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We show that the first law of the black hole thermodynamics can lead to the tunneling probability
through the quantum horizon by calculating the change of entropy with the quantum gravity correction
and the change of surface gravity is presented clearly in the calculation. The method is also applicable
to the general situation which is independent on the form of black hole entropy and this verifies the
connection of black hole tunneling with thermodynamics further. In the end we discuss the crucial role
of the relation between the radiation temperature and surface gravity in this derivation.

© 2008 Elsevier B.V. Open access under CC BY license.
1. Introduction

About 30 years ago, Hawking discovered [1] that when con-
sidering quantum effect black holes could radiate particles as if
they were hot bodies with the temperature κ/2π where κ was
the surface gravity of the black hole and explained [2] the parti-
cles of radiation as stemming from vacuum fluctuations tunneling
through the horizon of the black hole with Hartle together. But
the semiclassical derivation of Hawking based on the Bogoliubov
transformation didn’t have the directly connection with the view
of tunneling. Parikh and Wilczek [3] calculated directly the particle
flux from the tunneling picture and made the tunneling physi-
cal explanation holds firm basis. In their consideration the energy
conservation played a fundamental role and the outgoing parti-
cle itself created the barrier [4]. After this, there have been some
works which have extended the Parikh–Wilczek tunneling frame-
work to different cases [5,6] and the question of information loss
has been discussed in this framework [7,8]. Recently the general
approach has been suggested [9] for the tunneling of matter from
the horizon by using the first law of thermodynamics or the con-
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servation of energy. On the other side the tunneling probability
has also been calculated [10] directly through the change of the
entropy that is proportional to area by the first law of thermody-
namics, which verifies the connection of black hole radiation with
thermodynamics [11] further.

We have noticed that when the quantum gravity effect is con-
sidered the tunneling formula can also be obtained by Parikh–
Wilczek method and the Hawking temperature relation [12–14]. In
this Letter we will proceed this kind of consideration by using the
same method as in Ref. [10] but for the entropy which is mod-
ified by the logarithmic term caused by quantum gravity effect
as in Ref. [12]. In the new method we show clearly the neces-
sary change of the surface gravity when considering the quantum
gravity effect and the crucial role which the Hawking tempera-
ture relation plays. We note that the method could be extended
to general situation where the tunneling probability is obtained
by calculating the change of entropy, independent on the form of
the entropy, from the first law of black hole thermodynamics. The
generalization verifies the connection of black hole tunneling with
thermodynamics further.

In this Letter we take the unit convention k = h̄ = c = G = 1.

2. The first law of black hole thermodynamics and entropy

The first law of black hole thermodynamics [15] states:
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If one throws a small amount of mass into a static non-charged
and non-rotated black hole, it will settle down to a new static
black hole.1 This change can be described as dM = κ

8π dA, which
is analogue to the usual first law of thermodynamics dM = T dS .
The case is the same for radiating a small amount of mass from
black hole [11].

According to Hawking, the temperature of black hole is taken
as T = κ

2π , so the entropy can be obtained as S = 1
4 A. It has

been shown [10] that the tunneling formulas for static, spherically
symmetric black hole radiation are obtained by the first law of
thermodynamics and the area-entropy relation, even if the radia-
tion temperature is different from the Hawking temperature. From
the first law of black hole thermodynamics, we can see that if the
black hole temperature is changed, the area-entropy relation will
also be changed. Note that in Ref. [10] the author calculated the
tunneling probability by using the entropy being proportional to
horizon area and so the temperature was also proportional to the
surface gravity. But when considering the entropy which is mod-
ified by the logarithmic term due to quantum gravity effect [12],
it looks as if the black hole temperature were not proportional
to the black hole surface gravity. Then in such situation, could
the tunneling probability be obtained by calculating the change
of entropy with log-area term modification when considering the
quantum gravity effect in the same way as in Ref. [10]? The answer
is positive! Before discussing this problem, we will first present the
method proposed by Pilling.

