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Pencils of matrices whose elements have a joint noncentral Gaussian distribution with
nonidentical covariance are considered. An approximation to the distribution of the
squared modulus of their determinant is computed which allows to get a closed form
approximation of the condensed density of the generalized eigenvalues of the pencils.
Implications of this result for solving several moments problems are discussed and some
numerical examples are provided.
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0. Introduction

LetG be a p×p randommatrix and denote by {ξj, j = 1, . . . , p} its eigenvalueswhich form a set of exchangeable random
variables. Their marginal density h(z), z ∈ C, also called condensed density [16] or normalized one-point correlation
function [14], is the expected value of the (random) normalized counting measure on the zeros of G i.e.

h(z) =
1
p
E


p

j=1

δ(z − ξj)


or, equivalently, for all Borel sets A ⊂ C

A
h(z)dz =

1
p

p
j=1

Prob(ξj ∈ A).

It can be proved that (see e.g. [4]) h(z) =
1
4π 1u(z) where ∆ denotes the Laplacian operator with respect to x, y if z = x+ iy

and u(z) =
1
pE

log(| det(G − zIp)|2)


is the corresponding logarithmic potential where Ip denotes the identity matrix of

order p.
If a pencil G = (G1,G0) of random matrices is considered, the condensed density of its generalized eigenvalues can be

computed by the formula above where now the logarithmic potential is given by u(z) =
1
pE

log(| det(G1 − zG0)|

2)

.

In this paper a method to estimate the condensed density of the generalized eigenvalues of a pencil G = (G1,G0) of
Gaussian randommatrices is proposed. The main motivation is provided by the role that this function plays in solving some
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difficult moments problems such as the trigonometric, the complex, the Hausdorff ones. It was shown in [6,5,4,2,3,12,10,9,
11,18,19] that all these problems can be reduced to the complex exponentials approximation problem (CEAP), which can be
stated as follows.

Let us consider a uniformly sampled signal made up of a linear combination of complex exponentials

sk =

p∗
j=1

cjξ k
j (1)

where cj, ξj ∈ C. Let us assume to know an even number n = 2p, p ≥ p∗ of noisy samples

ak = sk + ϵk, k = 0, 1, 2, . . . , n − 1

where ϵk is a complex Gaussian, zero mean, white noise, with finite known variance σ 2. We want to estimate p∗, cj, ξj, j =

1, . . . , p∗, which is a well known ill-posed inverse problem.
We notice that, in the noiseless case and when p = p∗, the parameters ξj are the generalized eigenvalues of the pencil

(U1,U0) where U1 and U0 are Hankel matrices defined as

U0 =

 s0 s1 · · · sp−1
s1 s2 · · · sp
. . · · · .

sp−1 sp · · · sn−2

 , U1 =

s1 s2 · · · sp
s2 s3 · · · sp+1
. . · · · .
sp sp+1 · · · sn−1

 . (2)

If we define U1 and U0 as U0 and U1 but starting from ak, k = 0, . . . , n − 1 it is evident that the condensed density of
the generalized eigenvalues of the pencil (U1,U0) provides information about the location in the complex plane of the
generalized eigenvalues ξj, j = 1, . . . , p whose estimation is the most difficult part of CEAP.

Unfortunately the computation of the condensed density starting from a single realization of the pencil is very difficult
even in the Hankel case illustrated above.

The first difficulty is a computational one. The condensed density should be computed at least on a lattice covering the
region of the complex plane which contains in its interior all the generalized eigenvalues. Therefore for each lattice point a
determinant must be evaluated and this can be computationally expensive.

The main difficulty however is that, for each lattice point, an expected value w.r. to the joint probability measure of the
elements of the matrices (G1,G0) must be computed. As we assume to have a single realization of the pencil this estimation
problem is critical. Two different approaches are reported in the literature to cope with it.

In [11] the CEAPproblem stated abovewas considered. Noticing that the generalized eigenvalues of the pencil (G1,G0) are
the roots of a randompolynomial, by applying theDeltamethod, the joint distribution of its coefficients can be approximated
by a multivariate Gaussian distribution. Then an explicit expression of h(z) proposed by Hammersley [16] can be used.
Unfortunately the distribution of polynomial coefficients is not well approximated by a Gaussian distribution. It can be
shown in fact in simple cases that it is close to a Cauchy distribution [8, Theorem 1.2, Corollary 1.3].

In [5] for the CEAP problem a stochastic perturbation method was proposed to compute the expectation. Many pseudo-
samples were generated by adding i.i.d. zero mean complex Gaussian variables with variance small w.r. to σ 2 to the original
observations ak, k = 0, . . . , n − 1. The generalized eigenvalues of the pencils associated to each pseudo-sample were
evaluated and the required expectation was estimated by a samplemean. It was proved that the statistical properties of this
estimator are good. However the computational burden was relevant.

Finally both estimates quoted above are usually not smooth functions. This can be a problem if the estimated condensed
density is used to make inference on the generalized eigenvalues.

In the following a method to cope with these difficulties is proposed. A non-linear transformation of the pencil is
considered which allows to solve in closed form the expectation evaluation problem. Moreover, for the CEAP problem, the
computational burden can be substantially reduced and the noise contribution to h(z) can be smoothed out to some extent
simply acting on a parameter of the approximant.

