementation
(named B-OA) based on Ipopt and the LP solver Clp. Finally, Section 2.3 presents the hybrid algorithm (named
B-Hyb). Depending on the parameter setting of B-Hyb, one obtains either B-BB or B-OA or anything in between. In
Section 3, we present computational results comparing B-BB, B-OA, and one incarnation of B-Hyb with the commercial
solvers SBB and Dicopt.

In the following, we assume that P is convex. The OA algorithm consists of using linearizations of the objective
function and the constraints at different points to build a MILP relaxation of the problem.

First note that P can be reformulated as a MINLP, P̂ , with a linear objective by introducing an extra variable, α,
which is minimized subject to the additional constraint f (x, y) ≤ α. Now consider any point (x̄, ȳ) ∈ X × Y , not
necessarily feasible to P . By convexity of f and g, the constraints

∇ f (x̄, ȳ)T
(

x − x̄
y − ȳ

)
+ f (x̄, ȳ) ≤ α, (2)

∇g(x̄, ȳ)T
(

x − x̄
y − ȳ

)
+ g(x̄, ȳ) ≤ 0 (3)

are then valid for P̂ .
Therefore, given any set of points T =

{(
x1, y1

)
, . . . ,

(
x K , yK

)}
, we can build a relaxation of P:

POA(T )



min α

s.t.

∇ f (xk, yk)T
(

x − xk

y − yk

)
+ f (xk, yk) ≤ α,

∇g(xk, yk)T
(

x − xk

y − yk

)
+ g(xk, yk) ≤ 0,

x ∈ X ∩ Zn, y ∈ Y, α ∈ R.

∀(xk, yk) ∈ T

As is well-known, this is equivalent to the problem
min

x∈X∩Zn y∈Y
max

k
f (xk, yk) + ∇ f (xk, yk)T

(
x − xk

y − yk

)
s.t. g(xk, yk) + ∇g(xk, yk)T

(
x − xk

y − yk

)
≤ 0,

(xk, yk) ∈ T .

Theorem 1 states that if T contains suitable points and KKT conditions are satisfied at these points, then POA(T )

and P are equivalent, in the sense that they have the same optimal value, and that an optimal solution (x̄, ȳ) of P
corresponds to an optimal solution (ᾱ, x̄, ȳ) of POA(T ) with ᾱ = f (x̄, ȳ).

Theorem 1. Let P be a convex MINLP as defined in (1). Assume that P is feasible and has a finite optimum. For all
x̄ ∈ X ∩ Zn , if the problem

Px̄


min f (x̄, y)

s.t.
g(x̄, y) ≤ 0,

y ∈ Y

is feasible, then define ȳ to be its optimal solution. On the other hand, if Px̄ is infeasible, then ȳ is defined as an
optimal solution to the following feasibility problem:
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PF
x̄



min
m∑

i=1

ui

s.t.
g(x̄, y) − u ≤ 0,

u ≥ 0,

y ∈ Y, u ∈ Rm .

Let T̂ be the set of all such pairs (x̄, ȳ).
Assuming that the KKT conditions are satisfied at every optimum of Px̄ (resp. PF

x̄ ), then P and POA(T̂ ) have the
same optimal value.

Proof. Since problem P has a finite optimum it follows that, for every x ∈ X ∩ Zn , either problem Px is feasible with
a finite optimal solution or it is infeasible, and therefore the set T̂ is well-defined.

For every x̄ ∈ X ∩ Zn , we denote by POA
x̄ (T̂ ) the problem corresponding to POA(T̂ ) with x fixed to x̄ . Note

that POA
x̄ (T̂ ) is just a linear programming problem and that the minimum value of POA(T̂ ) is the minimum value of

POA
x̄ (T̂ ) over all x̄ in the finite set X ∩ Zn .

To simplify the proof we assume without loss of generality that the constraints y ∈ Y are included in the constraints
g(x̄, y) ≤ 0 in problem Px̄ and in the constraints g(x̄, y) − u ≤ 0 in problem P F

x̄ .
We denote by XF the set of x ∈ X∩Zn such that Px is feasible and by XI its complement in X∩Zn : (X ∩ Zn)\XF .

Since P is feasible, XF 6= ∅.
First we will prove that for every x̄ ∈ XI the problem POA

x̄ (T̂ ) is infeasible. Since x̄ ∈ XI , the problem Px̄ is
infeasible and therefore T̂ contains the point (x̄, ȳ) with ȳ an optimal solution of P F

x̄ . As a consequence, POA(T̂ )

contains the constraints:

∇g j (x̄, ȳ)T
(

x − x̄
y − ȳ

)
+ g j (x̄, ȳ) ≤ 0, j = 1, . . . , m. (4)

In addition since ȳ is an optimal solution of P F
x̄ and the KKT conditions are satisfied, there exists λ ∈ R2m

+ such that

m∑
j=1

λ j∇y g j (x̄, ȳ) = 0 (5)

1 − λ j − λm+ j = 0 j = 1, . . . , m (6)

λ j
(
g j (x̄, ȳ) − ū j

)
= 0 j = 1, . . . , m, (7)

λm+ j ū j = 0 j = 1, . . . , m. (8)

Now, we prove that POA
x̄ (T̂ ) is infeasible by proving that there is no solution to (4) when we set x = x̄ :

∇y g j (x̄, ȳ)T (y − ȳ) + g j (x̄, ȳ) ≤ 0, j = 1, . . . , m. (9)

Combining these inequalities using the nonnegative multipliers λ1, . . . , λm , we get
m∑

j=1

λ j∇y g j (x̄, ȳ)T (y − ȳ) ≤ −

m∑
j=1

λ j g j (x̄, ȳ).

This inequality has no solution y since, using (5), the left-hand side
∑m

j=1 λ j∇g j (x̄, ȳ) = 0, and using (7), the
right-hand side −

∑m
j=1 λ j g j (x̄, ȳ) = −

∑m
j=1 λ j ū j . This last quantity is strictly negative for the following reason.

