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Abstract

Using holography we have studied thermal electric field quench for infinite and finite ’t Hooft coupling 
constant. The set-up we consider here is D7-brane embedded in (α′ corrected) AdS-black hole background. 
It is well-known that due to a time-dependent electric field on the probe brane, a time-dependent current 
will be produced and it will finally relax to its equilibrium value. We have studied the effect of different 
parameters of the system on equilibration time. As the most important results, for massless fundamental 
matter, we have observed a universal behaviour in the rescaled equilibration time in the very fast quench 
regime for different values of the temperature and α′ correction parameter. It seems that in the slow quench 
regime the system behaves adiabatically. We have also observed that the equilibration time decreases in 
finite ’t Hooft coupling limit.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Understanding the properties of a system out-of-equilibrium is a long-standing problem in 
physics, especially when it comes to strongly coupled systems. Quark–gluon plasma (QGP) pro-
duced at RHIC or LHC by colliding two heavy nuclei such as gold or lead, at relativistic speeds, 
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is a good example of such systems [1]. Strongly coupled nature of the field theory describing 
such systems, makes the usual known perturbative techniques incapable of analyzing their prop-
erties. Therefore one needs to rely on other techniques such as lattice gauge theory or AdS/CFT 
correspondence [1,2]. In this paper we will concentrate on the AdS/CFT approach where the 
time-dependent systems can be dealt with in real time.

AdS/CFT correspondence states that N = 4 Super-Yang–Milles (SYM) theory in four dimen-
sions is dual to string theory on AdS5 × S5 background. In the most used version of this duality 
a strongly coupled field theory (infinite ’t Hooft coupling constant (λ) and infinite number of 
colours (Nc)) is dual to classical gravity. In fact the vacuum state in field theory is dual to pure 
AdS solution in gravity and a thermal state to AdS-black brane or black hole. The field theory 
temperature is identified with the black brane or black hole temperature.

Strongly coupled matter produced in the lab is not infinitely strongly coupled. For instance, in 
the hot QCD results, the appropriate ’t Hooft coupling is in the range 10–40 which is not a huge 
number [12]. Therefore it is reasonable to use gauge/gravity duality in the limit where the effect 
of the finite ’t Hooft coupling constant is considered. In the dual gravity side this is realized as α′
corrections to the classical gravity action, which represent the stringy effects [3]. Thus in order 
to study the effect of the finite ’t Hooft coupling constant in the field theory, one needs to do the 
analysis based on the background solution obtained from the gravity action in the presence of α′
corrections. Such a solution has been given in (14).

An out-of-equilibrium system is usually produced by the injection of energy in a finite time 
interval. One way to simulate this situation in gauge/gravity duality is to apply a time-dependent 
electric field which varies from zero to a finite constant amount [4–6]. Such system evolves from 
the equilibrium state of an initial Hamiltonian to an equilibrium state of the modified Hamiltonian 
due to the presence of a time-dependent electric field. If the initial state is at non-zero temperature 
this time-dependent process is usually called thermal quench [7].

Applying a time-dependent external electric field will produce a time-dependent current. It 
starts from zero and relaxes to the equilibrium value, corresponding to the final amount of the 
electric field [4]. This current is the result of interaction between the fundamental degrees of 
freedom and the electric field. In order to introduce the fundamental matter in the AdS/CFT 
framework, we have to add probe branes to the background dual to the strongly coupled system 
under study [8].

In this paper we are interested in studying the effect of temperature and finite ’t Hooft coupling 
on the equilibration in a strongly coupled system. In the problem we investigate here, as will be 
explained in details later on, the temperature of the bulk is kept fixed during the quench. The 
electric field lives on the probe brane. During the electric field quench, due to apparent horizon 
formation on the probe brane, one can define an effective temperature which varies during the 
energy injection [4]. Regarding [7], since initially the induced metric on the probe brane has 
non-zero temperature, equal to the bulk one, we call this process thermal quench.

The observable that can be examined to see how the system equilibrates, is the behaviour 
of time-dependent current produced in the system [5]. This time-dependent current will reach 
its equilibrium value after some time which we call it equilibration time. We will see how this 
equilibration time modifies with the change in the parameters of the system.