The paper is organized as follows. In Section 1 some algebraic and statistical preliminaries are developed. In Section 2
the closed form approximation of h(z) is defined in the general case. In Section 3 the smooth estimate of h(z) is derived
in the Hankel case. In Section 4 computational issues are discussed in the Hankel case. Finally in Section 5 some numerical
examples are provided.

1. Preliminaries

Let us consider the p × p complex random pencil G(z) = G1 − zG0, z ∈ C where the elements of ℜG0, ℑG0, ℜG1, ℑG1
have a joint Gaussian distribution and ℜ and ℑ denotes the real and imaginary parts. Dropping the dependence on z for
simplifying the notations, let us define

G = [g
1
, . . . , g

p
], g = vec(G) = [gT

1
, gT

2
, . . . , gT

p
]
T .
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Moreover ∀z, let us define ǧ
k
= [ℜg

k
T , ℑg

k
T
]
T and

ǧ = [ǧT
1
, ǧT

2
, . . . , ǧT

p
]
T .

Then ǧ will have a multivariate Gaussian distribution with mean µ = E[ǧ] ∈ R2p2 and covariance Σ ∈ R2p2×2p2 . We notice
that no independence assumption neither between elements of G0 and G1 nor between real and imaginary parts is made.
Hence this is the most general hypothesis that can be done about the Gaussian distribution of the complex random vector
g, (see [23] for a full discussion of this point).

Let us consider the QR factorization of G where QHQ = QQH
= Ip where H denotes transposition plus conjugation, R is

an upper triangular matrix and Ip is the identity matrix of order p. We then have

| det(G)|2 = | det(QR)|2 = | det(R)|2 =


k=1,p

|Rkk|
2.

We want to compute the condensed density of the generalized eigenvalues of the pencil G(z) which is given by [16,4]:

h(z) =
1

4πp
1E


log(| det[G(z)]|2)


=

1
4πp

∆

p
k=1

E

log |Rkk(z)|2


.

We are therefore interested on the distribution of |Rkk|
2, k = 1, . . . , p in order to compute E[log |Rkk|

2
].

To perform the QR factorization of the random matrix G we can use the Gram–Schmidt algorithm. In the following
[q

1
, . . . , q

p
] denote the orthonormalized vectors obtained from [g

1
, . . . , g

p
].

We notice that |Rkk| = Rkk and

R2
kk =


gH
k
g
k
, if k = 1

gH
k


Ip −

k−1
i=1

q
i
qH
i


g
k
, if k > 1

where q
i
are functions of g

j
, j = 1, . . . , i. Therefore, denoting by g̃

k
= {ǧ

1
, . . . , ǧ

k−1
} we have that

R2
11 is a quadratic form in Gaussian variables

R2
kk, k > 1, conditioned on g̃

k
, is a quadratic form in Gaussian variables.

Moreover let us denote by ek the k-th column of Ip and let be Ek = ek ⊗ I2p then µ
k

= ET
k µ, Σk = ET

k ΣEk are the mean
vector and covariance matrix of ǧ

k
. Then we have

Lemma 1. For k = 1 and for k > 1, conditioned on g̃
k
,R2

kk is distributed as
n

r=1 λ
(k)
r χ2

νr
(δr), n = 2p, and χ2

νr
(δr) are indepen-

dent, where 2(p−k+1) =
n

r=1 νr , λ
(k)
r are the distinct eigenvalues of Σ

1/2
k R(Ak)Σ

1/2
k withmultiplicity νr , u

(k)
i , i = 1, . . . , n

are the corresponding eigenvectors, δr =


(r)((u
(k)
i )TΣ

−1/2
k µ

k
)2, the summation being over all eigenvectors corresponding to

eigenvalue λ
(k)
r ,

Ak =


Ip −

k−1
i=1

q
i
qH
i


and

R(Ak) =


ℜ(Ak) −ℑ(Ak)

ℑ(Ak) ℜ(Ak)


with −ℑ(Ak) = ℑ(Ak)

T is the real isomorph of Ak.

Proof. The proof follows by that of [7, Lemma 1] by noticing that rank(R(Ak)) = 2(p − k + 1) because the eigenvalues of
R(Ak) are those of Ak with multiplicity 2 and gH

k
Akgk

= ǧT
k
R(Ak)ǧk

. �

Corollary 1. If Σ = I2p2 and µ = 0,R2
kk is distributed as χ2

2(p−k+1).

Proof. As Σ = I2p2 the eigenvalues of Σ1/2
k R(Ak)Σ

1/2
k are those of R(Ak) which are 1 with multiplicity 2(p − k + 1) and 0

withmultiplicity 2(k−1). Asµ = 0, δi = 0. Remembering that theχ2
1 (δi) appearing in the previous lemma are independent,

the corollary follows by the additivity property of χ2 distribution. �

Remark. The corollary follows also by Bartlett’s decomposition of a i.i.d. zero mean Gaussian randommatrix [13].
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2. Closed form approximation of h(z)

Unfortunately we cannot use the easy result stated in the Corollary 1 because in the case of interest the matrix G(z) has
a mean different from zero and a covariance structure depending on z. By Lemma 1 we know that R2

11 is distributed as a
linear combination of non-central χ2 distributions. It is known that this distribution admits an expansion L (α, β, τ ) in
series of generalized Laguerre polynomials [17, Chapter 29, Section 6.3] and the series is uniformly convergent in R+. More
specifically let us denote the generalized Laguerre polynomial of orderm by

Lm(x, α) =
x−(α−1)ex

m!

