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Abstract 

Control allocation considers the problem of controlling instruction distribution for control systems with multiple and redun-
dant actuators. This paper focuses on the direct allocation method, making the time requirement of the algorithm analogous 
compared with modified pseudoinverse redistribution methods, linear programming methods solved by simplex method, and 
sub-gradient optimization method. To reduce off-line computations of constructing the attainable moment set of actuators, a new
approach based on the null space of the control effectiveness matrix is proposed, which is superior when the number of actuators
is less than 10 compared with traditional method. To decrease on-line computations, an improvement method of searching the 
facet that is aligned with the desired moment is presented, shortening the search time by checking only the facets that lie around
the desired moment. To find such facets, the vertices of the attainable moment set are normalized and saved during off-line 
computations. Simulation results show that at least 32.22% of off-line computation time would be saved using null space-based 
construction when the number of actuators is less than 10. In on-line computations, the modified method performs superiorly 
compared with the three aforementioned methods. Furthermore, it may solve the problem of control allocation efficiently when a 
remarkable large number of redundant actuators are configured. 

Keywords: control allocation; direct allocation; pseudoinverse redistribution; linear programming; sub-gradient optimization; 
attainable moment set 

1. Introduction1

In order to increase the maneuver ability and reli-
ability of spacecraft, configuration with redundant 
actuators is commonly considered. However, control 
requirements cannot be generated directly by the ac-
tuators because the configuration of redundant actua-
tors causes the variety of commands that meet the re-
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quirements. Control allocation is the problem of dis-
tributing the control requirements among redundant 
actuators for satisfying the optimized objectives within 
their range of position and rate limits[1]. Great attention 
has been paid to the improvement of allocation algo-
rithms[2-3], the application of the technique to engi-
neering[4-5] and the extension to theoretical appro- 
aches[6] in the recent years. 

This paper focuses on the improvement of allocation 
algorithms. The properties of evaluating an algorithm 
of control allocation would be: allocation error be-
tween the desired moment (DM) and the output mo-
ment generated by the actuators, controls that the algo-
rithm consumes to generate a given DM, allocation 
subset that consists of the moments generated by the 
algorithm with the actuators within their position and Open access under 
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rate limits, memory space that the algorithm needs to 
save off-line data, and allocation time that the algo-
rithm spends in calculating the controlling instruction 
of the actuators. The allocation time is split into 
off-line computation time and on-line computation 
time. Off-line computations calculate the unchanged 
data of the algorithm and save them in memory space. 
It may be performed when the configuration of actua-
tors is designed or, in the case of a reconfigurable con-
trol law[7]. On-line computations calculate the com-
mands of each actuator in real-time when given a DM. 
The allocation subset is evaluated in comparison with 
the attainable moment set (AMS) composed of all the 
moment vectors that can be generated by the actuators 
within their control constraints. 

The allocation time, especially the on-line computa-
tion time, has a significant effect on the real-time ap-
plication of an algorithm, while the other properties 
should also be considered for specific applications. 
The former allocation approaches (for example, daisy 
chaining, generalized inverse and pseudoinverse) use 
little memory space and their property of allocation 
time is attractive, but the existence of allocation error 
in AMS and the limited allocation subset (the volume 
is strictly less than that of AMS, and the ratio descends 
dramatically in high redundant problems[8]) restrict 
their applications. Modified pseudoinverse redistribu-
tion (MPIR)[2] methods and a sub-gradient optimiza-
tion (SGO) method[5] have been proposed to enlarge 
the allocation subset and increase the probability of 
getting the optimal solution, but there may still exist 
allocation error in AMS[2]. The direct allocation (DA) 
approach[9] generates all the moments in AMS without 
allocation error, whereas more on-line computation 
time is needed to search the correct facet that is 
aligned with the DM, which might prohibit the 
real-time application of the algorithm. Besides DA, 
several l1-norm error minimization objective optimiza-
tion methods can be converted to normal linear pro-
gramming (LP) models[3] and be solved using simplex 
or interior-point method. These approaches are guar-
anteed to get an optimal solution in a finite period of 
time, but the allocation time is still three times or more 
than that of MPIR. The fast control allocation ap-
proach[7] using spherical coordinates behaves wonder-
fully on on-line computations, but a large amount of 
memory space is needed to save the look-up table in 
off-line computations. Durham[10] provided a computa-
tionally efficient method to get the optimal solution in 
more than 90% of examined cases, and the computa-
tion time varies linearly with the increasing number of 
controls. However, the method is hard to reproduce 
because of the lack of details[3]. It is hence crucial to 
find such an algorithm that performs superiorly in 
on-line computations without allocation error, and uses 
limited off-line computations and acceptable memory 
space.