2. Time-dependent external electric field

Here we consider a general class of black hole metrics of the form

ds2 = Gttdt2 + Gxxd �x2 + Gzzdz2 + Gssd�2, (1)
5
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which is asymptotically AdS5 × S5. z is the radial coordinate and the boundary of the above 
background is located at z = 0. The four-dimensional spacetime coordinates where the field 
theory lives are denoted by t and �x. The five-dimensional sphere is shown by d�2

5 and its metric 
can be written as

d�2
5 = dθ2 + cos2 θd�2

3 + sin2 θdϕ2. (2)

In order to add fundamental matter to the field theory, it is well known that D-branes must be 
added to the background in the probe limit which means that the branes do not back-react on the 
background. In this limit the background metric (1) is fixed and therefore, according to AdS/CFT 
correspondence, the dynamics of the fundamental matter in the field theory is explained by the 
Dirac–Born–Infeld (DBI) action. For a D7-brane, the DBI action is given by

SD7 = −μ7

∫
dtd3 �xdzd�3 e−φ

√
−det

[
gab + 2πα′Fab

]
, (3)

where the static gauge has been applied. It means that the eight directions on the brane are 
identified with (t, �x, z, �3). Therefore we have a, b ε (t, �x, z, �3). Fab is the field strength of the 
gauge field living on the brane. The brane induced metric, gab, is defined as

gab = GMN∂aX
M∂bX

N, (4)

where M, N ε (t, �x, z, �5). φ is the Dilaton field and can be non-trivial in the cases we are 
studying.

In order to have a time-dependent electric field along one of the field theory directions, say x, 
we need to consider non-zero Ax(t, z). As it is clear the x-component of the gauge field is not 
a function of �x since we would like to consider a homogeneous electric field quench. We have 
also assumed that ϕ = 0 and θ = 0. It means that we are dealing with massless fundamental 
degrees of freedom.1 It is not hard to check that the choice we have made here is the solution 
to the equations of motion in the presence of non-zero electric field for the bulk metrics we are 
interested in. Therefore the Lagrangian gets the following general form

L ∝ GxxG
3/2
ss e−φ

×
√

(2πα′)2GttF 2
zx − Gzz

(
(2πα′)2F 2

tx − GttGxx

)
,

= GxxG
3/2
ss

√
χ, (5)

and the resulting equation of motion for Ax(t, z) becomes

∂z

(
e−φ G

3/2
ss GxxGttFzx√

χ

)
− ∂t

(
e−φ G

3/2
ss GxxGzzFtx√

χ

)
= 0. (6)

Now an appropriate ansatz for the gauge field is [4]

Ax = −
t∫
E(s)ds + a(t, z) , (7)

1 If one would like to consider massive fundamental matter, the evolution of the shape of the probe brane is essential to 
be investigated. Such problem has been discussed in [11] using finite difference method. It should be mentioned that for 
fast quenches this numerical method does not work properly. Therefore, to our knowledge, it is difficult to study universal 
behaviour in this regime using finite difference method.
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where E(t) is the time-dependent electric field which injects energy into the system. E(t) can 
be chosen to have different forms which describe various ways of energy injection. It should be 
emphasized that, at least, a number of these different choices lead to the same final equilibrium 
state of the system [5]. The equation of motion for Ax leads to a second order partial differential 
equation for a(t, z). Similar to the near boundary expansion in the static external electric field 
case [9], the time-dependent current in the field theory is given by the second derivative of a with 
respect to z at the boundary

j (t) ∝ ∂2
z a(t, z = 0). (8)

3. Energy injection and equilibration

Following the discussion in the previous section we choose the form of the time-dependent 
electric field to be

E(t) = E0

2

(
1 + tanh(

t

k
)

)
. (9)

The electric field is zero at infinite past and constant value E0 at infinite future. The transition 
time, k, denotes how fast the electric field reaches from zero to its final value E0. As k decreases 
the transition happens faster. Using the ansatz (7) the equation of motion for the gauge field, 
coming from the DBI action, leads to a second order nonlinear equation in both t and z for 
the field a(t, z). In order to solve this equation one needs to impose two boundary conditions 
and two initial conditions. The boundary conditions are a(t, z) = ∂za(t, z) = 0 on the boundary 
and the initial conditions are a(t0, z) = ∂ta(t0, z) = 0 at some initial time t0. After solving this 
equation, one obtains the time-dependent current using (8). At large time the time-dependent 
current approaches its static value that is [9]

jst =
(
e−φ

√
GttGxxG

3/2
ss

)
z=z∗

, (10)

where z∗ can be found from

GttGxx − (2πα′)2E2 = 0. (11)

One can define an equilibration time as ε(teq) < 0.05 where

ε(t) = j (t) − jst

jst

. (12)

According to this equation we define the equilibration time as the time where the time-dependent 
current approaches the static one with 5% uncertainty and stays in this regime afterwards. In this 
section we will evaluate the equilibration time for two different backgrounds and see how it 
modifies with the relevant parameters.