3. Thermodynamics and tunneling

In this section we will review the method, presented in
Ref. [10], which is used to obtain the tunneling probability directly
from black hole thermodynamics. Let us start by writing the metric
for a general spherically symmetric system in ADM form [16],

ds2 = −Nt(t, r)2 dt2 + L(t, r)2[dr + Nr(t, r)dt
]2 + R(t, r)2 dΩ2. (1)

The metric is used for the situation where the geometry is spheri-
cally symmetric and has a Killing vector which is timelike outside
the horizon. Specially one can consider the case of a massless
particle and fix the gauge appropriately (L = 1, R = r) which is par-
ticularly useful to study across horizon phenomena. So the metric
becomes

ds2 = −Nt(r)
2 dt2 + [

dr + Nr(r)dt
]2 + r2 dΩ2. (2)

The metric is well behaved on the horizon and for a four-
dimensional spherically Schwarzschild solution, Nt = 1, Nr =

√
2M

r

(M is the mass of the black hole), for a four-dimensional Reissner–

Nordstrom solution, Nt = 1, Nr =
√

2M
r − Q 2

r2 (M is the mass and
Q is the charge of the black hole). And we also note that for

Nt =
√

f (r)
g(r) , Nr = f (r)

√
1−g(r)
f (r)g(r) , the metric (2) becomes the same

as that in Ref. [10].
Now let us consider the Parikh–Wilczek tunneling [3]. Sup-

posed the mass of the black hole is fixed and the mass is allowed
to fluctuate, then the shell of energy E travels on the geodesics
given by the line element (2). Taking into account self-gravitation
effects, the outgoing radial null geodesics near the horizon are
given approximately by

ṙ = Nt(r) − Nr(r) � (
N ′

t(R) − N ′
r(R)

)
(r − R) + O

(
(r − R)2), (3)

where the horizon, r = R , is determined from the condition
Nt(R) − Nr(R) = 0 and the last formula is the expansion of the
radial geodesics in power of r − R .

1 The law is also applicable to the general situation such as that of charged and
rotating black holes.
According to the definition of a time-like Killing vector the sur-
face gravity of the black hole near the horizon is obtained as

κ � N ′
t(R) − N ′

r(R). (4)

So the radiation temperature is

T = κ

2π
= N ′

t(R) − N ′
r(R)

2π
. (5)

Now we consider the black hole thermodynamics in the region
near the horizon. The change of the Bekenstein–Hawking entropy,
if the mass of black hole changes from Mi to M f , is given as

�S =
M f∫

Mi

dS

dM
dM =

M f∫
Mi

2π R
dR

dM
dM. (6)

Considering the small path near R , we can insert the mathe-
matical identity Im

∫ r f
ri

1
r−R dr = −π in the formula (6). Thus we

obtain

�S = −2 Im

M f∫
Mi

r f∫
ri

R

r − R

dR

dM
dM. (7)

Using (5) and the expression of the temperature in thermody-
namics 1

T = ∂ S
∂ E , we attain

R
dR

dM
= 1

N ′
t(R) − N ′

r(R)
. (8)

Then Eqs. (3) and (8) give the final form of the change of en-
tropy (7) as

�S = −2 Im

M f∫
Mi

r f∫
ri

dR

ṙ
dM = −2 Im I, (9)

where I is the action for an s-wave outgoing positive particle in
WKB approximation.

So the tunneling probability is given as

Γ ∼ e�S = e−2 Im I . (10)

Thus we obtain the tunneling probability from the change of
entropy as a direct consequence of the first law of black hole ther-
modynamics by using the same method as that in Ref. [10]. Let us
emphasize that in the original method the author uses the general
radiation temperature different from the Hawking temperature in
order to discuss the factor of 2 problem. However the new temper-
ature is still proportional to the surface gravity like the Hawking
temperature and only the proportional relation is crucial for the
discussed problem in this Letter. So we take the Hawking temper-
ature as the black hole temperature without loss of generality.

4. The tunneling through the quantum horizon

We note that for spherically symmetric black holes a gener-
alized treatment [9] has been suggested, in which the tunneling
probability is gotten directly from the principle of conservation of
energy by calculating the imaginary part of the action in WKB ap-
proximation and the method is independent on the form of black
hole entropy. For the entropy which is proportional to area [3]
or contains the logarithmic modification caused by the presence
of quantum gravity [12], we know that the tunneling probability
has been obtained by calculating the imaginary part of the ac-
tion in WKB approximation. Recently Pilling has suggested that
the tunneling probability is obtained directly from the first law
of thermodynamics by calculating the change of the entropy being
proportional to area, even if the radiation temperature is different
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from the Hawking temperature [10]. Then could the Pilling method
be applied to the situation where the entropy is modified by log-
arithmic term when considering quantum gravity effect? In the
following we will discuss the problem.

