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ABSTRACT Three features appear to characterize steady-state light adaptation in vertebrate cone photoreceptors: (a)
the shape of the "log intensity-response" curve at different levels of adaptation is the same, the only change with
adaptation is in the position of the point on the curve about which the cones operate; (b) at high adapting intensities the
operating point becomes fixed in position; (c) this fixed position is at the steepest point of the log intensity-response
curve. These-three features can be described by a mathematical model.

INTRODUCTION

It is generally agreed that the first stage of visual adapta-
tion is at the photoreceptor. Under dark-adapted condi-
tions, the peak response of cone photoreceptors grows with
increasing stimulus intensity until it saturates (that is, until
it reaches a maximal amplitude). Yet under light-adapted
conditions, cones continue to transmit information effec-
tively at intensities much higher than that at which the
dark-adapted response saturates. Common features have
been recognized in the light-adapted behavior of cones in
different species. In this paper, a model is presented that
incorporates three of these features.
A protocol commonly used to study light adaptation is

the steady-state adaptation paradigm. Under this para-
digm, the cone system is steadily adapted to an intensity Ia,
and a stimulus is applied by suddenly changing the inten-
sity to a new level I, The responses evoked by different
combinations of Ia and Is, are recorded. Such a set of
responses is shown in Fig. 1. These late receptor potentials
were obtained, using methods (15, 16) modified by Dawis
and Purple (9), from the highly cone-dominated eye of the
13-lined ground squirrel (Spermophilus tridecemlinea-
tus). The responses in Fig. 1 have time courses similar to
those of macaque cone responses isolated by the foveal
local electroretinogram (3, 4). Spectral sensitivity mea-
surements indicated that the ground squirrel late receptor
potential reflects mainly green cone activity (Raisanen and
Dawis, manuscript in preparation).
A usual data-reduction procedure is to measure the

amplitude of the peak change R(Q I) in the response
evoked when the intensity is changed from I. to I, [The
notation R(IQ, ) is more economical than the notation
k(I, Ij) used by Dawis (5-7). It, Ia, and Is are related by I,
+ Ia = Is] In Fig. 2 A, the peak amplitudes of the
responses in Fig. 1 are plotted as a function of log(Ij). The
dark-adapted response function is plotted with filled circles

and the two light-adapted response functions with open
symbols.

A DESCRIPTION

An accepted description (2, 23) of the dark-adapted response function is
the saturating power function

R(I IO) = ISRmax/(Is + Kr) (1)

where R., is the maximal dark-adapted response, n is an exponent
typically between 0.5 and 1.0, and K, is the familiar semi-saturation
constant. [In the notation of Naka and Rushton (23) the semi-saturation
constant is given by a. In the notation of Boynton and Whitten (2) the
semi-saturation constant, K,, is introduced with a typographical error but
subsequently presented in correct form by Baron and Boynton (1).] In
Fig. 2 A, the response amplitudes and stimulus intensities are normalized
by R.,a and K, respectively.

We tentatively accept the description of the light-adapted cone
response functions given in Fig. 2 B. The response functions (solid curves)
exhibit three important features, first identified by Normann and Wer-
blin (27):

(a) The response functions are shape-invariant on an R vs. log(I.) plot,
the effect of light adaptation being to translate the response function
horizontally and vertically. This behavior is displayed by cone response
functions of the ground squirrel, as shown in Fig. 2 A, and the mudpuppy
(27), turtle (25, 26), and macaque (1, 2), as shown in Fig. 3.

(b) At high adapting intensities the operating point is fixed. (The
operating point is the point on the response function where it intersects the
abscissa; this occurs when I,=4.) Alternatively, it could be stated that at
high adapting intensities Weber's law is obeyed (see Appendix A).
Weber's law is obeyed by cone responses in the macaque (2), frog
(11, 20), carp (29), mudpuppy (27), turtle (25), and walleye (D. Burk-
hardt, personal communication).

(c) At high adapting intensities the operating point is at the steepest
point of the response function. This ensures an optimal sensitivity at high
adapting intensities. As will be seen, many cone systems possess this
feature.