3.1. Infinite ’t Hooft coupling constant

The background we would like to study is the black brane solution

−Gtt = z−2(1 − w4),

Gxx = z−2,

Gzz = z−2(1 − w4)−1,

Gss = 1, (13)



H. Ebrahim et al. / Nuclear Physics B 904 (2016) 527–537 531
where w = z
zh

and zh is the horizon. According to the AdS/CFT correspondence the above black 
brane solution is dual to a thermal state in SYM theory at infinite ’t Hooft coupling with infinite 
number of colours. The black brane temperature T = 1

πzh
is identified with the dual field theory 

temperature.

3.2. Finite ’t Hooft coupling constant

One way to link the results from holographic models to experimental set-ups more efficiently 
is to deviate from infinite ’t Hooft coupling limit. In order to consider finite ’t Hooft coupling cor-
rections in the field theory one needs to study α′ corrections in the gravity side. In this subsection 
we concentrate on the following asymptotically AdS solution [3]

−Gtt = z−2(1 − w4)T (w),

Gxx = z−2X(w),

Gzz = z−2(1 − w4)−1U(w),

Gss = 1 + 2S(w), (14)

where

T (w) = 1 − b(75w4 + 1225

16
w8 − 695

16
w12) +O(b2),

X(w) = 1 − 25b

16
w8(1 + w4) +O(b2),

U(w) = 1 + b(75w4 + 1175

16
w8 − 4585

16
w12) +O(b2),

S(w) = 15b

32
w8(1 + w4) +O(b2),

φ(w) = − lngs − 45b

8
(w4 + 1

2
w8 + 1

3
w12) +O(b2), (15)

where b = ζ(3)
8 λ−3/2, gs is the string coupling constant. As in the previous subsection w = z

zh
. 

This metric is the solution to the bulk equations of motion in the presence of the α′ corrections. 
It should be noted that the temperature of the above solution is T = 1

π(1−b)zh
.

4. Result

We will discuss the results for infinite and finite ’t Hooft couplings in the two following 
subsections.

4.1. Infinite ’t Hooft coupling

We begin with b = 0 results where the effect of finite ’t Hooft coupling is ignored. We have 
plotted the equilibration time with respect to different parameters in the problem. Fig. 1 shows 
the dependence of T teq on inverse temperature for various values of the electric field. One can 
define a relevant time-scale for the theory as 1

T
. It gives the time-scale at which the perturbation 

around the equilibrium configuration in the system relaxes. Fig. 1 shows that the equilibration 
time with respect to this time-scale decreases as the temperature of the system is reduced. This 
seems reasonable since as the temperature is raised, the thermal fluctuations do not allow the 
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Fig. 1. T teq has been plotted with respect to inverse temperature for k−1 = 0.7 and b = 0. Red, green and blue points 
correspond to E0 = 0.001, 0.004 and 0.006, respectively. The rescaled value of the equilibration time falls with decreas-
ing the temperature. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

Fig. 2. teq with respect to the final value of the electric field is plotted for k−1 = 0.7 and b = 0. Red (blue) points 
represent the equilibration time for a system at T = 0.14 (0.01). At higher temperatures of the system, the change in the 
equilibration time with raising the value of the final electric field is less noticeable. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)

current produced by the applied time-dependent electric field reach its static value quickly. This 
is confirmed by the plots for different values of the final electric field. At low temperatures, where 
the thermal fluctuations are small, for the larger value of the final electric field, the equilibration 
time becomes smaller. But at high temperature the equilibration time does not change by varying 
the final value of the electric field. This means that, for the range of electric fields considered 
in this paper, at higher temperatures the response of the system is dominated by the thermal 
fluctuation effect.

In Fig. 2 we have plotted the equilibration time with respect to the final value of the elec-
tric field, for two different fixed temperatures. One observes that for higher temperatures (red 
points) the sensitivity of the system to the time-dependent electric field (in the range we 
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Fig. 3. This figure shows kt−1
eq with respect to k for E0 = 0.001 and b = 0. The values of k have been chosen to lie 

in the fast quench regime. The points in red, purple, green and cyan colours represent T = 0.14, 0.1, 0.06 and 0.03, 
respectively. A universal behaviour by which we mean the independence of kt−1

eq of the system temperature is observed 
in the fast quench regime. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)

have considered in this paper) is ignorable compared to the lower values of the temperature 
(blue points). This confirms the last conclusion we reached in Fig. 1. On an equal footing, 
the blue points in Fig. 2 show that at low temperature the equilibration time decreases as 
the value of the final electric field is raised. So that the system equilibrates faster, as we ex-
pected.

