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Abstract Analytical solutions for the vibration of beams with variable cross-sections are, in general,
complex and, in many cases, impossible. On the other hand, approximate methods, such as the weighted
residual, Rayleigh–Ritz and finite difference methods, also have their own shortcomings, such as a limited
number of natural frequencies and low accuracy. In this paper, using the wave propagation method,
the beam is partitioned into several continuous segments, each with a uniform cross-section, for which
there exists an exact analytical solution. Waves entering a segment in positive and negative directions
are calculated from waves that entered the initial segment. Then, by satisfying the boundary conditions,
the characteristic equation is obtained and all natural frequencies are calculated. Also, using the sum of
waves at each point that are moving in positive and negative directions, the mode shapes are obtained. To
verify this modified method, frequencies whose mode shapes are in a polynomial cross-sectioned beam
having an exact analytical solution are compared and thereby proven to be highly accurate. Therefore, this
method can also be used to calculate natural frequencies and their mode shapes in beams with variable
cross-sections without any analytical solution.

© 2011 Sharif University of Technology. Production and hosting by Elsevier B.V.
Open access under CC BY-NC-ND license.
1. Introduction

The vibration of non-uniform beams has been studied using
different approaches, such as analytical, approximate andwave
methods.

Cranch and Adler [1] presented closed form solutions in
terms of Bessel functions in order to calculate the natural
frequencies and mode shapes of beams with four kinds of
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rectangular cross-section. Conway and Dubil [2] obtained
similar closed-form solutions for truncated cone and wedge
beams. Goel [3] obtained closed-form solutions for single and
double-tapered truncated beams. Heidebrecht [4], Mabie and
Rogers [5] used the second and fourth order polynomials of
axial coordinate x to express the sectional area, A(x), and the
moment of inertia, I(x), respectively. They transformed the
partial differential equation of the free vibration of a double
tapered beam into an ordinary one, and then solved the last
equation to get the natural frequencies. Naguleswaran [6,7]
determined the approximate natural frequencies of single and
double tapered beams with a direct solution of the mode shape
based on the Frobenius method. Abrate [8] found that the
equation ofmotion of a non-uniform beammay be transformed
into that of a uniform beam. He, then, calculated the natural
frequencies and mode shapes for beams with sectional area
A(x) and moment of inertia I(x) that had special forms. Laura
et al. [9] investigated the natural frequencies of Bernoulli
beams with a constant width and bi-linear varying thickness,
using three well-known approximate numerical approaches:
the Rayleigh–Ritz method, differential quadrate method and
finite element method. Datta and Sil [10] employed the
reverse procedures of Cranch and Adler to determine the
natural frequencies of cantilever beams with constant width
and linearly varying depth. Hoffmann and Wertheimer [11]
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Figure 1: A non-uniform beam.

presented a simple formula for determining the fundamental
frequency of a tapered cantilever beam. Mabie and Rogers [12]
studied the transverse vibration of single-tapered clamped-
hinged beams. Baberjee and William [13] gave the solutions
to obtain the exact dynamic stiffness matrices of some non-
uniform beams. Nikkhah-Bahrami [14], Loghmani [15] and Lee
et al. [16] used a wave approach to analyze the non-uniform
rod and beam whose analytical solution is available, such as
a polynomial or exponential cross-section. In this paper, the
above-mentioned wave propagation method is applied by the
authors to present a modified wave propagation method for
calculation of frequencies and mode shapes of a beam with an
arbitrary variable cross-section for which no analytical solution
is available. Using a modified wave propagation method, a
typical beam is partitioned into several continuous segments
with a constant cross-section, each having an analytical
solution. Waves at the entrance of an arbitrary continuous
segment in positive and negative directions are propagated and
transmitted to another segment, which could be expressed in
terms of thewaves at the initial segment. Then, by satisfying the
boundary conditions, a characteristic equation is obtained and
the natural frequencies are calculated. Also, by adding waves in
positive and negative directions at each point, the shapemodes
are obtained.