Define J =
{

j ∈ {1, . . . m} : ū j 6= 0
}
; we have −

∑m
j=1 λ j ū j = −

∑
j∈J λ j ū j . Now using (8) we have that

λm+ j = 0 ∀ j ∈ J and therefore by (6), λ j = 1 ∀ j ∈ J . This implies that −
∑

j∈J λ j ū j = −
∑

j∈J ū j which
is strictly negative since otherwise Px̄ would be feasible.

This result implies that the minimum value of POA(T̂ ) is to be found as the minimum value of POA
x (T̂ ) over all

x ∈ XF . Next, we prove that for each x̄ ∈ XF , POA
x̄ (T̂ ) has the same objective value as Px̄ from which the proof of

the theorem follows.
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Let ȳ be an optimal solution to Px̄ . ( f (x̄, ȳ), x̄, ȳ) is a feasible solution of POA
x̄ (T̂ ) by construction of the outer-

approximation constraints and of POA(T̂ ), and therefore f (x̄, ȳ) is an upper bound on the optimal value α of POA
x̄ (T̂ ).

We will prove that it is also a lower bound i.e. α ≥ f (x̄, ȳ).

By assumption, ȳ is an optimal solution of Px̄ and satisfies the KKT conditions. Thus there exists λ ∈ Rm
+ such

that

∇y f (x̄, ȳ) +

m∑
j=1

λ j∇y g j (x̄, ȳ) = 0 (10)

λ j g j (x̄, ȳ) = 0 j = 1, . . . , m. (11)

By construction, any solution of POA
x̄ (T̂ ) has to satisfy the outer-approximation constraints:

∇y f (x̄, ȳ)T (y − ȳ) + f (x̄, ȳ) ≤ α,

∇y g j (x̄, ȳ)T (y − ȳ) + g j (x̄, ȳ) ≤ 0, j = 1, . . . , m.

Multiplying these rows by the Lagrange multipliers λ ≥ 0 from (10) and (11) we obtain

∇y f (x̄, ȳ)T (y − ȳ) + f (x̄, ȳ) +

m∑
j=1

λ j

(
∇y g j (x̄, ȳ)T (y − ȳ) + g j (x̄, ȳ)

)
≤ α.

The left-hand side can be rewritten as:(
∇y f (x̄, ȳ) +

m∑
j=1

λ j∇y g j (x̄, ȳ)

)T

(y − ȳ) +

m∑
j=1

λ j g j (x̄, ȳ) + f (x̄, ȳ).

Using (10) and (11) this is equal to f (x̄, ȳ) and therefore the inequality is equivalent to f (x̄, ȳ) ≤ α. Therefore for
any x̄ ∈ XF , problems POA

x̄ (T̂ ) and Px̄ have the same objective value.

It follows that POA(T̂ ) has the same optimal value as

min
x̄∈XF ,ȳ solves Px̄

f (x̄, ȳ). (12)

This value is well-defined since XF 6= ∅. An optimal solution of (12) is also optimal for P , and therefore P and
POA(T̂ ) have the same optimal value. �

The statement made in Theorem 1 is weaker than Theorem 1 in [11], where it is incorrectly stated that (x∗, y∗) is
optimal for P if and only if it is optimal for POA(T ).

Indeed, although all optimal solutions of P are optimal solutions of POA(T ), the converse is not true as the
following example shows.

Example 1. Consider the following MINLP where we optimize over a ball in R3


min z
s.t.(

x −
1
2

)2

+ y2
+ z2

≤ 1,

x ∈ Z ∩ [−1, 2], y ∈ R, z ∈ R.
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This problem has an optimal value of −

√
3

2 . The MILP obtained by applying Theorem 1 is the following

min α

s.t.

z − α ≤ 0,

(constraint (2))

x −
√

3z ≤ 1 + 3/2,(
(3) taken for the optimal solution of P(1)(x, y, z) =

(
1, 0, −

√
3

2

))
−x −

√
3z ≤ 3/2,(

(3) taken for the optimal solution of P(0)(x, y, z) =

(
0, 0, −

√
3

2

))
x ≥

−7
12

,

((3) taken for the optimal solution of P F
(−1)(x, y, z) = (−1, 0, 0))

x ≤
19
12

,

((3) taken for the optimal solution of P F
(2)(x, y, z) = (2, 0, 0))

x ∈ Z, y ∈ R, z ∈ R.

It can be seen that in the linearized problem variable y is unconstrained. Therefore for any λ ∈ R, the point (1, λ,−
√

3
2 )

is feasible and also optimal for the MILP P O A(T̂ ), but it is infeasible for the MINLP whenever λ 6= 0. �

1.1. Outer-approximation algorithm

Originally proposed in [10], the relaxation POA(T ) induces a natural iterative algorithm for solving P . We present
here briefly a slightly modified version introduced in [11]. The algorithm starts with T = {(x0, y0)}, where (x0, y0)

can be either a feasible solution to P or to its continuous relaxation P̃X . Then each iteration starts by solving POA(T )

to find a point (αk, xk, ŷ) and a lower bound αk on the optimal value of P . The problem Pxk defined above is then
solved. If Pxk is feasible, then its optimal solution yk associated with xk gives a feasible solution and an upper bound
for P and (xk, yk) is added to T to strengthen the mixed integer linear relaxation. If Pxk is infeasible, let yk be the
solution of the feasibility problem PF

xk , and add (xk, yk) to T . As shown by Theorem 2 in [11], the algorithm finds
an optimal solution for P in a finite number of iterations provided that assumptions on convexity, differentiability
and constraint qualifications of Theorem 1 hold (note that as pointed out in Theorem 2 of [11] it is not needed to add
integer cuts to guarantee finiteness). The algorithm is described in Fig. 1. At the end of the algorithm if POA(T ) is
feasible then the optimal value of P is zU , if POA(T ) is infeasible then P is also infeasible.