∂m

∂xm
(xm+α−1e−x) =

m
h=0

chmxh

where

chm =
(−1)h0(α + m)

h!(m − h)!0(α + h)
.

Then, following [22], we have

Lemma 2. The density function of R2
11 is given by

f1(y) = b0
yα−1e−y/β

βα0(α)
+

yα−1e−y/β

βα0(α)

∞
m=1

bmLm(y/τ , α) = L (α, β, τ )

where α and β are such that the first two moments of R2
11 are identical to the first two moments of the gamma distribution

representing the leading term of the expansion. Moreover the bm are uniquely determined by the moments and τ is a free
parameter. If λmax denotes the maximum eigenvalue of Σ1, when τ−1 > 2(β−1

− (2λmax)
−1) the seriesL (α, β, τ ) is uniformly

convergent ∀y ∈ R+. If β > λmax then τ = β makes the series to converge uniformly, b0 = 1 and bm are determined by the first
m moments of R2

11.

Proof. The proof follows by the results given in [22] for the distribution of quadratic forms in central normal variableswhich
hold true also in the non-central case as can be easily checked. �

Denoting the logarithmic derivative of the gamma function by Ψ (·), we can compute E[log(R2
11)] by

Lemma 3.

E[log(R2
11)] = b0[logβ + Ψ (α)] +

∞
m=1

bm
m

h=0

chm
0(α + h)

0(α)


β

τ

h

[logβ + Ψ (α + h)] .

Proof. By Lemma 2 the series L (α, β, τ ) converges uniformly. Therefore term-by-term integration can be performed and
the result follows by noticing that, for h = 0, 1, . . .

1
βα


∞

0
log(y)

 y
τ

h
yα−1e−y/βdy = 0(α + h)


β

τ

h

[logβ + Ψ (α + h)] . �

We have then obtained a closed form expression for E[log(R2
11)] as a function of the moments of R2

11. By noticing that
the same result holds true for the distribution of R2

kk conditioned on g̃
k
, we show now how to get an approximation of

E[log(R2
kk)], k > 1.

Theorem 1. The density function fk(y) of R2
kk can be expanded in a uniformly convergent series of Laguerre functions

fk(y) = b(k)
0

yαk−1e−y/βk

β
αk
k 0(αk)

+
yαk−1e−y/βk

β
αk
k 0(αk)

∞
m=1

b(k)
m Lm(y/τk, αk). (3)

When the parameter τk, that controls the uniform convergence of the series, can be chosen equal to βk, then b(k)
0 = 1 and

b(k)
m , m = 0, . . . ,N depends on the first N + 1moments of R2

kk. Moreover

E[log(R2
kk)] = b(k)

0 [logβk + Ψ (αk)] +

∞
m=1

b(k)
m

m
h=0

chm
0(αk + h)

0(αk)


βk

τk

h

[logβk + Ψ (αk + h)] . (4)

Proof. The first part of the thesis is proved in [7, Theorem 4]. As the convergence of the series (3) is uniformwe can integrate
term-by-term and we get Eq. (4). �
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Proposition 1. If the series (3) is truncated after N + 1 terms, the approximation error

η
(k)
N =

E[log(R2
kk)] −


b(k)
0 [logβk + Ψ (αk)] +

N
m=1

b(k)
m

m
h=0

chm
0(αk + h)

0(αk)


βk

τk

h

[logβk + Ψ (αk + h)]


is bounded by

K1
ϵN+1

α2
kβ

αk
k 0(αk)


2F2 (αk, αk; 1 + αk, 1 + αk; K2) + G3,0

0,2


−K2

1 − αk, 1 − αk
0, −αk, −αk


where K1 > 0, K2 > 0 and 0 < ϵ < 1 are constants, 2F2 is a generalized hypergeometric function and G3,0

0,2 is a Meijer’s
G-function.

Proof. The approximation error η
(k)
N can be written as

η
(k)
N =

 ∞

0
log(y)eN(y)dy


where

eN(y) =
yαk−1e−y/βk

β
αk
k 0(αk)

∞
m=N+1

b(k)
m Lm(y/τk, αk).

In [22, Eq. (31)] the bound

|eN(y)| ≤ K1ϵ
N+1 y

αk−1eK2y

β
αk
k 0(αk)

, 0 < ϵ < 1, K2 = −β−1
k +

R
τk(1 + R)

, ϵ < R < 1

is given where K1 > 0, K2 are constants. But then

η
(k)
N ≤


∞

0
|log(y)eN(y)| dy ≤ K1

ϵN+1

β
αk
k 0(αk)


∞

0
| log(y)|yαk−1eK2ydy

= K1
ϵN+1

β
αk
k 0(αk)

·


∞

1
log(y)yαk−1eK2ydy −

 1

0
log(y)yαk−1eK2ydy


= G3,0

0,2


−K2

1 − αk, 1 − αk
0, −αk, −αk


+

1
α2
k 2

F2 (αk, αk; 1 + αk, 1 + αk; K2) . �

Remark. The bound on the error given above is of little use in practice because the computation of the constants K1, K2
is quite involved as they depend on all moments. However, by Corollary 1 we know that when Σ = I2p2 and µ = 0 the

expansion terminates after the first term and b(k)
0 = 1. Moreover from Theorem 1 we know that it can happen that the

coefficients b(k)
k , k = 0, . . . ,N are determined by the first N + 1 moments only. Therefore by continuity we can conjecture

that the first term of the expansion provides most of the information in the general case and therefore the truncation error
should be small. This conjecture is strongly supported by numerical evidence as discussed in Section 5.