In this paper, we focus on DA approach and intro-
duce a method for greatly reducing the computation 

time of the algorithm. A new way of finding the verti-
ces of AMS is introduced, which decreases the off-line 
computations when the number of actuators is less 
than 10. And a modified method of searching the facet 
that is aligned with DM is proposed to decrease the 
on-line computations, which checks only the facets 
that lie around DM and performs very well whatever 
the number of controls varies. The actuators of F-18 
high angle-of-attack/alpha research vehicle (HARV)  
and a model of a spacecraft with 8 thrusters are used to 
illustrate the improvement of the method. 

2. Problem Statement 

Control allocation considers the problem of distri- 
buting the control requirement to redundant actuators 
in the closed loop of the control system. Fig.1 shows 
such a system with a module of control allocation. The 
control allocation is separated from the module of 
control strategy and deals with the problem of gener-
ating the commands of the redundant actuators to meet 
the desired moment ad, which is calculated by the con-
trol strategy according to the current state and the ex-
pected state of the system. The separation simplifies 
the design of the control strategy since it no longer 
considers the constraints of the actuators. It also makes 
the control strategy and the control allocation algo- 
rithm applicable for different types of control systems. 
Additionally, the system becomes more robust since 
the separation minimizes the change of the system 
when the module of fault detection and diagnosis in-
dicates that some actuators have failed to work (only 
the initial conditions of control allocation about the 
actuators should be updated). 

Fig.1  A closed-loop control system with the module of 
control allocation. 

In Fig.1, c is expected state vector,  measured 
state vector, ad desired moment vector, uc command 
vector of actuators, Tc torque output vector of actua-
tors, and Td disturbance torque vector. 

Here we discuss the attitude control of a spacecraft 
using thrusters, where the degree of freedom (DOF) of 
the control requirement is 3. Assume there are m
thrusters actuated to generate moment, the linearized 
transformation model is given by 

da Au                  (1) 

where u Rm is the control vector, A the 3×m control 
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matrix of effectiveness. For redundant control alloca-
tion problems, m>3. All the thrusters are assumed to 
have both minimum and maximum position limits, 
which span a convex hull of control space in 
m-dimensional (m-D) space: 

,min ,max{ | , }m m
i i iu u u R Ru u    (2) 

where is denoted as the the control subset, ui the ith 
element of u, and ui,min and ui,max are the minimum and 
maximum output limits of ui respectively. A subset in 
3-dimensional (3-D) space, denoted as , is formed 
when the controls generate moments through the map-
ping matrix A:

3
d d{ | , } Ra a Au u       (3) 

where is called the AMS consisting of all the mo-
ments that the actuators could generate in moment 
space. is also a convex hull due to the fact that lin-
ear transformation keeps convexity. 

With these definitions, the problem of control allo-
cation can now be stated as follows: given a DM, find 
a control vector u in that satisfies Eq.(1). We will 
also assume that each 3×3 sub-matrix of A is full rank, 
which ensures that each point of the boundary of is
mapped by a unique control vector u in . The as-
sumption should be satisfied when designing the con-
figuration of the actuators. 

3. AMS and DA 

In this section, we give a brief description of the DA 
method, and introduce a new approach of constructing 
AMS which performs superiorly to the one used in DA 
method when the number of actuators is less than 10. 

3.1. Properties of AMS 

AMS is constructed by finding its boundary which 
is the image of the facets of the control space. There 
are 2m 2m!/[2!(m 2)!] facets in the control space, but 
only m2 m facets of them map to be the boundary of 
the AMS under the assumption proposed in Section 2. 
Each facet of AMS is a parallelogram with four verti-
ces and four edges. A vertex of AMS is mapped by a 
vertex of whose elements are totally at their position 
limits. An edge of AMS is mapped by an edge of ,
which connects two vertices with m 1 elements at the 
same position limits, and the remaining one element 
varies. A facet of AMS is mapped by a facet of with 
m 2 elements at the same position limits and the re-
maining two vary. AMS has m2 m+2 vertices, 
2(m2 m) edges and m2 m facets if each 3×3 sub-ma-
trix of A is full rank. 

3.2. Computation of AMS 

The facets and the edges of AMS are completely 
constructed by getting the connecting information of 

the vertices of AMS, so the vertices of AMS must be 
firstly constructed. Now we present two ways of find-
ing the vertices. Before that a preparation theorem is 
given to confirm the extent of the vertices. 