1.2. Branch-and-cut-based outer approximation

Quesada and Grossmann [25] proposed an algorithmic scheme that combines the use of linear and nonlinear
programming in an original branch-and-cut scheme. The motivation of the method proposed by them is to improve the
outer-approximation scheme presented in Section 1.1 by integrating the construction of the outer approximation of P
into a single tree search. In this way the sequential solution of several MILPs is avoided. Instead, one single tree search
is performed, during which nonlinear programs are solved and used to progressively tighten the MILP relaxation.

As in the OA algorithm, a mixed integer linear relaxation POA(T ) is used. But, instead of solving the successive
approximations given by the POA(T ) relaxations to optimality, we perform a branch-and-cut procedure, where the
linear outer approximation is updated at selected nodes of the search tree.

The branch-and-cut algorithm of Quesada and Grossmann is based on two problems, related to POA(T ) and Px
presented in the previous section. The outer approximation of a subproblem corresponding to X̄ ⊆ X
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Fig. 1. Outer-approximation algorithm.

POA
X̄

(T )



min α

s.t.

∇ f (xk, yk)T
(

x − xk

y − yk

)
+ f (xk, yk) ≤ α

∇g(xk, yk)T
(

x − xk

y − yk

)
+ g(xk, yk) ≤ 0

x ∈ X̄ ∩ Zn, y ∈ Y, α ∈ R

∀(xk, yk) ∈ T

is used as a relaxation which gives lower bounds, while P̃X̄ gives feasible solutions, upper bounds and new outer-
approximation constraints.

Let i be a node of the search tree, and let X i
⊆ X be the modified polyhedral feasibility set for x at that node (with

modified bounds). The continuous relaxation P̃OA
X i (T ) is solved, obtaining a solution (x∗, y∗) and a lower bound on

the optimal value of the subtree rooted at i . If x∗ satisfies the integrality requirements, a feasible solution for P may
exist at that node, and it can be found by solving Px∗ . Let ȳ be an optimal solution to Px∗ . If (x∗, ȳ) is feasible for P ,
the upper bound is updated. In either case, we update T to T ∪ {(x∗, ȳ)}.

As shown in [25], the algorithm converges to an optimal solution in finite time provided that assumptions on
convexity, continuity, differentiability and constraint qualification of Theorem 1 hold. The complete algorithm is
described in Fig. 2. At the end of the algorithm if zU < +∞ then it is the optimal value of P , otherwise P is proven
to be infeasible.

In the algorithm of Quesada and Grossmann as described above, the NLP subproblem Px∗ is solved only when
the optimal solution (x∗, y∗) of P̃OA

X i (T ) satisfies x∗
∈ Zn . This is the least we can do in terms of solving NLPs, to

guarantee the convergence of the algorithm by application of Theorem 1. However, it is entirely possible to solve PX i

at additional nodes in order to reduce the size of the branch-and-bound tree. In Section 2.3, we present two ways of
enhancing this branch-and-bound scheme which we implemented in our hybrid algorithm.

2. Our algorithmic framework

We implemented three different algorithms:

• B-BB: the simple nonlinear programming-based BB as presented in Section 1;
• B-OA: the OA algorithm as presented in Section 1.1;
• B-Hyb: an enhanced version of the hybrid procedure presented in Section 1.2.

The three algorithms are implemented using existing software components from the COIN-OR open source library
as building blocks. To solve the continuous NLPs we use the interior-point solver Ipopt [35]. The various branch-
and-bound techniques are based on the branch-and-cut module Cbc and the cut-generation library Cgl, and the LP
subproblems are solved using Clp.



P. Bonami et al. / Discrete Optimization 5 (2008) 186–204 193

Fig. 2. Outer approximation-based branch-and-cut.

2.1. Algorithm B-BB

The BB algorithm was implemented by modifying Cbc in order to replace the solution of LPs at each node of the
tree by the solution of NLPs. BB is an efficient technique for solving MILPs, as the reoptimization of an LP after small
modifications can be done efficiently using hot-start techniques in simplex-based algorithms. (The reader is referred
to [18,21,24,37] for terminology and background information related to branch-and-cut for solving MILPs.) The
same applies to NLPs, however to a lesser extent, when they are solved using active-set algorithms [20]. Nevertheless,
we chose the interior-point NLP solver Ipopt as our solver, as a suitable open-source active-set NLP solver was
unavailable. Note that using a different NLP solver is possible with minor modifications to the code.2

The BB algorithm follows a simple scheme; no cutting-plane method is used, no strong branching is performed,
and no heuristic methods are implemented. The branching variable selection strategy uses pseudo-costs initialized
with the average known pseudo-cost as defined in [3,21].

To try to reduce the time spent solving NLPs, at each node Ipopt is warm-started by using the optimal primal and
dual solution of the direct parent node as a starting point. In addition, the initial modification of the starting point,
aiming to move it sufficiently away from bounds, is done less strongly for a warm-start than for a cold-start. This leads
to a reduction in the average run time for solving the NLPs.

Ipopt was used with the adaptive barrier parameter strategy [23]. We also added a heuristic to switch sooner to
the feasibility restoration phase if little progress was made at the beginning of the optimization, in order to speed up
infeasibility detection.

2.2. Algorithm B-OA

The OA algorithm is implemented using Ipopt to solve the NLPs, and Cbc to solve the MILPs. It follows exactly
the algorithm described in Fig. 1. The default strategies of Cbc are used, namely:

2 Note that the latest version of Bonmin now allows for using the alternative solver filterSqp [12].
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• for branching variable selection at a node strong branching is performed on the five most integer infeasible variables
(in case of ties variables being chosen in lexicographic order) in the current optimal solution of the relaxed problem,

• various cutting-planes procedures (mixed integer Gomory cuts, probing cuts, mixed integer rounding cuts, clique
cuts, cover cuts and flow cover cuts [7]) are applied, but only at the root node.