2. Methodology for the calculation of natural frequencies
and mode shapes of non-uniform beams

For illustration and validity of the method developed here,
a beam with an arbitrary variable cross-section is considered
(Figure 1).

The beam, with an arbitrary variable cross-section, is
partitioned into several continuous segments with constant
cross-sections, each having an analytical solution (Figure 2).
If one wants to save time on calculations, and obtain more
accuracy with a lesser quantity of partitions, it would be
possible to divide the beam into partitions proportional to the
slope of varying cross-sections, as indicated in Figure 2. But of
course in this paper, the beam is partitioned with equal lengths
for simplicity. In this section, at first, a generalized approach
based on the reflection, transmission and propagation of waves
for the analysis of a uniform beam is reviewed and then the
modified wave propagation method is presented.

2.1. Wave description of vibration for a uniform beam

The governing partial differential equation for free vibration
of the uniform beam is as follows [16]:

EI
∂4w(x, t)
∂x4

+ ρA
∂2w(x, t)
∂t2

= 0, (1)
Figure 2: Division of non-uniform beam proportional to slope of varying cross-
section.

where x is the axial coordinate, w is the transverse deflection,
E is Young’s modulus, ρ is the mass density of material, A is the
cross-sectional area of the uniform beam, I is the moment of
inertia of A, and t is the time.

Solution of Eq. (1) is as follows:

w(x, t) = f (ct − x)+ g(x + ct), (2)

where c =


EI
ρA and f (ct − x) and g(x + ct) represent, respec-

tively, positive and negative directions of the moving waves
with velocity c.

We can rewrite the solution for Eq. (1) as follows:

w(x, t) = W (x)F(t), (3)

w(x, t) = eλx+iωt , (4)

W (x) = eλx, (5)

F(t) = eiωt . (6)

By substituting Eq. (3) into Eq. (1), we have:

EI
d4W (x)
dx4

F(t)+ ρAW (x)
d2F(t)
dt2

= 0. (7)

Using Eqs. (5) and (6), we have:

EIλ4W (x)F(t)− ρAω2W (x)F(t) = 0, (8)

then:

EIλ4 = ρAω2. (9)

By solving Eq. (9), we have:

λ1 = k, λ2 = −k, λ3 = ik, λ4 = −ik,

where:

k =
4


ρAω2

EI
. (10)

Then, we can write Eq. (10) as follows:

w(x, t) = (C1e−ikx
+ C2eikx + C3e−kx

+ C4ekx)eiωt , (11)

where:

W (x) = (C1we−ikx
+ C2eikx + C3e−kx

+ C4ekx), (12)

F(t) = eiωt . (13)

C1–C4 are constants and k is wave number.
The vibration of a beam could be considered as a wave that

is propagating left and right in the beam. The form of the wave



1090 M. Nikkhah Bahrami et al. / Scientia Iranica, Transactions B: Mechanical Engineering 18 (2011) 1088–1094
Figure 3: Positive and negative waves.

depends on the nature of the governing differential equation of
the structure (Figure 3).

In the beam, the motion in the waveguide is described by a
partial differential equation of order 4. The solution (Eq. (12))
gives 2 pairs of positive and negative going wave components
as follows:

a+

I = C1e−ikx, a+

II = C2e−kx,

a−

I = C3eikx, a−

II = C4ekx, (14)

so that a+ and a− are 2 × 1 vectors. a+
=


a+

I a+

II


and a−

=
a−

I a−

II


. The relationship between positive and negative

waves at x1, x2 is:
a+(x2)
a−(x1)


=

[
F+ 0
0 F−

] 
a+(x1)
a−(x2)


, (15)

where F+, F− are propagation matrices as below:

F+
= F−

=

[
e−ikl 0
0 ekl

]
, (16)

where x2 − x1 = L and k =
4

ρAω2

EI is the wave number.
The relationship between the state vector in the physical
domain and the state vector in the wave domain is obtained as
follows [16]:
w
f