(1) A preparation theorem 
It is known from Ref.[1] that the boundary of AMS, 

denoted as ( ), is the image of the boundary of ,
denoted as ( ). Each component of ( ) has some 
or all of its controls saturated. Now we define u
whose controls are all saturated. Apparently, u

( ). Then the theorem is stated as follows: 
Theorem 1  All the vertices of ( )  are the sub-

set of Au .
Proof  First we should know that all the vertices of 

( ) are mapped by u . It is a standard result on con-
vex polytopes[11] and can also be found in Ref.[8]. 

Then it should just be proved that the vertices of 
( ) are the subset of Au , which is equivalent to 

finding a control vector in u  that does not map to 
( ). See that the null space of A, denoted as N(A), is 

defined as  

( ) { | , }m0 RN A A        (4) 

Now find a basis vector, k, of N(A), so 

k 0A                 (5) 

then a control vector uk can be found in u  according 
to the elements of k:

, ,max ,

, , ,min ,

, ,max , ,min ,

0
0 ( 1, 2, , )

or 0

k i k i

k i k i k i

k i k i k i

u
u u i m

u u

 (6) 
Consider the moment vector mk generated by uk:

k kAu m                 (7) 

See that there exist some other control vectors gen-
erating the same mk:

( )k k k k k k ks s 0Au A u Au A m m
 (8) 

then there must exist s<0 such that ku  is an unsatu-
rated control vector which can definitely not map to 
the vertex of ( ). Therefore, uk cannot map to a ver-
tex either, since it maps to mk as well. Overall, all the 
vertices of ( ) are the subset of Au .

The theorem indicates that, the matrix A determines 
the classification of Au . A control vector u in the 
control space could be written as follows: 

, ( ), ( ), )m( Ru x y x y x R A y N A u
 (9) 

where R(A) is the row space of A, which is the or-
thogonal complement of N(A) in Rm (namely, N(A)
R(A)={0}, and dim(Rm)=dim(N(A))+dim(R(A)), where 
dim( ) means the dimension of [12]. So the elements 
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of u  whose projection on N(A) is 0 will map to be 
the vertices of ( ) (otherwise, Au  can also be 
expressed by other unsaturated control vectors since 
y 0 and will not be the vertex of ( )). One way of 
finding such elements is based on the row space of A,
which means finding these elements directly; the other 
is based on the null space of A, i.e., deleting the ele-
ments that map to the interior of  and keeping the 
elements that map to the vertices. The vertices of 

( ) are formed by multiplying the matrix A after 
finding these elements. 

(2) Finding the vertices based on the row space of A
This method was stated in Ref.[13] and is a search 

of the vertices of that map to ( ) using the row 
space of A. First, take two columns of A, Ai=[Ai1 Ai2
Ai3]T and Aj=[Aj1 Aj2 Aj3]T, associated with two con-
trols of u, ui and uj, and two parallel facets of ( ).
Get direction t=[t1 t2 t3]T that is perpendicular to the 
two facets and satisfies 

T T0, 0i jt A t A            (10) 

t can be solved by dividing the equation into two parts: 

1 1 31
3

32 2 2

i j i

ji j

A A At
t AA A t

0       (11) 

where t3 is typically set to 1 and Eq.(11) has a solution 
if the 2×2 sub-matrix is invertible. Otherwise, the other 
2×2 sub-matrices of [Ai Aj] can substitute it to get the 
solution. At least one of the sub-matrices will be in-
vertible if all the 3×3 sub-matrices of A have rank 3. 

Given that t is known, the vector tTA is used to de-
termine the vertices and the facets of AMS. The vector
tTA would have two zero elements, some positive ele-
ments and the remaining negative. The first four verti-
ces will shape the highest facet in the direction t, cor-
responding to the control vectors that have controls 
which correspond to positive elements of tTA set to 
maximum values, and controls which correspond to 
negative elements of tTA set to minimum values and ui
and uj set to their combinations of possible position 
limits. The following four vertices will shape the low-
est facet in the opposite direction of t, corresponding 
to the control vectors that have controls which corre-
spond to positive elements of tTA set to minimum val-
ues, and controls which correspond to negative ele-
ments of tTA set to maximum values and ui and uj set 
to their combinations of possible position limits. For 
example: if umax= [1  1  1  1  1]T, umin= [ 1 1

1 1 1]T, and tTA = [1  0  1  0  2]T (i=2
and j=4), then the four vertices of the highest facet 
perpendicular to the direction t  would be u1= [1  1

1 1 1]T, u2= [1  1 1  1  1]T, u3= [1  1  
1 1 1]T and u4= [1  1  1  1  1]T, and the 

four vertices of the lowest facet perpendicular to the 
opposite direction of t would be u5= [ 1 1  1  1
1]T, u6= [ 1 1  1  1  1]T, u7= [ 1  1  1  1
1]T and u8= [ 1  1  1  1  1]T.