2.3. Algorithm B-Hyb

This algorithm is an enhanced version of the branch-and-cut procedure presented in Section 1.2. Its implementation
is based on Cbc. One enhancement is that more NLPs are solved in order to reduce the size of the tree. This is done
in two ways: by solving the NLP relaxation P̃Xk at additional nodes of the tree, and by performing local partial
enumerations at nodes of the tree. In the limiting cases, the first way reduces the algorithm to a classical NLP BB,
while the second one reduces the algorithm to the classical OA algorithm. Of course, both alternatives can be combined
within a hybrid algorithm, the approach investigated in this paper, apparently for the first time. A further enhancement
is that our hybrid scheme uses a number of MILP techniques available in Cbc. We describe the enhancements in more
detail in the following subsections.

2.3.1. Solving NLP relaxations at some nodes
Consider a node k. If P̃Xk , the relaxation of the corresponding subproblem, is infeasible, then node k can be

fathomed. Otherwise, let (x̄, ȳ) be an optimal solution of P̃Xk . If x̄ is an integer, then we obtain a new feasible
solution (x̄, ȳ) for P , which gives an upper bound for the problem, and the node can be fathomed. Otherwise, we add
(x̄, ȳ) to T .

Solving P̃Xk allows us to strengthen the bounds and therefore typically leads to a smaller enumeration tree. Note
also that this scheme improves the outer approximation higher in the tree, in contrast to the basic algorithm of Quesada
and Grossmann where the outer approximation is strengthened only at nodes k where the optimal solution (x̄, ȳ) to
P̃OA

Xk has x̄ integer.

If the subproblem relaxation P̃Xk is solved at each node of the tree, then the algorithm reduces to an NLP BB
algorithm. This is unlikely to be the optimal strategy for all problem classes. In the computational experiments
presented in Section 3, the subproblem relaxations are solved every L := 10 nodes.

2.3.2. Performing local searches at nodes
The enhancement described above makes the algorithm closer to a pure BB algorithm. An alternative approach is

to perform some outer-approximation iterations at selected nodes of the tree.
At any node k of the tree, we may perform a truncated MILP BB procedure to try to find a feasible solution (x∗, y∗)

for POA
Xk (T ). If such a solution is found, then we solve Px∗ (or PF

x∗ , if Px∗ is infeasible), obtaining (x∗, ȳ). As before,
the solution (x∗, ȳ) is added to T , and the upper bound and best incumbent solution are possibly updated. We can
then repeat this process until the MINLP problem corresponding to node k is solved.

In our experiments, we perform such a local search only at the root node with an overall limit on the time spent
in solving such MILP’s of κ := 30 s. The local searches are performed by using Cbc with the settings used by B-OA
described in Section 2.3.

Of course, if the value for the time limit κ is set to infinity, the algorithm then reduces to the usual OA algorithm.

2.3.3. Integration of MILP techniques
Cbc is an elaborate code for MILP. Using it as the underlying framework for our hybrid procedure allows us to take

advantage of the advanced MILP techniques already implemented in or utilized by Cbc. Cbc uses several families of
cuts from Cgl to tighten the OA relaxations. To produce the results in Section 3 we use mixed integer Gomory cuts,
probing cuts, mixed integer rounding cuts, and cover cuts. The different cut generators are called at the root node and
in the tree search according to the dynamic strategy implemented in Cbc.

For the branching variable selection strategy, we use the implementation of reliability branching [1] available in
Cbc, with a reliability parameter of 8, a limit of 20 variables on which strong branching is performed and a limit of
100 simplex iterations in the strong branching. If a feasible solution for POA(T ) is found during strong branching, an
NLP is solved to verify if it corresponds to a feasible solution for P and additional outer-approximation constraints
are added in the same way as it is done when nodes of the tree are processed.

The implementation of the hybrid algorithm follows the branch-and-cut procedure described in Fig. 3.
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Fig. 3. Hybrid algorithm.

3. Computational results

The problems used in the computational experiments were gathered from different sources, and feature applications
from operations research and chemical engineering. We present a brief description of every class of problems below
and highlight some of their defining characteristics. Note that those whose names end with an “M” or an “H” refer to
problems that were originally formulated in generalized disjunctive form [26]. The MINLP version of the problems
was obtained using either a “big-M” transformation (end in “M”), or a “convex hull” transformation (end in “H”) [15].

The BatchS problems are multi-product batch plant design problems with multiple units in parallel and
intermediate storage tanks [27,33]. These problems consist of determining the volume of the equipment, the number
of units in parallel, and the volume and location of the intermediate storage tanks. The nonlinearities in this set of
problems stem from exactly one constraint that contains an exponential term. The relative integrality gap (defined as
optval(P)−optval(P̃)

|optval(P)|
where optval() returns the optimal value of the problem) of the big-M version of this set of problems

is about 15% on average.
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The CLay problems are constrained layout problems [28], where nonoverlapping units represented by rectangles
must be placed within the confines of certain designated areas formulated as circular nonlinear constraints, such
that the cost of connecting these units is minimized. The nonlinearities in this set of problems are all quadratic and
correspond to Euclidean-distance constraints, and the integrality gap for all instances presented is equal to 100%. Note
that these problem are intentionally poorly modeled in order to have a large integrality gap and no feasible solution
near the optimal solution of the continuous relaxation.

The FLay problems concern farm land layout [28], where one would like to determine the optimal length and width
of a number of rectangular patches of land with fixed area, such that the perimeter of the set of patches is minimized.
The nonlinearities in this set of problems stem from a set of hyperbolic constraints, and the integrality gap is, on
average, about 44%.

The Fo7 2 problem is a block layout design with unequal areas [6], and is concerned with finding the most efficient
arrangement of a given number of departments with unequal area requirements within a facility. This problem has the
same defining characteristics as the farm layout problems described above.