We can now prove the main theorem

Theorem 2. If Q(z)R(z) is the QR factorization of G(z),

u(z) =
1
p
E{log(| det[G1 − zG0]|

2)} =
1
p

p
k=1

E

log |Rkk(z)|2


=

1
p

p
k=1


b(k)
0 (z)[logβk(z) + Ψ (αk(z))] +

∞
m=1

b(k)
m (z)

m
h=0

chm
0(αk(z) + h)

0(αk(z))


βk(z)
τk(z)

h

× [logβk(z) + Ψ (αk(z) + h)]


.

Moreover

u(z) ≈ ũ(z) =
1
p

p
k=1

[logβk(z) + Ψ (αk(z))]
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and

|u(z) − ũ(z)| ≤
1
p

p
k=1

η
(k)
1 (z).

Proof. By Theorem 1 we can approximate the density function fk(y) of R2
kk by the first term divided by b(k)

0 of its Laguerre
expansion i.e. by

yαk−1e−y/βk

β
αk
k 0(αk)

.

This is a consistent approximation because this normalized first term is a 0 density with parameters αk, βk. But then the
corresponding approximation of E[log(R2

kk)] is logβk + Ψ (αk) and then we have

ũ(z) =
1
p

p
k=1

[logβk(z) + Ψ (αk(z))].

The other statements are obvious consequences of Theorem 1. �

In order to compute the condensed density h(z) we have to take the Laplacian of u(z). As differentiation can be a very
unstable process, whenwemake use of the first order approximation of u(z), we can expect that even a small approximation
error inu(z) canproduce a large error in h(z). However, in practicewehave to approximate the Laplacian by finite differences
by defining a square lattice over the region of R2 which the unknown complex numbers ξj are supposed to belong to. This
provides an implicit regularization method if the lattice size is properly chosen as a function of the approximation error of
u(z). We have

Theorem 3. If supC ∥u(z) − ũ(z)∥ ≤ ε and if z = x + iy and the Laplacian operator is approximated by

1̂u(x, y) =
1
δ2

[u(x − δ, y) + u(x + δ, y) + u(x, y − δ) + u(x, y + δ) − 4u(x, y)]

on a square lattice with mesh size δ where δ(ε) = Cε1/4, C constant, then

∥1̂ũ − 1u∥ = O(ε1/4)

and this is the best possible approximation achievable.

Proof. By Taylor expansion of u(x ± δ, y ± δ) about (x, y) we get |1̂u(z) − 1u(z)| = O(δ2) and

supC|1̂u(z) − 1u(z)| = ∥1̂u − 1u∥ = O(δ2).

But u(z) = ũ(z) + η(z) hence

∥1̂ũ − 1u∥ = ∥1̂u − 1u − 1̂η∥ ≤ O(δ2) +
5ε
δ2

.

For fixed ε this error becomes unbounded as δ → 0. However by choosing δ(ε) such that δ(ε) → 0 and ε
δ(ε)

→ 0 for ε → 0
we get

∥1̂ũ − 1u∥ → 0 as ε → 0.

Looking for a mesh size of the form δ(ε) = Cεa such that the terms O(δ2) and 5ε
δ2

are balanced, we get

O(C2ε2a) = O


5ε
C2ε2a


which implies a =

1
4 . In [15] it is proved that this bound is the best possible for all approximation errors η(z) such that

∥η∥ ≤ ε. �

As a final remark we notice that for computing h(z) we could start from the real isomorph

R(G) =


VR −VI
VI VR


∈ Rn×n

of G instead than from G. The following proposition holds [16, Theorem 5.1]:

Proposition 2. If G = VR + iVI , VR,VI ∈ Rp×p, then

| det(G)|2 = det(R(G)).
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Let R(G) = Q̌Ř be the QR factorization of R(G). Then have

| det(G)|2 = detR(G) =


k=1,n

Řkk

and

h(z) =
1

4πp
1E


log(| det[G(z)]|2)


=

1
4πp

∆

n
k=1

E

log Řkk(z)


=

1
4πn

∆

n
k=1

E

log Ř2

kk(z)


.

It will be shown in Section 4 however that this expression of h(z) is not convenient from the computational point
of view.

3. Smooth estimate of the condensed density in the Hankel case

Wewant to show now that we can exploit the closed form expression of the condensed density to smooth out the noise
contribution to h(z). This allows us to get a good estimate of p∗ and ξj, j = 1, . . . , p∗, – which is the nonlinear most difficult
part of CEAP – from a single realization of the measured process {ak}.

We first notice that by approximating the density of R2
kk by a 0 density with parameters αk, βk, the mean and variance

of R2
kk are approximated respectively by αkβk and αkβ

2
k and, if b(k)

0 = 1, we have exactly

γ1 = αkβk, γ2 = αkβ
2
k + (αkβk)

2.