A MODEL

A model that exhibits feature a is

R(i| a) = R( P(Ia) 0) -R( P(Ia)Ia 0) (2)
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FIGURE 1 Late receptor potentials isolated in the 13-lined ground
squirrel eye by injection of a single 1.5 ml bolus of 100 mM sodium
L-aspartate solution into the vitreous. Records are computer-averaged
responses to step changes in light intensity. White light (color tempera-
ture -5,1000K) was used for stimulation and adaptation. The stimulus
duration was 100 ms; interstimulus period was 5-10 s long. (A) A
dark-adapted intensity series obtained 40 min after aspartate injection.
During the 40 min, the eye was adapted to darkness. (B and C) Two
light-adapted intensity series. In each case, 20 min was allowed for light
adaptation.

where p(l,) is a decreasing function of!, and has values ranging from 1 to
0. Note that Eq. 2 tells us how to construct light-adapted response
functions, R( I.), from the dark-adapted response function, R(II 0),
provided that p(I.) is known. In words, Eq. 2 states that the peak change
R(I, I,) in the response evoked when a stimulus intensity I, suddenly
replaces a steady-adapting intensity I. can be calculated as follows: First,
take the stimulus intensity I, and the adapting intensity I, and attenuate
them by the factor p(I,); this computation results in an attenuated
stimulus intensity of p(IJI, and an attenuated adapting intensity of
p(10)I. Second, calculate the amplitudes of the responses that these
attenuated intensities would give in the dark. This calculation is done by
substituting the attenuated intensities into the dark-adapted response
function R(JI10). Hence, if the attenuated stimulus intensity were
presented in the dark, it would cause a peak change in response of am-
plitude R(p(l4)I, I0), and if the attenuated adapting intensity were
presented in the dark, it would cause a peak change in response of am-
plitude R(p(IJ.l 10). Finally, to compute R(l, I.) take the difference of
the calculated response amplitudes R(p(IJal 0) and R( p(IJIII 0). Thus,
the strategy to prevent the system from saturating is to attenuate
incoming light by a factor that depends on the intensity of the adapting
light. We have found that a good empirical description ofp is given by

P('a) = Kd/(Ia + Kd) (3)

where Kd is a positive-valued constant. Note that there is no attenuation of
incoming light when the system is dark adapted [that is, p(l.) - 1 when!.
- 0] and that incoming light becomes more attenuated as the system
adapts to more intense lights [that is, p(Ij)-O as I,-ooJ. The function in
Eq. 3 can be generated by mechanisms described by Dawis (5). The
model given by Eqs. 1-3 will exhibit features b and c, as well as a,
provided that

Kd = K, (4)

(see Appendix B for a proof).

FIGURE 2 (A) Normalized peak response amplitudes, R, plotted as a
function of normalized log stimulus intensity, log(h,/K,). *, dark-adapted
data in Fig. I A; 0, light-adapted data in Fig. I B, and A, light-adapted
data in Fig. I C. (B) An illustration of three features of cone steady-state
adaptation. The graph is actually two superimposed plots: solid lines, an
*- log(1j) plot and dotted lines, a p- log(I,) plot. The solid lines are five
response functions generated by Eqs. 1-4 with n=0.7 and R,.- 1.0. The
response functions correspond to adapting intensities of log (Ih/Kr)= - x,
-1, 0, 2, and 4. The dotted line represents an attenuating function
generated by Eqs. 3 and 4. Boynton and Whitten (2) have suggested that
a plot of the steady-state fraction of unbleached photopigment would
superimpose on the dotted curve (compare with Fig. 2 of reference 2).

DISCUSSION

Surprisingly, when Eqs. 1-3 are fitted to the available cone
adaptation data, the fourth relationship, Eq. 4, emerges.
The "least-squares error" fit by Eqs. 1-3 to the ground
squirrel data is shown by the solid curves in Fig. 2 A. The
corresponding values for n, Kr, and Kd are listed in Table I.
Because of limitations in our work (viz. it was impossible
with our apparatus to provide enough stimulus intensity to
saturate the ground squirrel late receptor potential), we
tested the model against published electrophysiological
data obtained from the mudpuppy (27), turtle (25), and
macaque (1, 2). The results of this analysis are shown in
Fig. 3, and the best-fitting parameter values are listed in
Table I. For each system, Kd-Kr.