=

[
ψ+ ψ−

φ+ φ−

] 
a+

a−


, (17)

wherew and f are a 2×1 vector that denotes displacements and
internal forces, respectively, andψ andφ are 2×2displacement
and internal force matrices, as follows:

w =

[
w

∂w

∂x

]
, (18)

F =

Q M


, (19)

ψ+
=

[
1 1

−ik −k

]
, (20)

ψ−
=

[
1 1
ik k

]
, (21)

φ+
= EI

[
−ik3 k3

−k2 k2

]
, (22)

φ−
= EI

[
ik3 −k3

−k2 k2

]
. (23)

When thewaves encounter boundary conditions or discontinu-
ities, they are transmitted and some of them are reflected. One
type of discontinuity is a step; in other words, a sudden change
in the cross-section, which is shown in Figure 4.
Figure 4: Reflection and transmission of waves in step beam.

Figure 5: Reflection and transmission of waves in stepped beam.

Relations between propagated, reflected and transmitted
waves are defined as follows:

a−
= Ra+, (24)

b+
= Ta+, (25)

inwhich R and T are reflection and transmissionmatrices. Using
Eqs. (24) and (25) and equations of equilibrium and continuity
at the step, then the transmission and reflectionmatrices for the
step shall be as follows:

R = −

−φ+

b (ψ
+

b )
−1ψ−

a + φ−

a

−1 
−φ+

b (ψ
+

b )
−1ψ+

a + φ+

a


,

(26)

T =

φ−

a (ψ
−

a )
−1ψ+

b − φ+

b

−1 
φ−

a (ψ
−

a )
−1ψ+

a − φ+

a


. (27)

If the discontinuity represents a boundary, so that there are no
transmittedwaves, the reflectionmatrix at the boundary can be
obtained from the reflection matrix by setting the terms with
the subscript to be zero.

3. Modified wave propagation method

The beam with a step and its boundaries (Figure 5)
is considered, and the relationships between propagated,
reflected and transmitted waves in positive and negative
directions (step number 1) are defined as follows:

a+

1 = Tf 1b+

1 + Rb1a−

1 , (28)

b−

1 = Rf 1b+

1 + Tb1a−

1 , (29)

in which Tf 1 and Tb1 are transmission functions in forward and
backward directions and Rf 1 and Rb1 are reflection functions in
forward and backward directions at step number 1.
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Then, using Eqs. (28) and (29), positive and negative waves
at the right side in terms of the left side of the step are obtained:

a+

1 = Tf 1 · b+

1 + Rb1T−1
b1 (b

−

1 − Rf 1b+

1 ), (30)

a−

1 = T−1
b1 (b

−

1 − Rf 1b
+

1 ). (31)

Waves propagate through the length of the segment. Relation-
ships between positive and negative waves at the right side of
the segment in terms of waves at its left side are defined as fol-
lows:

b+

1 = F+(L1) · a+

0 , (32)

b−

1 = (F−(L1))−1
· a−

0 . (33)

Substituting Eqs. (32) and (33) into Eqs. (30) and (31), onewould
get:

a+

1 =

Tf 1 − Rb1T−1

b1 Rf 1

F+(L1)a+

0

+

Rb1T−1

b1


(F−(L1)−1)a−

0 , (34)

a−

1 =


−T−1

b1 Rf 1F+

(L1)


a+

0 +


T−1
b1 (F

−

(L1)
)−1


a−

0 . (35)

One can thus write Eqs. (34) and (35) as follows:

a+

1 = µ1 · a+

0 + λ1 · a−

0 , (36)

a−

1 = η1 · a+

0 + β1 · a−

0 , (37)

where:

µ1 =

Tf 1 − Rb1T−1

b1 Rf 1

F+

(L1)
, (38)

λ1 =

Rb1T−1

b1

 
F−

(L1)