All the vertices of ( ) that map to be the vertices 
of ( ) will be found by considering all the possible 
pairs of taking any two columns of A, and the facets of 

( ) that map to ( ) will be obtained simultane-
ously. The vertices of ( ) are then obtained by mul-
tiplying the matrix A. These vertices of ( ) and 

( ) should be saved for on-line computations. These 
vertices, however, will be saved repeatedly since each 
vertex is shared by two or more facets. Therefore, a 
numbering system is introduced to number the vertices 
for nonrecurring storage. 

(3) Numbering the vertices 
The method presented in Ref.[10] is simple and 

suitable for numbering the vertices. With this method, 
all the facets of AMS would be constructed in a facet 
table which could be found by the sequence numbers 
of the vertices. There are 4(m2 m) sequence numbers 
of m2 m facets and m2 m+2 vertices to be saved. 

(4) Finding the vertices based on the null space of A
In this section, we present a new way of finding the 

vertices utilizing the null space of A. The number of 
the elements of u  is 2m, due to the fact that m con-
trols have both minimum and maximum position lim-
its. These elements correspond to the 2m vertices of 
in control space; m2 m+2 map to be the vertices of 

( ) and the remaining to the interior of . The new 
approach deletes all the vertices of that map to the 
interior of , and keeps the vertices of that map to 
the vertices of . Consider a basis vector of N(A) that 
satisfies

0A                   (12) 

If all the elements of u  like the one shown in 
Eq.(6) are found, then all the elements that map to the 
interior of will be found and deleted. Select a 3×3 
sub-matrix of A arbitrarily and denote their corre-
sponding columns as Ai, Aj and Ak. Evaluate m 3
column vectors as follows: 

1 2 3

1 0 0
0 1 0

, , ,

0 0 1

mx x x          (13) 

which correspond to m 3 elements of the basis vectors 
of  except its ith, jth and kth elements. Take each of 
the vectors into Eq.(12) and the ith, jth and kth ele-
ments of l (l=1, 2, …, m 3) can be solved if the 3×3 
sub-matrix of A is invertible: 

,
1

,

,

[ ] ( 1,2, , 3)
l i

l j i j k l

l k

l mA A A Ax   (14) 

where A  is the sub-matrix of A removing its ith, jth 
and kth columns. The vertices ul=[ul,1 ul,2

…

ul,m]T (l=1,2, …,m 3) that map to the interior of can
then be found based on l:
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, ,max ,

, ,min ,

, ,max , ,min ,

0
0 ( 1,2, , )

or 0

l i l i

l,i l i l i

l i l i l i

u
u u i m

u u
 (15) 

or

, ,min ,

, , ,max ,

, ,max , ,min ,

0
0 ( 1,2, , )

or 0

l i l i

l i l i l i

l i l i l i

u
u u i m

u u
 (16) 

There are m(m 1)(m 2)/6! combinations of group-
ings when taking 3 columns from m columns, and m 3
basis vectors in each combination. However, some of 
the vertices may appear repeatedly in different combi-
nations, which would be deleted once it appears. 

All of the vertices that map to the interior of will
be deleted using this method, keeping the vertices that  

map to the vertices of . The vertices of are then 
formed by multiplying the matrix A. The facets of 
are easy to construct when knowing the vertices of .
Take two elements of u and make them vary, and find 
the vertices that have the same values for the remain-
ing elements. Each four vertices that have the same 
two elements vary and the remaining at the same posi-
tion limits compose a facet. Two parallel facets will be 
found in each circulation decided by Eqs.(15)-(16). 

(5) Evaluation of the two methods 
The two ways of constructing AMS may be suitable 

for different numbers of actuators. Fig.2 shows the 
comparison of time consumed to the construction of 
AMS. We use the configuration of F-18 HARV to test 
the methods whose matrix of control effectiveness and 
limits are given by 

2
4.382 4.382 5.841 5.481 1.674 6.280 6.280 2.920 0.001 1.000

53.30 53.30 6.486 6.486 0 6.234 6.234 0.001 35.53 0.001 10
1.100 1.100 0.391 1 0.391 1 7.482 0 0 0.030 0.001 14.85

A   (17) 

1
min [ 4.189 4.189 5.236 5.236 5.236 1.396 1.396 5.236 5.236 5.236] 10u   18)             

1
max [1.833 1.833 5.236 5.236 5.236 7.854 7.854 5.236 5.236 5.236] 10u        (19) 

Fig.2  Time comparison of off-line constructing AMS based 
on R(A) and N(A).