The model, Eqs. 1-4, is also consistent with human
psychophysical data. Corresponding to the shape-invar-
iance of cone response functions is the shape-invariance of
cone increment threshold functions observed psychophysi-
cally by Geisler (14). Values for K, and Kd can be extracted
from Fig. 8 a of Geisler (14) since, on a log[Kr/
p(Ia)I - log(Ia) plot, the model predicts asymptotic slopes
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TABLE I
PARAMETRIC VALUES FOR CONE STEADY-STATE ADAPTATION*

Investigators n Kr Kd Kpb
(species)

Boynton and Whitten (2) 0.503 95,100 trolands 7,600 tds 10,000 tds
(Macaca irus)
Baron and Boynton (1) 0.462 7,760 trolands 295 tds 10,000 tds
(Macaca irus)
Normann and Werblin (27) 0.677 19,700 units 16,000 units >2 x 107 units
(Necturus maculosus)
Normann and Perlman (25) 0.850 454 units 515 units ?
(Pseudemys scripta elegans)
Dawis and Purple (Fig. 2A) 0.697 1.00 units 1.53 units ?
(Spermophilus tridecemlineatus)
Geisler (14) 0.7 166 trolands 194 tds 15,800 tds
(human)

*In all cases, with the exception of the human psychophysical measurements, values given for n, K,, and Kd are those of the dark-glasses model that best
fits (least-squares error) the data.

of 0 and 1 intersecting at [log(Kd), log(K,)]. The result is
listed in Table I, and once again Kd-K7.

The model (and the three features) may also describe
adaptation in the photoreceptor responses of the blowfly
and dragonfly (see Fig. 3 of reference 21) and in the
growth rate of phycomyces (see Fig. 7 of reference 10).

The proposed model is closely related to earlier models
of adaptation. Eq. 1, used to describe dark-adapted
responses, is the empirical model of Naka and Rushton
(23) as modified by Boynton and Whitten (2). To describe
light-adapted responses, Naka and Rushton (24) sug-
gested the model R(Is ia) = k(Is 1O) - R(Ia 0). Since this
model can not reproduce Weber's law (5, 8, 17, 18, 28), it
is inadequate in describing cone light-adapted behavior.
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FIGURE 3 Response function data fitted (least-squares error) by Eqs.
1-3. A, data of Boynton and Whitten (2) from the macaque; B, data of
Baron and Boynton (1) from the macaque; C, data of Normann and
Werblin (27) from the mudpuppy; D, data ofNormann and Perlman (25)
from the turtle.

Eq. 2 is very similar to Naka and Rushton's (24) model for
light adaptation, the important difference is that in Eq. 2
the intensities I, and I. are attenuated by a factor p(Ij.
Normann and Werblin (27) suggested that light adapta-
tion in cones has an effect equivalent to placing a neutral
density filter in the light beam. MacLeod (22) referred to
models of this kind as "dark glasses" models. Eq. 2 is a
dark glasses model. The model formed by combining Eqs.
1 and 2 has recently attracted attention. A simple algebraic
manipulation reveals that this model belongs to the class of
models in which the apparent a is dependent on la (25). For
Eqs. I and 2, a(Ia) = Kr/p(Ia). Similar variable a models
have been suggested by Hood et al. (19) and Geisler (14) to
describe cone saturation increment threshold functions. In
fact, Geisler's (12-14) approach and ours is in agreement
(Chap. 10 of reference 7). Finally, consider the model
given by Eqs. 1-3 with

Kd =Kpb (5)

where Kpb is the half-bleaching constant of the cone
photopigment. This model, Eqs. 1-3, and 5, is the Boynton-
Whitten (2) model. For the Boynton-Whitten model, p(I8)
is the fraction of cone photopigment left unbleached by the
steady-adapting light. In their eleventh footnote (which
contains a serious typographical error), Boynton and Whit-
ten (2) noted that the relationship