−1
, (39)

η1 =


−T−1

b1 Rf 1F+

(L1)


, (40)

β1 = T−1
b1


F−

(L1)

−1
. (41)

Eqs. (36) and (37) can be written in the matrix form:[
a+

1
a−

1

]
=

[
µ1 λ1
η1 β1

] [
a+

0
a−

0

]
. (42)

Positive and negative waves at the right of step number 1 are
propagated through the length of the second segment and are
given by the following relationships:

b+

2 = F+(L2) · a+

1 , (43)

b−

2 =

F−(L2)

−1
· a−

1 , (44)

in which L2 is the length of the second segment. Substituting
Eq. (42) into Eqs. (43) and (44), one would get:

b+

2 = F+

(L1)
·


Tf 1F+

(L1)
a+

0

+ Rb1T−1
b1


F−

(L1)

−1
a−

0 − Rf 1F+

(L1)a
+

0


, (45)

b−

2 =


F−

(L1)

−1
· T−1

b1


F−

(L1)

−1
a−

0 − Rf 1F+

(L1)
a+

0


. (46)

One can write Eqs. (45) and (46) in the form of Eqs. (47) and
(48):

b+

2 = µ · a+

0 + λ · a−

0 , (47)

b−

2 = η · a+

0 + β · a−

0 , (48)
Figure 6: Non-uniform beam with an arbitrary variable cross-section.

where:

µ = F+

(L1+L2)
·

Tf 1 − Rb1T−1

b1 Rf 1

, (49)

λ = F+

(L2)


F−

(L1)

−1
· Rb1T−1

b1 , (50)

η = −F+

(L1)


F−

(L2)

−1
· Rf 1T−1

b1 , (51)

β = −


F−

(L1)

−1 
F−

(L2)

−1
.T−1

b1 . (52)

One can write Eqs. (47) and (48) in the matrix form as follows:[
b+

2
b−

2

]
=

[
µ λ
η β

] [
a+

0
a−

0

]
. (53)

Satisfying the boundary conditions will yield the characteristic
equation for wave numbers by which the wave numbers can be
found.

By performing the above mentioned methodology, for
all segments in a non-uniform one-dimensional waveguide
with an arbitrary variable in the cross-section (Figure 6),
the positive and negative traveling waves under the right
boundary condition are obtained in terms of waves under the
left boundary condition.

Similarly, by adapting Eq. (53) for step number n, one would
get:

a+

n =

Tfn − RbnT−1

bn Rfn

F+

(Ln)a
+

n−1

+

RbnT−1

bn

 
F−

(Ln)

−1
a−

n−1, (54)

a−

n =


−T−1

bn RfnF+

(Ln)


a+

n−1 +


T−1
bn


F−

(Ln)

−1

a−

n−1. (55)

One can write Eqs. (54) and (55) as follows:

a+

n = µn · a+

n−1 + λn · a−

n−1, (56)

a−

n = ηn · a+

n−1 + βn · a−

n−1. (57)
Eqs. (56) and (57) can be written in the matrix form as follows:[
a+

n
a−

n

]
=

[
µn λn
ηn βn

] [
a+

n−1
a−

n−1

]
, (58)

where:

µn =

Tfn − RbnT−1

bn Rfn

F+

(Ln), (59)

λn =

RbnT−1

bn

 
F−

(Ln)

−1
, (60)

ηn = −T−1
bn RfnF+

(Ln), (61)

βn = T−1
bn


F−

(Ln)

−1
eikLn . (62)
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Then, one can obtain entrance waves in the ‘‘nth’’ segment in
terms of waves under the left boundary condition as follows:[
a+

n
a−

n

]
=

[
µn λn
ηn βn

] [
µn−1 λn−1
ηn−1 βn−1

]
×

[
µn−2 λn−2
ηn−2 βn−2

]
· · ·

[
µ1 λ1
η1 β1

] [
a+

0
a−

0

]
. (63)

One can write Eq. (63) as follows:[
a+

n
a−

n

]
=

[
µtotal λtotal
ηtotal βtotal

] [
a+

0
a−

0

]
, (64)

where:[
µtotal λtotal
ηtotal βtotal

]
=

[
µn λn
ηn βn

] [
µn−1 λn−1
ηn−1 βn−1

]
×

[
µn−2 λn−2
ηn−2 βn−2

]
· · ·

[
µ1 λ1
η1 β1

]
.