Note that as the number of actuators increases, the 
time consumed to construct AMS increases simulta-
neously when using either of the methods. However, 
the method based on the null space of A saves at least 
32.22% (1.281 s compared with 1.890 s when m=9) of 
off-line computation time when the number of actua-
tors is less than 10. When 4<m<6, the number of the 
vertices of to be deleted is less than that to be saved; 
when 6 m 9, the number of the vertices of to be 
deleted is more than or equal to that of the vertices of 

to be saved, but the time consumed to find a vertex 
is longer than that consumed to delete a vertex, so the 
method based on the null space of A is still superior. 
The method based on the row space of A is suitable for 
constructing the AMS when m 10.

After the construction of AMS, a 3-D view of the 

AMS is shown in Fig.3. The set is delimited by 90 
facets, 180 edges and 92 vertices. In Fig.3, Tc,x, Tc,y
and Tc,z represent the x, y and z axes of 3-D torque 
space.

Fig.3  AMS for F-18 HARV. 

3.3. Computation of control input 

The computation of control input involves three ver-
tices of a facet. Fig.4 shows the principium of the com-
putation. 

A facet could be described by the linear combination 
of three of its four vertices: 

d d, d, d, d, d,( ) ( )
0, 0 1, 0 1

i j i k ia b c
a b c

a a a a a a
    (20) 

where ad,i is a basis vertex of the facet with its two 
adjacent vertices, namely, ad,j and ad,k. a is used to 
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Fig.4  Sketch of computing of control input. 

scale the DM ad to intersect with the facet. a, b and c
are solved as follows: 

T 1
d, d, d, d, d, d[ ] [ ]i i j i ka b c a a a a a a  (21) 

If there existed an intersection between the facet and 
the scaled DM, the three parameters would satisfy the 
condition shown in Eq.(20). The intersection repre-
sents the maximum attainable moment (MAM) that the 
actuators could generate in this direction. Assume that 
three vertices of , denoted as ui, uj and uk, generate 
ad,i, ad, j and ad,k, separately. The control vector ud that 
generates ad is then computed as follows: 

*
d

*
d

d *
d

( ) ( )

/ 1
1

i j i k ib c

a a
a

u u u u u u

uu
u

        (22) 

where *
du  represents the control vector that generates 

the MAM along ad. If a 1, ad is attainable, 
and *

du  will be scaled to ud to generate ad; if a<1, ad is 

unattainable, and ud will be equal to *
du , generating 

the MAM along the direction. 

3.4. DA method 

In Durham’s method[9] Eq. (21) is used as a test of 
whether the facet is intersected with DM. If [a  b  c]
satisfies the limits in Eq. (20), the facet intersects with 
DM, and the control input can be calculated using 
Eq.(22); otherwise, the algorithm continues to search 
for the correct facet. All the possible facets of AMS are 
checked sequentially and the correct facet will be 
found in a limited period of time. The procedure is 
referred to as the sequential search in Ref.[7] 

The computations are split into off-line and on-line 
computations. Off-line computations construct the 
information of AMS, including the vertices and the 
facets of AMS, and the control vectors associated with 
the vertices of AMS. On-line computations consist of 
finding the correct facet that is aligned with DM, and 
computing the control input when given a DM. Now 
we attempt to make the strategy more efficient. 

4. Modified DA (MDA) Algorithm 

The output of DA algorithm keeps the direction of 

DM, and all the moments in can be generated with-
out allocation error (the allocation subset is equal to 

). If DM lies out of AMS, MAM along the direction 
of DM will be the output. The main idea of DA algo-
rithm is to find the correct facet that is aligned with 
DM, and great on-line allocation time of the algorithm 
has been consumed to search the facet. However, all 
the possible facets are checked sequentially, making 
the search time vary in an unacceptable broad range. 
And in the worst case, the correct facet will finally be 
checked which terribly prolongs the time of on-line 
computations and may prohibit its use for real-time 
applications. 