First we take into account the modification of entropy caused
by the presence of quantum gravity effect which gives a leading
order correction with a logarithmic dependence on the area be-
sides reproducing the familiar Bekenstein–Hawking linear relation
[17–19]

SQG = A

4L2
P

+ α ln
A

L2
p

+ O

(
L2

p

A

)
, (11)

where A is the area of black hole horizon and L p is the Planck
length. The relation exists in string theory and loop quantum grav-
ity. The difference is that α is negative in the case of loop quantum
gravity [20], but in String Theory the sigh of α depends on the
number of field species appearing in the low energy approxima-
tion [21]. It is noted that there is an interesting phenomenon that
this log-area correction is closely related to black hole remnant
when the coefficient α is negative [22].

Along Pilling’s line we calculate the tunneling probability by us-
ing the entropy modified by quantum gravity effect. For briefness,
we write

SQG = 1

4
A + α ln A = π R2 + α ln

(
4π R2), (12)

where the logarithmic correction can also be obtained by consid-
ering the one-loop effects of quantum matter fields near a black
hole [17,19]. Whatever consideration we take, the spacetime will
change. If we continue to use the spacetime represented by (2),
the wrong result will be gotten. We can see this point clearly from
the following calculation.

When the mass of the black hole changes from Mi to M f , we
have

�S =
M f∫

Mi

dS

dM
dM =

M f∫
Mi

(
2π R + 2α

R

)
dR

dM
dM = �S1 + �S2, (13)

where �S1 = ∫ M f
Mi

2π R dR
dM dM , �S2 = ∫ M f

Mi

2α
R

dR
dM dM . It is noted

that if we continue to calculate according to the same method
presented in the section above, it will be found that �S1 =
−2 Im

∫ M f
Mi

∫ r f
ri

dR
ṙ dM by using the surface gravity (4). It seems that

�S2 is not related to the action of the black hole and so is not
related to the tunneling probability. This is inconsistent with the
result obtained in Ref. [12] where

Γ (E) ∼ e−2 Im I =
(

1 − E

M

)2α

e(−8π M E(1− E
2M )). (14)

Consequently, we see that the imaginary part of the action is ex-
pressed as the change of the whole entropy but not that of partial
entropy. The calculation above shows that when considering the
entropy with logarithmic correction, the spacetime will change and
carry the quantum gravity effect. On the other side we note that
in Ref. [10] the author uses the entropy being proportional to area,
so the radiation temperature is obviously proportional to the sur-
face gravity. But here we take the entropy SQG = 1

4 A + α ln A, it
looks as if formally the temperature were not proportional to the
surface gravity according to the first law of black hole thermody-
namics. A straight way to contain the quantum gravity effect is to
use the thermodynamic relation to get the surface gravity afresh.
From thermodynamics, the temperature can be given as

1

T
= dS

dM
=

(
2π R + 2α

R

)
dR

dM
≡ 2π

κ
. (15)
Thus we can get the surface gravity in the entropy with loga-
rithmic modification as

κ ≡ 2π/
dSQM

dM
= 2π

(2π R + 2α
R ) dR

dM

, (16)

where the surface gravity is not only dependent on the mass of the
black hole but also dependent on the coefficient α which accords
with the consideration that the surface gravity carries the quantum
gravity correction.

We note that if we want to obtain the relation �S = −2 Im I as
that in the section above when considering the entropy with log-
arithmic correction, we have to find the method to calculate the
radial null geodesic trajectory which is difficult to be calculated
because we do not know the property of such spacetime clearly.
At the same time it has been pointed out that the quantum en-
tropy comes from counting states in a quantum theory, whereas
geodesics make sense in a classical spacetime. So the concept of
geodesics has to be managed carefully when the logarithmic cor-
rection of entropy is explained as quantum gravity effect [12–14].
However, the attained result is consistent with the explanation of
the tunneling probability of quantum mechanics. Thus the feasibil-
ity of using the concept of geodesics means that there maybe exist
the physical reason to explain the mathematical consistency. We
note that the logarithmic correction of the black hole entropy can
be obtained from the purely quantum gravity effect and can also
be obtained from the one-loop effects of quantum matter fields
near a black hole [19]. The difference lies in the value of the pa-
rameter α, but the problem here is not concerned about it. So we
can calculate the geodesics by considering the one-loop effects of
quantum matter fields near a black hole. It is noted that in such
consideration the expression of spacetime presented in (2) could
still be used [17,23], but some quantities, such as the mass, the
temperature, the surface gravity and so on, has to be changed.
On the other hand we also note that here the modification of
surface gravity (16) is consistent with the result obtain by consid-
ering the one-loop correction as in Refs. [23,24]. For example, for
Schwarzschild spacetime, the classical surface gravity is expressed
as κ0 = 1