Kpb = Kr (6)
seemed to obtain. Boynton and Whitten (2) were "uncer-
tain whether this agreement [was] fortuitous, or of theoret-
ical significance." Since Eq. 6 can be obtained by
combining Eqs. 4 and 5 its significance is revealed: for the
Boynton-Whitten model, equality of Kpb and Kr ensures
that at high adapting intensities the operating point is at
the steepest point of the response function. In Table I, Kpb
values measured or estimated by the respective authors are
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given. According to the Table, Eqs. 5 and 6 do not hold for
the mudpuppy and human cones and the case for macaque
cones is equivocal. Presently, only the proposed model, Eqs.
1-4, gives a general description of cone adaptation.

APPENDIX A
A result of fixing the high intensity operating point is that

'C(la) = k Ia for large Ia. (7)
where Ic(Ia) is the intensity increment needed on I, to produce a response
of criterion amplitude and k is a positive-valued constant. (Eq. 7 is a
neural analogue to Weber's law of psychophysics.)

Proof
Normann and Werblin (27) proved that if over a range of adapting
intensities the response functions on an R-log(Q) plot intersect the
abscissa with the same slope, then Weber's law is obeyed over that range
of intensities. In Fig. 2 B the two right-most response functions intersect
the abscissa with the sample slope; at these high adapting intensities
Weber's law is obeyed.

Although Normann and Werblin's proof applies only when the
criterion amplitude is infinitesimally small, it is an easy matter to
generalize to criteria of finite magnitude: If over a range of adapting
intensities the response functions on an R- log(I) plot are (a) shape-
invariant and (b) have a fixed operating point, then Weber's law is obeyed
over that range of intensities. To prove this last claim, let us consider the
case shown in Fig. 2 B. In this figure, a hypothetical criterion level C is
shown. The thick bars on the log(J,) -axis indicate the distance, for each
response function, from log[Ic(Ij)+Ij to log(IJ). At high intensities,
where the operating point is fixed, this length is constant. Denoting this
constant length by log(l +k), one gets 1og[c(IQ)+4] - log(I4)
log(l +k), which leads to Eq. 7.

APPENDIX B

The model given by Eqs. 1-4 possesses features a-c.

Proof
First, the response functions of the model are shape-invariant on an
R- log(I) plot with light adaptation producing a horizontal translation of
-log[p(IJ)] and a vertical translation of -R(p(Ij)Ia 10) (see references 6
and 7). Second, the model obeys Weber's law at high intensities, provided
that (Kr/Kd)">C/(l-C) where C is the normalized criterion level (see
references 5 and 7). Given Eq. 4 this condition becomes I > C/(I -C), a
condition easily satisfied. Third, to see that the model optimizes its
sensitivity at high adapting intensities, consider the ratio
[R,,,R(p(Ia)Ia10)]/k(p(Ia)Ia 10). For each I,, this ratio is equal to
"the response range available to incremental stimulation" divided by "the
response range available to decremental stimulation." For the model
given by Eqs. 1-3 this ratio approaches a value of (Kl/Kd)" as I. becomes
very large. With the addition of Eq. 4 this asymptotic value becomes 1.
This means that the complete model, Eqs. 1-4, translates the response
function such that at high adapting intensities half the response range is
above the abscissa and half the range below. As Fig. 2 B illustrates, on an
R-log(Q) plot, the steepest point of a saturating power function is at its
mid-point. Therefore, Eq. 4 ensures that at high adapting intensities the
model will operate about the steepest point of the response function on an
R-log(Q) plot. [A completely analytical solution gives the same answer;
see reference 7. The analytical solution states that if the response
functions are shape-invariant on an R- log(Ij) plot, then to get optimal
sensitivity at high adapting intensities, the high intensity operating point
must correspond to a point on the dark-adapted response function where
dR/dI+I.d2R/d12 = 0, in other words, to a point on the dark-adapted
response function where it is steepest on an R - log(I) plot.]
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