The modified method presented here is still split 
into off-line computations and on-line computations. 
Off-line computations construct the information of 
AMS, including the vertices and facets of AMS, as 
well as the normalized vertices of AMS which would 
be utilized in the modified method. To reduce the 
off-line computation time, the method based on the 
null space of A is used to find the vertices of  that 
map to the vertices of AMS when the number of ac-
tuators is less than 10. Otherwise, the method based on 
the row space of A is used. On-line computations 
search the correct facet that is aligned with DM, and 
calculate the commands of the actuators. It is expected 
that the modified method would keep the properties of 
AMS-based approaches, and perform more efficiently 
than any existing allocation method. 

4.1. Off-line computations: construction of AMS 

The construction of AMS has been stated in Section 
3.2. Additionally, the vertices of AMS need to be nor-
malized and saved for the modified method: 

* 2d,
d,

d,
( 1,2, , 2)

| |
v

v
v

v m maa
a

     (23) 

where ad,v is the vth vertex of , *
d,va  the vth normal-

ized vertex of , and |ad,v| the magnitude of the vertex. 
After the normalization, all the normalized vertices lie 
on the unit sphere so that the nearest vertices around a 
given DM could be found in on-line computations. 

After off-line computations, the vertices of , the 
normalized vertices of , the facets of and the ver-
tices of that map to be the vertices of will be 
saved for on-line computations. 

4.2. On-line computations: search of intersectant facet 
and calculation of ud

In this section a more efficient method of calculating 
the controlling instruction will be presented. To im-
prove the efficiency of searching the correct facet in-
tersecting with the half line along DM, we attempt to 
use the information given by the unit direction of the 
moment (UDM). Consider that the DM could be writ-
ten as follows: 
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*d
d d d d

d
| | | |

| |
aa a a a
a

           (24) 

where |ad| is the magnitude of the ad, and *
da  UDM 

lying on the unit sphere with the normalized vertices 
of .

After the normalization, the distances between the 
normalized vertices and *

da  could be calculated and 
sorted ascendingly. The sequence numbers of the 
nearest q normalized vertices against *

da  could be 
found by checking the smallest q distances: 

* * 2
d, d 2Seq min { , 1, 2, , +2}v q v v m ma a

 (25) 

where the function minq  means finding the nearest 

q normalized vertices against *
da . Generally, q 1, ow-

ing to the fact that the intersecting facet may not cor-
respond to the nearest normalized vertex against UDM 
if there exist some adjacent narrow facets. An example 
of the statement is given in Fig.5. 

Fig.5  The closest vertex, but not within correct facet. 

The vertices from 1 to 6 are some of the neighboring 
vertices of , and their corresponding normalized ver-
tices from 1  to 6  lie on the unit sphere centered at 
zero in 3-D moment space. The half-line along UDM 
intersects with the unit sphere, crossing to form the 
UDM, and intersects with the parallelogram formed by 
the vertices 1-4, crossing to form MAM along the di-
rection (Note that the normalization has altered the 
shape of the facet, but it keeps the connecting relations 
of the four vertices of the facet). However, the nor-
malized vertex nearest to UDM is vertex 6  whose 
corresponding vertex, vertex 6, is not one of the verti-
ces of the intersecting facet. The intersecting facet can-
not be found if only the facets that share the vertex 6 
are searched. Fortunately, the normalized vertex 2  lies 
close enough to the intersection, and the intersecting 
facet will be found if the facets sharing vertex 2 are 
searched.

The evaluation of q must guarantee the inclusive-
ness of the intersecting facet when given any direction 
of DM, which depends on the number and the position 

limits of the actuators. Generally, q increases with the 
increasing number of actuators and narrow facets, as-
sociated with small ranges of the position limits of 
some actuators. But on the other hand, q cannot be too 
large to reduce the search time of the on-line computa-
tions, either. 

After the nearest q normalized vertices against 
UDM are found, the facets that have the vertices cor-
responding to these normalized vertices could be 
found out from the look-up table of the facets created 
in off-line computations. The next procedure is to find 
the intersecting facet in these facets and then, generate 
the commands of the actuators as stated in Section 3.3. 

4.3. Evaluation of MDA algorithm 

The procedure of MDA algorithm is summarized as 
follows: 

Step 1  Find the vertices of that map to the ver-
tices of , save the vertices of  and their corre-
sponding controls and number the vertices. 

Step 2  Find the vertices of each facet of  and 
save the sequence numbers of the vertices of each 
facet.

Step 3  Calculate the normalized vertices of  and 
save them. 

Step 4  Normalize DM to form UDM. 
Step 5  Find the closest q normalized vertices of 

against UDM. 
Step 6  Search the facets that include some of the 

vertices corresponding to q normalized vertices sepa-
rately. 