However we know that [1, Theorem 4.1]

γm =


R2p(k−1)

γm(g̃
k
)h(g̃

k
)dg̃

k
, m = 1, 2, . . . (5)

where γm(g̃
k
) are the moments of R2

kk|g̃k
. The first two of them are given by [20]

γ1(g̃k
) = tr[(Σk + 2µ

k
µT

k
)R(Ak)]

γ2(g̃k
) = 2tr[(Σk + 2µ

k
µT

k
)R(Ak)ΣkR(Ak)] + γ 2

1 (g̃
k
)

where µ
k
= E[ǧ

k
] and Σk = cov(ǧ

k
).

When G = G1 − zG0 is an Hankel matrix and the elements of G0 and G1 are normally distributed with variance σ 2 as
stated in the Introduction, it is easy to prove that the covariance matrix of g

k
does not depend on k and it is a tridiagonal

matrix Z with 1 + |z|2 on the main diagonal and −z and z on the secondary ones. If z = x + iy it turns out that ∀k the
covariance matrix of ǧ

k
is Σk = σ 2R(Z) where R(Z) is a 2 × 2 block tridiagonal matrix given by

R(Z) =


(−x, 1 + |z|2, −x) (y, 0, −y)

(−y, 0, y) (−x, 1 + |z|2, −x)


where (a, b, c) denotes a tridiagonal matrix with b on the main diagonal, a and c on the lower and upper diagonals
respectively. But then we have

γ1(g̃k
) = σ 2tr[R(Z)R(Ak)] + 2tr[µ

k
µT

k
R(Ak)]

γ2(g̃k
) = 2σ 4tr[R(Z)R(Ak)R(Z)R(Ak)] + 4σ 2tr[(µ

k
µT

k
)R(Ak)R(Z)R(Ak)] + γ 2

1 (g̃
k
)

where the dependence on g̃
k
is only in R(Ak). By performing the integration in Eq. (5) we get

γ1 = σ 2c + d, γ2 = σ 4a + σ 2b + γ 2
1

where

a = 2


R2p(k−1)
tr[R(Z)R(Ak)R(Z)R(Ak)]h(g̃k

)dg̃
k

b = 4


R2p(k−1)
tr[(µ

k
µT

k
)R(Ak)R(Z)R(Ak)]h(g̃k

)dg̃
k

c =


R2p(k−1)

tr[R(Z)R(Ak)]h(g̃k
)dg̃

k

d = 2


R2p(k−1)
tr[µ

k
µT

k
R(Ak)]h(g̃k

)dg̃
k
.
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But then we have

Theorem 4. If the density of R2
kk is approximated by a 0 density with parameters αk, βk such that the first two moments of R2

kk
coincide with those of the approximant then βk is a nondecreasing function of σ 2 and αk is a nondecreasing function of 1

σ 2 if
∥µk∥

2
2

σ 2 >
E[tr(R(Z)R(Ak))]

2E[µ̃T
k R(Ak)µ̃k]

where µ̃
k
=

µk
∥µk∥2

and E denotes expectation w.r. to h(g̃
k
).

Proof.

βk =
γ2 − γ 2

1

γ1
= σ 2


σ 2a + b
σ 2c + d


, αk =

γ 2
1

γ2 − γ 2
1

=


σ 2c + d

2
σ 4a + σ 2b

.

Differentiating these expressions respectively with respect to σ 2 and to ρ =
d

σ 2 where d is assumed fixed and σ 2 is variable,
we get

∂βk

∂σ 2
=

bd + aσ 2(2d + cσ 2)

(d + cσ 2)2
,

∂αk

∂ρ
=

2ad2(ρ + c) + bd(ρ2
− c2)

(ad + bρ)2
.

But Z and Ak are positive semidefinite matrices. Therefore R(Z) and R(Ak) are also positive semidefinite because their
eigenvalues are the sameof those of Z andAk withmultiplicity 2. Remembering that ifX, Y are positive semidefinitematrices
tr(XY )n ≥ 0, n = 1, 2, . . . , it follows that a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0 because the expectation of a nonnegative quantity is
nonnegative. It follows that ∂βk

∂σ 2 ≥ 0. Moreover ∂αk
∂ρ

≥ 0 if

ρ2
− c2 =

4
σ 4

E[tr(µ
k
µT

k
R(Ak))]

2
− c2 =

4(µT
k
µ

k
)2

σ 4
E[µ̃

T
k
R(Ak)µ̃k

]
2
− c2 > 0.

The theorem follows by noticing that prob{µ̃T
k
R(Ak)µ̃k

> 0} = 1. In fact R(Ak) is a random projector and the random
quadratic form in the deterministic nonzero vector µ̃

k
can be zero only if µ̃

k
is orthogonal to the random eigenvectors

v2k−1, . . . , v2p of R(Ak) corresponding to nonzero eigenvalues. As this event has probability zero, E[µ̃
T
k
R(Ak)µ̃k

] > 0. �

The idea is then to use the parameters βk as smoothing parameters and αk as signal-related parameters. By fixing
βk = σ 2β, ∀k and taking αk =

γ1k
σ 2β

the variance of R2
kk(z) is controlled by β and h(z) can be estimated by

ĥ(z) ∝

p
k=1

∆̂


Ψ


γ̂1k(z)
σ 2β


(6)

where ∆̂ is the discrete Laplacian and γ̂1k(z) is an estimate of γ1k(z). In the following we assume that the value R̂2
kk(z) –

obtained by the QR factorization of a realization of G(z) corresponding to a given set of observations {ak} – is an estimate of
the mode of R2

kk(z) and therefore

R̂2
kk(z) = βk(αk − 1)

(see e.g [17, Chapter 17]). Then we get

γ̂1k(z)
σ 2β

=


R̂2
kk(z)
σ 2β

+ 1


.