The RSyn problems concern retrofit-synthesis problems [28], in which one would like to simultaneously redesign
part of an existing plant and synthesize (from scratch) part of a new one. Specifically, one is interested in determining
whether certain units should be included in the design of the new plant, and whether certain modifications, such as
improvements in yield, capacity and energy reduction, should be performed on the existing plant. In addition, it is
required that the economic potential is maximized given a certain time horizon and limited capital investments. The
nonlinearities in this set of problems stem from the synthesis portion of the model, and correspond to logarithmic
functions. The integrality gap for the convex hull version of these problems tends to be small and of the order of
about 1%.

The SLay problems are Safety Layout problems [28], where one is interested in placing a set of units with fixed
width and length such that the Euclidean distance between their center point and a pre-defined “safety point” is
minimized. This problem is a mixed integer quadratic program, and thus, the nonlinearities in this set of problems
are contained solely in the objective function (as quadratic terms). The integrality gap is approximately equal to 6%
on average. Furthermore, this class of problems is known to be symmetric, a feature shared with the other layout
problems Clay and FLay.

The Syn problems are Synthesis problems [10,32], and correspond to the synthesis portions of the RSyn class
described above. As such, they have similar characteristics to the latter set of problems, although it should be noted
that the big-M version of this class tends to have very poor relaxations resulting in integrality gaps of over 600%.

The cutting stock problems, trimloss, [17], are where one is interested in cutting out a set of product paper rolls
from raw paper rolls such that the cost function, including the trim loss as well as the over production, is minimized.
The nonlinearities in this set of problems arise from square root transformations that were used to convexify a set of
bilinear constraints. The integrality gap is about 75% on average.

The Water problems are large inverse problems for the determination of contamination sources in municipal water
networks. The constraints are linear and come from discretized dynamic models of the network water quality model.
The objective is the least squares error between calculated and measured network concentrations, together with a
regularization term to force a unique solution. Integer variables are added to restrict the allowable contamination
scenarios, giving the final form as a mixed integer quadratic program (MIQP) [19].

All these problems are available on the web [22] in Ampl and Gams formats, except the Water problems, available
only in Ampl format. (This implies that we are unable to run the Water problems with SBB or Dicopt. We keep
these problems in the test set, since they have a large number of continuous variables, a feature absent from other
problems.) These 41 problems were selected from a library of more than 150 convex problems that we collected [22].
We selected problems that were solved in less than 3 h by an earlier implementation of the hybrid algorithm
described in the previous section. We rejected problems that were solved in less than 30 seconds. In addition, for
each class of problems, we added the smallest problem in the class that was not solved in 3 hours. Improvements
in the hybrid algorithm mean that most problems are now solved within the time limit by the current version of the
hybrid. Characteristics of the instances are reported in Table 1. The optimal value is known for all problems, except
trimloss5.

We compare three types of algorithms: Branch-and-bound algorithms solving NLPs at the nodes of the tree (NLP
BB for short), outer-approximation algorithms as described in Section 1 (OA for short) and one hybrid algorithm
as described in Section 2.3. The experiments presented here have been performed with an early implementation
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Table 1
Test set statistics

Problem name Var Integer Constr nnz Opt. sol value Continuous relaxation

BatchS101006M 278 129 1 019 79 769 440.42 734 943
BatchS121208M 406 203 1 511 95 1241 125.51 1202 360
BatchS151208M 445 203 1 781 98 1543 472.39 1499 910
BatchS201210M 558 251 2 327 103 2296 535.15 2255 300

CLay0203H 90 18 132 30 41 573.30 0.00
CLay0204H 164 32 234 40 6 545 0.00
CLay0205M 80 50 135 10 8 092.5 0.00
CLay0205H 260 50 365 50 8 092.5 0.00
CLay0303M 33 21 66 6 26 669.10 0.00
CLay0303H 99 21 150 45 26 669.13 0.00
CLay0305M 85 55 155 10 8 092.5 0.00

FLay04H 234 24 282 4 54.40 30.98
FLay05M 62 40 65 5 64.49 34.64
FLay05H 382 40 465 5 64.49 34.64

Fo7 2 114 42 211 14 17.74 0.00

RSyn0810M03H 1 185 252 1 935 90 −2 722.44 −2797.66
RSyn0815M03H 1 347 282 2 217 156 −2 827.92 −2916.02
RSyn0820M03H 1 467 312 2 448 201 −2 028.81 −2102.39
RSyn0820M04H 1 956 416 3 528 268 −2 450.77 −2509.27
RSyn0830M03H 1 758 372 2 934 291 −1 543.05 −1589.61
RSyn0840M04H 2 344 496 4 236 388 −2 529.07 −2579.75
RSyn0840M03H 2 040 432 3 447 402 −2 742.64 −2806.52
RSyn0840M04H 2 720 576 4 980 536 −2 564.50 −2618.98

SLay10M 290 180 405 20 129 579.88 119 090
SLay07H 476 84 609 14 64 748.82 61 757.1
SLay08H 632 112 812 16 84 960.21 80 754.9
Slay09M 234 144 324 18 107 805.75 103 126
SLay09H 810 144 1 044 18 107 805.75 103 126

Syn20M04M 420 160 1 052 56 −3 532.74 −9864.89
Syn30M03M 480 180 1 041 60 −654.15 −4535.1
Syn30M04M 640 240 1 568 80 −865.72 −6171.15
Syn40M02M 420 160 812 56 −388.77 −4555.35
Syn40M03M 630 240 1 398 84 −395.14 −6190.65
Syn40M03H 1 146 240 1 998 402 −395.14 −417.45
Syn40M04M 840 320 2 104 112 −901.75 −9168.63
Syn40M04H 1 528 320 2 904 536 −901.75 −920.15

trimloss4 105 85 64 36 8.3 1.70
trimloss5 161 131 90 55 ≤11.2 1.17

Water0202 106 711 7 107 209 4 017 125.19 60.28
Water0303 107 222 14 108 217 4 521 207.98 75.52
Water0202R 384 14 556 17 205 424.54 0.00

Number of variables, number of integer variables, number of constraints, number of nonzero entries in the Hessian of the Lagrangian, optimal
solution value and value of the continuous relaxation are listed. (The optimum for trimloss5 is not known.)

of the now publicly available Bonmin package [5]. We compare our implementation B-BB of an NLP BB with the
commercial software SBB [29] (version Level 009) using the CONOPT NLP solver (version 3.14g-016-054), and our
implementation B-OA of an OA algorithm with the commercial software Dicopt [8,34] (version 2x-c), using CPLEX
(version 9.0) for the MILP subproblems and CONOPT (same version as above) for the NLPs. Finally, we also list
results obtained with our hybrid algorithm B-Hyb. The machine used in the tests is an IBM IntellistationZ Pro with an
Intel Xeon 3.2 GHz CPU, 2 GB of RAM, running Linux Fedora Core 3.