Step 7  Check the facets found in Step 6 sequen-
tially to get the facet that intersects with the half-line 
along UDM. 

Step 8  Compute the control vector that generates 
DM according to the corresponding three controls that 
generate three vertices of the intersecting facet. 

The first 3 steps are calculated off-line and the in-
formation will not change until some actuators fail to 
be actuated. When the number of actuators is less than 
10, the method based on the null space of A is used to 
calculate the vertices. Otherwise, the method based on 
the row space of A is used. 

The latter steps of the method are performed 
on-line. Compared with the DA algorithm, the MDA 
algorithm searches the facets near the DM instead of 

( ), which greatly reduces the number of facets to 
be checked and remarkably decreases the allocation 
time. A little larger amount of roomage needs to be 
added to save the normalized vertices of , and an 
additional time is consumed to find the nearest nor-
malized vertices against UDM, but it is worth paying 
such expense to get more real-time characteristic of the 
algorithm. 

5. Numerical Examples

To prove the time reduction of MDA, some numeri-
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cal simulation examples are given in this section. A 
spacecraft with a redundant configuration of 8 thrusters 
is introduced to illustrate the algorithm. The configura-
tion of the thrusters is shown in Fig.6, which is located 

at the diagonal of the top and foot surface of the space-
craft. The range of the reaction force of each thruster is 
assumed to be [0, 1] N, and the matrix A is shown as 
follows:

0.185 48 0.185 48 0.185 48 0.185 48 0.312 64 0.312 64 0.312 64 0.312 64
= 0.312 64 0.312 64 0.312 64 0.312 64 0.185 48 0.185 48 0.185 48 0.185 48

0.101 73 0.101 73 0.101 73 0.101 73 0.101 73 0.101 73 0.101 73 0.101 73
A     (26) 

The matrix satisfies the assumption that each 3 3
sub-matrix is invertible. The results of the simulation 
are obtained on a Pentium IV machine running at 
2.4 GHz and using implementations of the algorithms 
as m-files in MATLAB 6.5. Timing results are ob-
tained using the tic/toc commands and a rough com-
parison is provided between the MDA, the MPIR 
(Eq.(10) of Ref.[2], the DA (SIMP) (linear program-
ming model of DA solved by simplex method[3])
method, and the SGO method[5].

Fig.6  Configuration of thrusters. 

5.1. Off-line computation results 

In this part of simulation we test the time consumed 
in the off-line computations. The first way based on 
the row space of A spends 1.343 0 s to complete the 
construction, while the second way based on the null 
space of A spends 0.593 0 s. The time varies in a small 
range owing to the circumstance of hardware, but the 
first approach always spends more time. The approach 
based on the null space of A is hence preferred as for 
the construction of this model (m=8).

There are 58 vertices of , 58 vertices of , 58 
normalized vertices of and 224 sequence numbers 
for the 56 facets of to be saved for the problem. 
Fig.7 shows the vertices of , the facets of and their 
connectivity, and Fig.8 shows the normalized vertices 
of .

5.2. On-line computation results 

In this part of simulation we test the on-line compu-
tation of the algorithm. q is evaluated to be 3 for the 
problem, and 1 000 random desired moments are given 

to test the statistical characteristics of the four algo-
rithms. Fig.9 shows a histogram of the number of fac-
ets to be checked before the correct facet is found. 
86.8% of the samples find the correct facet after 
checking the first 4 facets, which means that the vertex 

Fig.7  Vertices of and their connectivity. 

Fig.8  Normalized vertices of and their connectivity. 

Fig.9  Histogram of checked facets. 
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nearest to the intersection between the half-line along 
DM and ( ) is most likely to be the component of 
the intersecting facet. No more than 8 facets are 
checked before the correct one is found. However, 
there are still 13.2% of the samples whose number of 
checking the facets are more than 4, due to the fact that 
two vertices of AMS are shared by 8 facets (see 
Figs.7-8), increasing the number of checked facets 
before the correct one is found. 