From a qualitative point of view, increasing β has the effect tomake larger the support of all modes of h(z) and to lower their
value because h(z) is a probability density. Hence the noise-related modes are likely to be smoothed out by a sufficiently
large β . However a value of β too large can result in a low resolution spectral estimate.

4. Computational issues in the Hankel case

To estimate h(z) on a lattice we must compute the QR factorization of G(z) for all values z in the lattice. This requires
O(m2p3) flops if the lattice is square of sizem. However we notice that G(z) = U1 − zU0 = U(E1 − zE0) where

U =

 a0 a1 · · · ap
a1 a2 · · · ap+1
. . · · · .

ap−1 ap · · · a2p−1

 ∈ Cp×p+1 (7)

does not depend on z and

E0 = [e1 · · · ep] ∈ Cp+1×p, E1 = [e2 · · · ep+1] ∈ Cp+1×p
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and ek is the k-th column of the identity matrix of order p + 1. If U = QR is the QR factorization of U where Q ∈ Cp×p is
unitary and R ∈ Cp×p+1 is upper trapezoidal, then the QR factorization of G(z) can be obtained simply by reducing to upper
triangular form by unitary transformations the Hessemberg matrix

C(z) = R(E1 − zE0) ∈ Cp×p.

This is the only task that must be performed for each z. By using Givens rotations this can be performed in O(p) flops. The
total cost of the QR factorization of G(z) in the lattice reduces then to O(m2p + p3) flops.

Finally we notice that if we start from R(G) = Q̌Ř, C(z) is a 2 × 2 block matrix with Hessemberg diagonal blocks and
triangular off-diagonal ones. Therefore it cannot be transformed to triangular form in O(2p) flops.

5. Numerical results

In this section some experimental evidence of the claimsmade in the previous sections is given. In the first subsection the
goodness of the approximation to the density of R2

kk provided by the truncated Laguerre expansion is shown. In the second
subsection the advantage of the closed form estimate ĥ(z) with respect to an estimate of the condensed density obtained
by MonteCarlo simulation is shown. In the third subsection the quality of the estimates of the parameters p∗, ξ and c
which can be obtained from ĥ(z) is assessed by a MonteCarlo simulation. Finally, in the last subsection, the reconstruction
of a piecewise constant function from noisy Fourier coefficients is solved by using the proposed estimate of the condensed
density and the results are compared with those obtained in [19].

5.1. Performance of the truncated Laguerre expansion

To appreciate the goodness of the approximation to the density of R2
kk provided by the truncated Laguerre expansion,

N = 4 · 106 independent realizations a(r)
k , k = 1, . . . , n, r = 1, . . . ,N of the r.v. ak were generated from the complex

exponentials model with p∗
= 5 components given by

ξ =

e−0.1−i2π0.3, e−0.05−i2π0.28, e−0.0001+i2π0.2, e−0.0001+i2π0.21, e−0.3−i2π0.35

c = [6, 3, 1, 1, 20] , n = 74, p = 37, σ = 0.5.

The matrices U (r)
0 ,U (r)

1 based on a(r)
k were computed. The matrix U (r)

1 − zU (r)
0 with z = cos(1) + i0.8 was formed, its QR

factorization and the first 10 empirical moments γ̂j were computed. Estimates of the first 10 coefficients of the Laguerre
expansion were then computed by [21]

α̂k =
γ̂ 2
1

γ̂2 − γ̂ 2
1

, β̂k =
γ̂2 − γ̂ 2

1

γ̂1

b̂(k)
h = (−1)h0(α̂k)

h
j=0

(−1)j

h
j


γ̂h−j

0(α̂k+h−j)
, γ̂0 = 1, h = 1, . . . , 10.

The one term and ten terms approximations of the density were then computed and compared with the empirical density
of R2

kk for k = 1, . . . , p. The results are given in Fig. 1. In the top left part the real part of the signal and of the data are
plotted. In the top right part the L2 norm of the difference between the empirical density of R2

kk, k = 1, . . . , p computed
by MonteCarlo simulation and its approximation obtained by truncating the series expansion of the density after the first
term and after the first 10 terms is given. In the bottom left part the density of R2

kk, k = 36, approximated by the first
term of its series expansion and the empirical density are plotted. In the bottom right part the density of R2

kk, k = 36,
approximated by the first 10 terms of its series expansion and the empirical density are plotted. It can be noticed that the
first order approximation is quite good even if it becomes worse for large k. The choice σ = 0.5 is justified by the fact that
this value is in the range of values used in the examples below. However the same kind of conclusions can be drawn for
every signal-to-noise ratio (SNR).