Note that the computing time for the results obtained with SBB are the CPU times reported by the software. This
time is much smaller than the wall clock time on large problems, as SBB writes (sometimes huge) files during the
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Fig. 4. Relative performance of the five algorithms.

computation, and the time for reading/writing files is not included in the reported CPU times. For example, on problem
Syn40M02M, which hits the three hour time limit, the actual user time is almost 13 h and the real time (including
system time) is more than 31 h.

Fig. 4 is a performance plot [9] of the five algorithms. The curve plotted for an algorithm A gives the proportion
of problems that are solved within factor p of the time required by the best algorithm. More precisely, if t∗(P) is the
smallest time needed by one of the five algorithms to solve problem P , then P is solved within a factor p by any
algorithm requiring at most time p t∗(P). For p = 1, the plotted point for algorithm A represents the proportion
of problems for which A is fastest. For p very large, the plotted point is the proportion of problems solved by
the algorithm in less than 3 h. (Note that the three Water problems are not used for this plot.) It is clear from the
plot that B-Hyb dominates B-BB and B-OA. It also dominates SBB except for very small values of p. The number of
problems solved in 3 h by B-Hyb is larger than the corresponding number for the other algorithms, indicating that
B-Hyb is overall the most robust algorithm. Dicopt solves more problems very early, and that the performance of
B-Hyb becomes competitive for p = 28. This value for p might seem quite high, but it is obtained due to a number
of problems that are solved in a few seconds with Dicopt, but require much more time with B-Hyb. Indeed, in a
performance plot based on solution time differences instead of ratios, B-Hyb is the best performer as soon as running
for 45 seconds beyond the best solution time is allowed.

Table 2 presents the running times of the five algorithms. Failures are listed as *** and are caused by numerical
difficulties in Ipopt, except on SLay07H for B-OA, where the failure is caused by numerical problems in the LP solver,
and on RSyn0815M03H for Dicopt, where the failure occurs with CONOPT.

Note that Dicopt seems particularly efficient on the BatchS, RSyn and Syn problems, while SBB dominates on
the CLay and FLay problems. For all the SLay problems except one, either SBB or B-BB works best. For trimloss4,
only B-Hyb is able to solve it in 3 h. An interesting question is to determine which problems are well-suited for OA
algorithms and which ones should be attacked with an NLP BB approach. We suspect that the quality of the linear
relaxation obtained by the OA algorithms is the driving criterion: When this approximation is good, the solution of
the MILP is close to the solution of the MINLP and OA works well. On the other hand, when the approximation is
poor, solving the MILP does not help in finding good feasible solutions and helps only moderately in improving the
LP relaxation.

Table 3 compares the B-BB, B-Hyb and B-OA algorithms. As noted before, B-Hyb is almost always faster than B-BB,
the only notable exceptions being the CLay, FLay and SLay problems where none of the two dominates clearly the
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Table 2
Comparison of running times (in seconds) for the five algorithms (bold face for best running time)

Problem name SBB B-BB B-Hyb B-OA Dicopt

BatchS101006M 728.46 124.87 72.90 551.56 14.69
BatchS121208M 2316.28 1894.99 71.76 173.54 9.3
BatchS151208M 3871.95 2732.32 632.39 3360.58 22.53
BatchS201210M >3 h 5304.94 816.16 >3 h 28.44

CLay0203H 3.39 20.15 39.45 6.91 5.011
CLay0204H 15.32 496.06 48.02 7.85 0.59
CLay0205M 19.49 284.01 114.19 179.72 156.67
CLay0205H 358.72 *** 428.93 1048.37 157.74
CLay0303M 0.87 13.44 55.84 11.15 99.91
CLay0303H 2.86 28.30 69.98 26.45 58.5
CLay0305M 65.77 644.29 79.87 659.44 769.73

FLay04H 28.49 75.89 68.12 148.14 439.5
FLay05M 266.74 955.89 7989.17 >3 h >3 h
FLay05H 3047.4 4066.47 *** >3 h >3 h

Fo7 2 >3 h 9833.10 7103.02 >3 h >3 h

RSyn0810M03H 84.31 301.51 14.70 15.87 10.52
RSyn0815M03H 150.41 188.10 27.78 27.76 ***
RSyn0820M03H 690.51 369.06 62.85 32.66 8.3
RSyn0820M04H 384.62 342.76 57.35 43.68 18.97
RSyn0830M03H 98.84 389.56 7.82 11.80 10.03
RSyn0840M04H 817.25 2182.70 118.43 69.74 14.25
RSyn0840M03H 151.37 319.17 13.27 20.02 12.45
RSyn0840M04H 1032.87 3119.50 22.94 60.32 20.68

SLay10M 19.45 514.56 197.93 >3 h >3 h
SLay07H 160.54 53.22 73.46 *** 37.97
SLay08H 394.46 107.05 120.54 >3 h 228.38
SLay09M 21.51 70.95 39.95 >3 h >3 h
SLay09H 2383.73 260.69 328.35 >3 h >3 h

Syn20M04M >3 h >3 h 52.50 174.60 0.27
Syn30M03M >3 h >3 h 16.89 15.06 0.72
Syn30M04M >3 h >3 h 118.01 1544.91 647.5
Syn40M02M >3 h >3 h 15.55 15.32 0.44
Syn40M03M >3 h >3 h 238.34 1875.38 1.2
Syn40M03H 36.3 24.07 17.33 24.32 2.04
Syn40M04M >3 h >3 h 256.23 >3 h 2.06
Syn40M04H 81.52 46.64 28.62 34.95 3.51

trimloss4 >3 h *** 178.60 >3 h >3 h
trimloss5 >3 h *** >3 h >3 h >3 h

Water0202 N/A 545.95 390.11 974.19 N/A
Water0303 N/A 1523.86 1153.18 >3 h N/A
Water0202R N/A 328.20 156.45 115.28 N/A

other. Comparing B-Hyb with B-OA, they have comparable performances on the CLay, RSyn and Water problems that
can be solved in less than 3 min. On the other classes, B-Hyb dominates B-OA.