Table 1 shows the on-line computation time of the 
modified algorithm during the test, compared with the 
most efficient MPIR[2], an LP modeled DA solved by 
simplex method (DA (SIMP))[3] and the SGO method[5].
The bisecting edge searching method[10] is out of the 
simulations because the same difficulty as encountered 
by Bodson[3] exists during the reproduction. The 
minimum calculating time appears when the correct 
facet is firstly checked, which might happen in both 
MDA and DA (SIMP), while MPIR gets the instruc-
tion of the controls with their constraints in the first 
loop. The maximum calculating time of DA (SIMP) 
appears when the correct facet is finally checked; 
while MPIR gets the solution after the maximum of 8 
loops, which is the number of actuators. SGO runs a 
fixed number of eight iterations to get the commands, 
which makes its allocation time just vary in a very 
narrow range. The average time of MDA reduces by 
49.40% compared with MPIR, 89.81% compared with 
DA (SIMP), and 64.29% compared with SGO. Addi-
tionally, MDA keeps the properties of AMS-based 
methods (direction preservation, without allocation 
errors in AMS), whereas MPIR and SGO may have 
allocation errors occasionally in AMS, especially when 
DM lies towards the boundary of AMS. However, the 
maximum allocation time of MDA is still 2.36 times 
longer than SGO. The comparison of the properties 
between these methods indicates that MDA is capable 
of being an alternative to other efficient allocation al-
gorithms. But on the other hand, readers should apply 
MDA cautiously with the consideration of off-line 
computations, because MDA can definitely not achieve 
such predominant properties of on-line computations 
without the data being precomputed in off-line com-
putations. 

Table 1  Time comparison of on-line computations be-
tween MDA, MPIR, DA (SIMP) and SGO 

Algorithm Minimum 
time/ms 

Maximum 
time/ms 

Average 
time/ms 

MDA <1 16.00 0.85 
MPIR <1 16.00 1.68 

DA (SIMP) <1 63.00 8.34 
SGO 2.30  6.78 2.38 

The configuration can generate any direction of de-
sired moment even any two of the 8 thrusters fail. Fu-
ture studies will give theoretical support for this result. 
Simulation results show that no more than 6 facets will 
be checked in any failed case. Table 2 depicts the 

on-line computation time of MDA, compared with 
MPIR, DA (SIMP) and SGO, when thrusters 2 and 6 
fail. Note that MDA is still superior to the other three 
algorithms, but off-line computations should also be 
considered with caution for applications. 

Table 2  Time comparison of on-line computations be-
tween MDA, MPIR, DA (SIMP) and SGO 
(Thrusters 2&6 failed)

Algorithm Minimum 
time/ms 

Maximum 
time/ms 

Average 
time/ms 

MDA <1 16.00 0.73 
MPIR <1 16.00 1.17 

DA (SIMP) <1 46.00 6.95 
SGO 1.82  5.80 1.98 

Fig.10 shows an additional characteristic of the al-
gorithms. We use the model of F-18 HARV to test the 
average time of on-line computations with an increas-
ing number of actuators. Note that MDA makes the 
average time stay at nearly the same level with the 
increasing number of actuators, which is determined 
by the fact that only the facets located near DM are 
checked whatever number of actuators the configura-
tion has. The three other algorithms use gradually in-
creasing time to get the results when the number of 
actuators increases (when m=4, the execution time is 
negligible without iteration for SGO[5]). The results 
indicate that MDA may be more real-time in perform-
ance than the other three methods in control allocation 
problems with larger number of actuators where the 
time executed for off-line computations may be easily 
acceptable.

Fig.10  Average time of on-line computations.

6. Discussions 

A control allocation algorithm based on the direct 
allocation is proposed to allocate the control require-
ments among redundant actuators. The algorithm 
modifies the direct allocation algorithm and is still split 
into off-line computations and on-line computations. 
During the off-line computation of constructing the 
attainable moment set, the method based on the null 
space of the effectiveness matrix proposed in this pa-
per saves at least 32.22% of computation time com-
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pared with the method based on the row space of the 
matrix, but it is only effective when the number of 
actuators is less than 10. Otherwise, the method based 
on the row space of the matrix is superior. On-line 
computations are remarkably reduced when only the 
facets around the desired moment are checked. When 
accounting for the spacecraft with 8 thrusters, numeri-
cal results show that the MDA algorithm saves 49.40% 
of allocation time compared with MPIR, 89.81% 
compared with DA (SIMP), and 64.29% compared 
with SGO, while the maximum allocation time is 2.36 
times longer than SGO, with 2.76 times longer in 
failed mode. 

Requirement of the memory space of the MDA al-
gorithm is close to that of the direct allocation ap-
proach, while the on-line computation time performs 
much more superiorly whatever number of actuators 
the configuration has, but the results are totally ob-
tained with sufficient off-line computations, which 
should be considered carefully for specific applica-
tions. In higher redundant control allocation problems, 
it would perform better since off-line computations 
may be more acceptable, as well as the on-line alloca-
tion time stays nearly at the same level. The approach 
provides a meaningful alternative to previously known 
efficient allocation strategies. 
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