4M and the radius is R = 2M , so by Eq. (16) the modified
surface gravity can be gotten as κ � κ0(1 − α

4π M2 ) which accords
with the modified surface gravity due to one loop back reaction
effects [23,24].

In the following we will show that the tunneling probability can
be recovered by calculating the change of the entropy with loga-
rithmic modification. By (16), we can write the change of entropy
as

�S =
M f∫

Mi

(
2π R + 2α

R

)
dR

dM
dM =

M f∫
Mi

2π dM

κ
. (17)

Because the spacetime (2) can still be used, so the radial null
geodesic trajectory is written as [25,26],

ṙ � κ(r − R), (18)

where the formula can be gotten by using Eqs. (3) and (4) and
it must be stressed that here the surface gravity and the event
horizon have been changed and are different from that appeared in
the section above. Thus we replace the surface gravity in Eq. (17)
by Eq. (18), insert the mathematical identity Im

∫ r f
ri

1
r−R dr = −π

and have

�S = −2 Im

M f∫
Mi

r f∫
ri

1

ṙ
dr dM = −2 Im I. (19)

So the tunneling probability is gotten as

Γ ∼ e�S = e−2 Im
∫ r f

ri
pr dr

. (20)
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In this way we have finished the calculation of black hole tun-
neling probability from the first law of thermodynamics when
considering the quantum gravity effect. In the derivation the in-
troduction of the new surface gravity is a crucial step because this
maintains the general expression of the relation between radia-
tion temperature and surface gravity. We can see that the Hawking
temperature relation T = κ

2π or the proportional relation between
the radiation temperature and surface gravity is key in the cal-
culation here as that in [9,10,12]. In general, when we discuss the
connection of the black hole radiation as tunneling with thermody-
namics, only if we accept the Hawking temperature relation or the
proportional relation between the temperature and surface gravity,
can we obtain the tunneling probability directly from the first law
of the black hole thermodynamics, not dependent on the form of
entropy of the black hole, which is seen by writing the change of
the entropy as

�S =
M f∫

Mi

dS

dM
dM =

M f∫
Mi

1

T
dM =

M f∫
Mi

2π dM

κ
. (21)

Thus we can conclude that it is the relation between black hole
temperature and surface gravity that plays the crucial role that re-
lates the black hole thermodynamics with the tunneling picture of
the black hole. At the same time the concept of geodesics has to
be managed carefully.

After the Hawking temperature was discovered, there have also
been several other methods [2,25] to derive the same result as that
obtained by Hawking [1]. Recently, however, it has been pointed
out [27] that the tunneling approach produces a temperature that
is double the original Hawking temperature, which is used to ques-
tion either the tunneling methods or the value of Hawking temper-
ature. This problem is discussed again in [28] where the authors
consider the incoming solution besides the outgoing solution and
uses the ratio of the outgoing and incoming probabilities to recover
the Hawking temperature. The factor of 2 problem about black hole
temperature is also discussed generally in Ref. [10].

5. Conclusion

We have showed that the tunneling probability can be obtained
from the first law of thermodynamics by using the entropy with
logarithmic modification which contains the quantum gravity ef-
fect and the change of the surface gravity has been presented
clearly in the calculation. We have also showed the important
role that the relation between the radiation temperature and the
surface gravity plays. One can note that our derivation can be gen-
eralized only by starting from the first law of thermodynamics
dM = T dS and the relation T = κ

2π instead of considering the form
of the black hole entropy. The generalization verifies the connec-
tion of black hole radiation with thermodynamics further.
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