Comparing the number of nodes of B-BB and B-Hyb, the latter usually has a smaller enumeration tree, illustrating
the benefit of having the OA approximation available for bounding and branching decisions.

The number of NLPs solved by B-Hyb is much larger than that for B-OA. The percentage of the time spent in solving
NLPs in B-OA is usually well below 5% of the total time, while this is sometimes the dominant part for B-Hyb.

Table 4 compares the two NLP BB algorithms. A rough estimation is that the number of nodes is comparable
for the two algorithms. It is worth noting that the time spent per node for SBB is of the order of 0.27 s, while it is
about 0.21 s for B-BB (average taken over all problems solved in less than 3 h by both algorithms). Since in those two



200 P. Bonami et al. / Discrete Optimization 5 (2008) 186–204

Table 3
Detailed comparison of B-BB, B-Hyb, B-OA

Problem name B-BB B-Hyb B-OA
Time Nodes Time Nodes NLP OAIF % time NLP Time Nodes NLP

BatchS101006M 124.87 1532 72.90 502 47 5 31.56 551.56 78 404 10
BatchS121208M 1894.99 14 144 71.76 206 20 3 20.44 173.54 15 083 4
BatchS151208M 2732.32 14 677 632.39 4352 343 5 66.12 3360.58 258 804 6
BatchS201210M 5304.94 18 378 816.16 3608 327 4 66.33 >3 h >613 631 >2

CLay0203H 20.15 206 39.45 138 101 41 35.78 6.91 2564 11
CLay0204H 496.06 4392 48.02 928 42 1 24.55 7.85 4490 1
CLay0205M 284.01 11 171 114.19 5670 394 10 11.21 179.72 155 440 6
CLay0205H *** *** 428.93 7035 417 8 61.99 1048.37 355 333 4
CLay0303M 13.44 454 55.84 634 324 41 36.29 11.15 5688 13
CLay0303H 28.30 257 69.98 504 191 15 55.89 26.45 7119 13
CLay0305M 644.29 19 759 79.87 3905 264 9 11.64 659.44 495 398 8

FLay04H 75.89 2376 68.12 2094 574 425 34.85 148.14 49 961 21
FLay05M 955.89 93 632 7989.17 70 904 18 942 13 752 4.74 6566.21 4582 107 54
FLay05H 4066.47 88 220 *** *** *** *** *** >3 h >2063 219 >18

Fo7 2 9833.10 236 974 7103.02 53 908 4306 4 12.99 >3 h >2351 933 >1

RSyn0810M03H 301.51 1164 14.70 0 4 3 11.80 15.87 201 3
RSyn0815M03H 188.10 638 27.78 0 6 5 7.98 27.76 301 5
RSyn0820M03H 369.06 1043 62.85 16 12 8 46.68 32.66 414 2
RSyn0820M04H 342.76 621 57.35 24 14 11 37.79 43.68 551 3
RSyn0830M03H 389.56 943 7.82 0 3 2 19.66 11.80 137 2
RSyn0840M04H 2182.70 3230 118.43 74 24 17 57.11 69.74 486 3
RSyn0840M03H 319.17 640 13.27 0 4 3 20.18 20.02 375 3
RSyn0840M04H 3119.50 3933 22.94 0 3 2 11.98 60.32 462 2

SLay10M 514.56 16 072 197.93 6548 563 34 18.75 >3 h >2034 251 >1
SLay07H 53.22 775 73.46 954 100 13 11.85 *** *** ***
SLay08H 107.05 1187 120.54 1372 157 3 13.55 >3 h >1643 379 >1
SLay09M 70.95 2488 39.95 1309 147 9 16.99 >3 h >3646 655 >14
SLay09H 260.69 2239 328.35 5022 389 5 1.66 >3 h >1100 614 >1

Syn20M04M >3 h >100 475 52.50 358 34 5 11.57 174.60 14 550 2
Syn30M03M >3 h >132 373 16.89 0 4 3 2.24 15.06 746 3
Syn30M04M >3 h >79 144 118.01 886 119 41 18.08 1544.91 141 255 4
Syn40M02M >3 h >179 089 15.55 0 4 3 2.18 15.32 1180 3
Syn40M03M >3 h >84 501 238.34 2154 309 118 20.07 1875.38 163 802 5
Syn40M03H 24.07 96 17.33 0 5 4 51.96 24.32 422 4
Syn40M04M >3 h >57 992 256.23 1322 129 6 14.16 >3 h 952 994 >1
Syn40M04H 46.64 126 28.62 0 6 5 53.97 34.95 543 4

trimloss4 *** *** 178.60 12 773 985 4 15.33 >3 h >11 869 930 >2
trimloss5 *** *** >3 h >104 937 >9715 >0 *** >3 h >3240 229 >1

Water0202 545.95 32 390.11 14 16 14 71.71 974.19 118 7
Water0303 1523.86 80 1153.18 72 33 27 50.39 >3 h >1525 >24
Water0202R 328.20 190 156.45 188 65 53 90.35 115.28 2356 27

Cpu times (in seconds), number of nodes, and number of NLPs solved are displayed. For B-Hyb, the number of times the OA linear relaxation has
an integer solution (OAIF), forcing the solution of an NLP, and the percentage of time spent solving NLPs are also listed (bold face for best running
time).

algorithms the bulk of the time is spent solving NLPs, this indicates that the warm-starting advantage of the active-set
solver used by SBB over the interior-point solver used by B-BB does not confer any advantage in terms of computing
time in our test set.