In the above results we had assumed that the transition time k is kept fixed. One of the in-
teresting things that can be discussed in this context is to examine the regimes of slow and 
fast quenches. These are two different limits of the time-scale during which the electric field 
changes to reach a constant value. This has been studied in the literature extensively such as 
[5,7,10]. The electric field varies slowly in a long period of time during the slow quench. This 
corresponds to having k � 1. While the fast quench is the opposite limit, k � 1. In Fig. 3, fast 
quench regime, we have plotted kt−1

eq with respect to k for different values of the temperature 
while the final value of the electric field is kept the same. We can observe that at larger values 
of k, longer periods of electric field time-dependent change, the points corresponding to differ-
ent temperatures are widely separated and as k is reduced the points start approaching a single 
value. This behaviour shows that for very fast quenches (k � 1) the value of kt−1

eq is indepen-
dent of temperature and this indicates a universal behaviour for the massless fundamental matter. 
Such universal behaviour means that the equilibration time is the same for systems at different 
temperatures if the electric field changes abruptly. Similar behaviour occurs for various values 
of the electric field while the temperature of the system is the same, as has been also observed 
in [5].

In the opposite regime where k � 1, slow quench, kt−1
eq decreases as k is raised, Fig. 4. It 

shows that for the longer transition times the system has enough time to adjust to the energy 
injection and equilibrate. Thus we can speculate that at k → ∞ the system passes through equi-
librium points in its phase space which, in fact, describes the adiabatic behaviour.
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Fig. 4. In the slow quench regime k−1teq with respect to k has been plotted for E0 = 0.001 and b = 0. The orange and 
blue points correspond to T = 0.02 and T = 0.01, respectively. It seems that the system shows an adiabatic behaviour in 
this regime. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)

Fig. 5. At finite ’t Hooft coupling we have plotted the equilibration time with respect to the correction parameter b for 
k−1 = 0.7 and E0 = 0.001. The red, green and blue points present different temperatures of the system, T = 0.14, 0.06
and 0.01, respectively. The equilibration time has a mild dependence on b, especially for higher values of the temperature. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4.2. Finite ’t Hooft coupling

In this subsection we will see how the finite coupling or in other words the α′ corrections 
will affect the result we discussed previously. In Fig. 5 the dependence of equilibration time on 
the correction parameter b for different values of the temperature has been shown. Note that the 
transition time k and the final value of the electric field is kept fixed. Interestingly we observe that 
at high enough temperatures (red and green points) the system is not sensitive to the change of 
the parameter b. However at lower temperatures (blue points) the dependence of the equilibration 
time on b is more significant. In fact increasing b leads to a decrease in the equilibration time.
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Fig. 6. teq versus E0 for k−1 = 0.7 is plotted. We have compared infinite (b = 0) and finite ’t Hooft couplings (b = 0.007) 
results. For T = 0.02, blue (cyan) points show b = 0 (0.007) and for T = 0.14, purple (red) points present b = 0 (0.007). 
The effect of corrections is more noticeable at lower temperatures. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)

Fig. 7. T teq with respect to T −1 for k−1 = 0.7 and E0 = 0.004 where blue (red) points correspond to b = 0 (0.007). 
α′ correction decreases the rescaled equilibration time as the temperature is reduced. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)

The next figure, Fig. 6, where we have plotted the equilibration time with respect to E0 for 
fixed k, also confirms the conclusion made in the previous paragraph. Different colours show 
different values of b and T . The effect of the α′ corrections on the equilibration time is more 
significant at lower temperatures (blue and cyan points) and cause the equilibration time to de-
crease. It seems, as these figures confirm, the finite ’t Hooft coupling corrections affect the system 
similarly to the enhancement of the electric field.

We have also studied the effect of the corrections on the T teq with respect to inverse temper-
ature, Fig. 7, for one of the temperatures discussed in Fig. 1. We again see that in the presence 
of finite ’t Hooft coupling the equilibration time decreases in the 1

T
scale. We have also obtained 

the effect of the finite ’t Hooft coupling on kt−1
eq and k−1teq in the fast (Fig. 8) and slow (Fig. 9) 

quench regimes, respectively. In both cases the rescaled equilibration time decreases compared 
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Fig. 8. The plot shows kt−1
eq versus k for E0 = 0.001 and T = 0.14 in the fast quench regime where red (blue) points 

correspond to b = 0 (0.007). At very small values of k the points for different couplings merge. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. k−1teq with respect to k is plotted for E0 = .001 and T = 0.01 in the slow quench regime. The blue (red) points 
demonstrate b = 0 (0.007). Again we will see that at very large values of k, adiabatic regime, the points coincide. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

to the infinite ’t Hooft coupling results. A worthy observation is that in the very fast and adiabatic 
regimes the points presenting infinite and finite ’t Hooft couplings coincide and the effect of α′
corrections is negligible. It seems that at these two regimes the behaviour of the system, even in 
the presence of the finite ’t Hooft coupling corrections, is described by infinitely coupled SYM 
theory.
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