5.2. Advantage of the closed form estimate of the condensed density

To appreciate the advantage of the closed form estimate ĥ(z) with respect to an estimate of the condensed density
obtained by MonteCarlo simulation an experiment was performed. N = 100 independent realizations of the r.v. generated
abovewere considered.We notice that the frequencies of the 3rd and 4th components are closer than the Nyquist frequency
(0.21 − 0.20 = 0.01 < 1/n = 0.0135). Hence a super-resolution problem is involved in this case. Two values of the noise
s.d. σ were used

σ = 0.2, 0.8

which give rise to different qualitative behavior of the condensed density estimate as shown below.
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Fig. 1. Top left: real part of the signal (solid) and data (dotted) with σ = 0.5; top right: L2 norm of the difference between the empirical density of
R2
kk, k = 1, . . . , 36 computed by MonteCarlo simulation with 4 · 106 samples and its approximation obtained by truncating the series expansion of the

density after the first term (dotted) and after the first 10 terms (solid); bottom left: density of R2
kk, k = 36, approximated by the first term of its series

expansion (solid), empirical density (dotted); bottom right: density of R2
kk, k = 36, approximated by the first 10 terms of its series expansion (solid),

empirical density (dotted).

An estimate of h(z) was computed on a square lattice of dimensionm = 100 by

ĥ(z) ∝

N
r=1

p
k=1

∆̂


Ψ


R(r)
kk (z)2

σ 2β
+ 1


where R(r)(z) is obtained by the QR factorization of the matrix U (r)

1 − zU (r)
0 . In the top left part of Fig. 2 the estimate of h(z)

obtained by Monte Carlo simulation is plotted. In the top right part the smoothed estimates ĥ(z) for σ = 0.2 and β = 5n
based on a single realization was plotted. In the bottom parts of Fig. 2 the results obtained with σ = 0.8 and β = 5n are
shown.

We notice that by the proposed method we get an improved qualitative information with respect to that obtained by
replicated measures. This is an important feature for applications where usually only one data set is measured. We also
notice that when σ = 0.2 the probability to find a root of P(z) in a neighbor of ξj is larger than the probability to find it
elsewhere. This is no longer true when σ = 0.8 even if the signal-related complex exponentials are well separated.

In the following we will say that the complex exponential model is identifiable if this last case occurs and it is strongly
identifiable if the first case occurs. Therefore if the model is identifiable the signal-related complex exponentials are well
separated but the relative importance of some of them – measured by the value of the local maxima of h(z) – is not larger
than the relative importance of some noise-related complex exponentials. Therefore in this case we need some a-priori
information about the location of the ξj in order to separate signal-related components from the noise-related ones.

5.3. Estimates of the complex exponentials parameters

We want now to show by means of a small simulation study the quality of the estimates of the parameters p∗, ξ and c
which can be obtained from ĥ(z). To this aim the following estimation procedure was used:
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Fig. 2. Top left: Monte Carlo estimate of the condensed density when σ = 0.2; top right: estimate of the condensed density by the closed form
approximation with β = 14.8. Bottom left: Monte Carlo estimate of the condensed density when σ = 0.8; bottom right: estimate of the condensed
density by the closed form approximation with β = 237.

• the local maxima of ĥ(z) are computed and sorted in decreasing magnitude
• a clustering method is used to group the local maxima into two groups. If the model is strongly identifiable the signal-

related maxima are larger than the noise-related ones, therefore a simple thresholding is enough to separate the two
groups. A good threshold is the one that produces an estimate of sk which best fits the data ak in L2 norm as the noise is
assumed to be Gaussian

• the cardinality p̂ of the class with largest average value is an estimate of p∗

• the local maxima ξ̂j, j = 1, . . . , p̂ of the class with largest average value are estimates of ξj, j = 1, . . . , p∗. Of course if
p̂ ≠ p∗ some ξj are not estimated or viceversa some spurious complex exponentials are found

• c is estimated by solving the linear least squares problem

ĉ = argmin
x

∥Vx − a∥2
2, a = [a0, . . . , an−1]

T

where V ∈ Cn×p̂ is the Vandermonde matrix based on ξ̂j, j = 1, . . . , p̂.

The bias, variance and mean squared error (MSE) of each parameter separately were estimated. N = 500 independent
data sets a(r) of length n were generated by using the model parameters given above and σ = 0.2. For r = 1, . . . ,N the
condensed density estimate ĥ(r)(z) was computed on a square lattice of dimension m = 100. The estimation procedure is
then applied to each of the ĥ(r)(z), r = 1, . . . ,N and the corresponding estimates ξ̂

(r)
j , ĉ(r)

j , j = 1, . . . , p̂(r) of the unknown
parameters were obtained. If the estimate p̂(r) was less than the true value p∗, the corresponding data set a(r) was discarded.

In Table 1 the bias, variance andMSE of each parameter including p∗ is reported. Theywere computed by choosing among
the ξ̂

(r)
j , j = 1, . . . , p̂(r)

≥ p∗ the one closest to each ξk, k = 1, . . . , p∗ and the corresponding ĉ(r)
j . If more than one ξk is

estimated by the same ξ̂
(r)
j the r-th data set a(r) was discarded. In the case considered all the data sets were accepted.