Table 5 compares the two OA algorithms. Usually, B-OA requires fewer iterations than Dicopt, but this does not
translate to a large advantage in running times. This is explained by the average time required to solve MILPs: Dicopt
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Table 4
Comparison of number of nodes in the two NLP BB

Problem name SBB B-BB

BatchS101006M 22 590 1532
BatchS121208M 53 580 14 144
BatchS151208M 68 484 14 677
BatchS201210M >161 338 18 378

CLay0203H 420 206
CLay0204H 2808 4392
CLay0205M 10 749 11 171
CLay0205H 29 730 ***
CLay0303M 387 454
CLay0303H 298 257
CLay0305M 21 352 19 759

FLay04H 2808 2376
FLay05M 86 812 93 632
FLay05H 112 388 88 220

Fo7 2 >217 106 236 974

RSyn0810M03H 232 1164
RSyn0815M03H 364 638
RSyn0820M03H 1540 1043
RSyn0820M04H 314 621
RSyn0830M03H 193 943
RSyn0840M04H 877 3230
RSyn0840M03H 222 640
RSyn0840M04H 833 3933

SLay10M 1858 16 072
SLay07H 6335 775
SLay08H 7634 1187
SLay09M 2227 2488
SLay09H 31 015 2239

Syn20M04M >497 221 >100 475
Syn30M03M >328 268 >132 373
Syn30M04M >160 695 >79 144
Syn40M02M >492 640 >179 089
Syn40M03M >177 817 >84 501
Syn40M03H 72 96
Syn40M04M >212 265 >57 992
Syn40M04H 100 126

trimloss4 >1277 211 ***
trimloss5 >1000 000 ***

requires about 2.1 s per iteration while B-OA requires 81.9 s (average taken over problems solved in less than 3 h by
both algorithms). At least two factors play a role in this large difference: First, Dicopt uses CPLEX to solve MILPs,
while B-OA uses Cbc. On average CPLEX is faster than Cbc on benchmark problems (such as problems in MIPLIB [4]),
but not by a factor of 40. The difference is that these benchmark problems are relatively difficult, often requiring more
than one hour to be solved. It turns out that many of the MILPs that are solved in our experiments are fairly easy and
that the relative performance of Cbc on these easy problems is comparatively worse than on harder problems. Second,
when the OA algorithm solves an NLP that has more than one optimal solution, the solution obtained by an interior-
point solver will tend to be on the center of the optimal “face”, while the solution obtained by an active-set solver will
lie at an “extreme point” of the “face”. The OA constraints (2) and (3) will be different and thus the difficulty of the
MILPs that have to be solved might be different. To illustrate this point we run B-OA using CPLEX as an LP solver on
the problem Syn40M03M. The problem is still solved in 5 iterations but in 267 seconds (instead of 1815 s with Cbc)
which is still much larger than the 1.2 s needed by Dicopt.
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Table 5
Comparison of number of iterations in the two OA algorithms and percentage of gap closed by solving the first MILP in B-OA

Problem name B-OA Dicopt % of gap closed

BatchS101006M 10 14 75.26
BatchS121208M 4 5 82.83
BatchS151208M 6 7 78.76
BatchS201210M >2 4 86.64

CLay0203H 11 77 8.56
CLay0204H 1 2 100
CLay0205M 6 120 99.90
CLay0205H 4 24 99.90
CLay0303M 13 516 13.34
CLay0303H 13 333 13.34
CLay0305M 8 282 99.90

FLay04H 21 332 72.39
FLay05M >54 >799 26.79
FLay05H >18 >757 26.79

Fo7 2 >1 >614 87.19a

RSyn0810M03H 3 4 64.89
RSyn0815M03H 5 *** 71.67
RSyn0820M03H 2 3 90.58
RSyn0820M04H 3 4 68.85
RSyn0830M03H 2 3 85.26
RSyn0840M04H 3 3 80.01
RSyn0840M03H 3 3 75.55
RSyn0840M04H 2 3 74.74

SLay10M >1 >600 2.12a

SLay07H *** 54 8.95
SLay08H >1 70 0a

SLay09M >14 >691 10.79
SLay09H >1 >234 0a

Syn20M04M 2 3 42.21
Syn30M03M 3 5 63.93
Syn30M04M 4 249 64.52
Syn40M02M 3 4 77.63
Syn40M03M 5 5 79.28
Syn40M03H 4 5 0a

Syn40M04M >1 4 75.56a

Syn40M04H 4 3 0.08

trimloss4 >2 >97 24.13
trimloss5 >1 >75 21.41a

a The first MILP is not solved within the time limit; therefore the given number is only a lower bound on the gap closed.

Geometric considerations lead us to believe that the MILPs to be solved when using B-OA are, in general, harder
than those for Dicopt. On the other hand, these MILPs give sometimes a stronger lower bound on the value of the
optimal solution. The percentage of the gap between the optimal value and the linear relaxation closed by solving the
first MILP in B-OA is displayed in Table 5. On our test problems, the corresponding gap for Dicopt is similar except
for the FLay and Fo7 2 problems where a difference of more than 20% can be observed. It is interesting to note that
these problems are the ones having nonlinearities coming from hyperbolic constraints.

We also note that the number of iterations is strongly correlated with the gap reduction obtained in the first master
iteration. Both algorithms require a similar number of master iterations, with the notable exception of the CLay
problems, where Dicopt requires a number of iterations much larger than B-OA. This might be explained by the
fact that these problems have symmetries and thus the MILPs may have a lot of optimal integer solutions of which
only a few are NLP feasible.
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