5.4. Reconstruction of a piecewise constant function from noisy Fourier coefficients

As a second example the reconstruction of a piecewise constant function from noisy Fourier coefficients is considered.
The problem is stated as follows. Given a real interval [−π, π] and N + 1 numbers −π ≤ l1 < l2 · · · < lN+1 ≤ π , let F be
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Table 1
Statistics of the parameters p̂, ξ̂j, j = 1, . . . , p∗ and ĉj, j = 1, . . . , p∗ .

p∗ bias(p̂) s.d. (p̂) MSE(p̂)

5 0.0000 0.0000 0.0000

ξj bias(ξ̂j) s.d. ξ̂j MSE(ξ̂j)

j = 1 −0.2796−0.8606i −0.0008+0.0001i 0.0000 0.0000
j = 2 −0.1782−0.9344i 0.0036−0.0010i 0.0000 0.0000
j = 3 0.3090+0.9510i 0.0057−0.0064i 0.0031 0.0001
j = 4 0.2487+0.9685i −0.0058 + 0.0110 0.0019 0.0002
j = 5 −0.4354+0.5993i −0.0047+0.0054i 0.0108 0.0002

cj bias(ĉj) s.d. (ĉj) MSE(ĉj)

j = 1 6.0000 0.0440 0.1238 0.0173
j = 2 3.0000 −0.0407 0.0688 0.0064
j = 3 1.0000 0.0441 0.0736 0.0074
j = 4 1.0000 −0.6767 0.0808 0.4644
j = 5 20.0000 −0.1007 0.2574 0.0764

Fig. 3. Top left: original function; top right: rough estimate of F(t)when themoments are affected by a Gaussian noisewith SNR = 7. Bottom left: estimate
of the condensed density by the closed form approximation; bottom right: reconstruction of the original function.

the class of functions defined as

F(t) =

N
j=1

wjχj(t),
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Fig. 4. Top left: original function; top right: rough estimate of F(t)when themoments are affected by a Gaussian noisewith SNR = 1. Bottom left: estimate
of the condensed density by the closed form approximation; bottom right: reconstruction of the original function.

where

χj(t) =


1 if t ∈ [lj, lj+1]

0 otherwise,

and the wj are real weights. The problem consists of reconstructing a function F(t) ∈ F from a finite number of its noisy
Fourier coefficients

ak =
1
2

 π

−π

F(t)eitkdt + ϵk = sk + ϵk, k = 0, . . . , n − 1,

where ϵk is a complex Gaussian, zeromean, white noise, with variance σ 2. We are looking for a solutionwhich is not affected
by Gibbs artifact and can cope, stably, with the noise.

The basic observation is the following. The unperturbed moments sk are given by

sk =
1
2

 π

−π

F(t)eitkdt =

N
j=1

wj
sin(βjk)

k
exp(iλjk),

where

βj =
lj+1 − lj

2
, λj =

lj+1 + lj
2

.

Then consider the Z-transform of the sequence {sk}

s(z) =

N
j=1

wj


βj +

1
2i

log
z − eilj

z − eilj+1
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which converges if |z| > 1 and is defined by analytic continuation if |z| ≤ 1. We notice that s(z) has a branch point at
ξj = eilj , j = 1, . . . ,N + 1 where lj are the discontinuity points of F(t).

It was proved in [18,19] that the ξj are strong attractors of the poles of the Padé approximants [q, r]f (z) to the noisy
Z-transform

f (z) =

∞
k=0

akz−k

when q, r → ∞ and q/r → 1. It is easy to show that the poles of [q, r]f (z) are the generalized eigenvalues of the pencil
(U1,U0) built from the data ak, k = 0, . . . , n− 1 whose condensed density is h(z). Therefore, as shown in [18,19], the local
maxima of h(z) are concentrated along a set of arcs which ends in the branch points ξj and on a set of arcs close to the unit
circle.

As the branch points are strong attractors for the Padé poles, the probability to find a pole in a neighbor of a branch point
is larger than elsewhere, therefore it can be expected that the branch points correspond to the largest local maxima of h(z),
as far as the SNR is sufficiently large.

In order to compute estimates l̂j of lj, it is sufficient to compute the arguments of the main local maxima of ĥ(z). The
wj are then estimated by taking the median in each interval [l̂j, l̂j+1] of the rough estimate of F(t) obtained by taking the
discrete Fourier transform of ak, k = 0, . . . , n − 1. The median is in fact robust with respect to errors affecting l̂j.

The method was applied to an example considered in [19] where comparisons with other methods were also reported.
In the top left part of Fig. 3 the original function F(t) is plotted. In the top right the rough estimate of F(t) when SNR = 7
is reported where the SNR is measured as the ratio of the standard deviations of {sk} and {ϵk}. In the bottom parts the
condensed density and the reconstructed function F̂(t) are plotted. Looking at the condensed density we notice that the
model is strongly identifiable, therefore the estimation procedure outlined above was applied. In Fig. 4 the same quantities
as above but with SNR = 1 are plotted. In this case the model is identifiable but not strongly therefore the clustering step
does not work. The number of complex exponentials used to get the reconstruction plotted in Fig. 4 is p̂ = 20 andwas found
by trial and errors.

We notice that when SNR = 7 we get an almost perfect reconstruction, better than that reported in [19]. When SNR = 1
the reconstruction quality is worse as expected but still comparable with the one reported in [19].
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