Relations betweenpropagatedwaves and entrancewaves in the
‘‘nth’’ segment are:

b+

n = F+

(Ln) · a
+

n , (65)

b−

n =


F−

(Ln)

−1
· a−

n , (66)

in which Ln is the length of segment number n.
Then, one can obtain positive and negative waves under

the right boundary condition in terms of waves under the left
boundary condition.

Satisfying the boundary conditions will yield the character-
istic equation for wave numbers by which the wave numbers
can be found. Thereby, using the relationship between the nat-
ural frequencies and wave number for the beam (Eq. (10)), the
natural frequencies are calculated. On the other hand, by sub-
stituting each natural frequency intowaves in positive and neg-
ative directions, the transverse deflection, slope, moment of
bending and shear force at step number n are calculated as fol-
lows:

yn = a+

In + a−

In + a+

IIn + a−

IIn, (67)

θn =
dyn
dx

= −ika+

In + ika−

In − ika+

IIn + ika−

IIn, (68)

Mn = EI
d2yn
dx2

= EI

−k2a+

In − k2a−

In − k2a+

IIn − k2a−

IIn


, (69)

Qn = EI
d3yn
dx3

= EI

ik3a+

In − ik3a−

In + ik3a+

IIn − ik3a−

IIn


. (70)

By choosing an arbitrary value for a+

0 into Eqs. (67)–(70) and
satisfying the boundary conditions, the mode shapes (yn) are
calculated. Consequently, it becomes easy to calculate themode
shapes.

4. Analytical method

The governing partial differential equation for the free
vibration of non-uniform beam is as follows:

∂2

∂x2

[
EI(X)

∂2w(x,t)

∂x2

]
+ ρA(X)

∂2

∂t2
w(x,t) = 0, (71)
where x is the axial coordinate,w is the transverse deflection, E
is Young’smodulus, ρ is themass density ofmaterial, A(x) is the
cross-sectional area of the beam, I(x) is the moment of inertia
of A(x), and t is the time. If the values of A(x) and I(x) take the
following form:

ρA(ξ) = ρA1ξ
n, EI(x) = EI1(ξ)n+2,

ξ =
x
L1
, (72)

then, the solution of the governing partial differential equation
for free vibration of this beam (Eq. (71)) is given by [17]:

W(ξ) = L−n/2ξ−n/2 [c1Jn(z)+ c2Yn(z)

+ c3In(z)+ c4Kn(z)] . (73)

L1 is the length of the beam extending from the sharp end
(the origin of the axial coordinate x) to the large end. Also,
respectively, A1 and I1 are the cross-sectional area and the
moment of inertia, A(x), at the large end of the beam, while n is
a parameter defining variations of A(x) and I(x) along the length
of the beam. Jn and Yn are nth order Bessel functions of the first
and second kinds, respectively, c1–c4 are constants determined
by the boundary conditions, and finally:

z = 2k


x
L1

1/2

, (74)

k4 = ω2L41


ρA1

EI1


(75)

whereW is the amplitude of deflection,w(x, t), and represents
themode shape of the beam in free vibration. Then, by satisfying
the boundary conditions in Eq. (73) and solving them, the
characteristic equation is obtained and all natural frequencies
are calculated. Finally, using Eq. (73), the mode shapes are
obtained.

5. Results

Results of the first five non-dimensional natural frequencies
(knL) for the transverse vibration of non-uniform beams (n = 1,
L = 1 m, L1 = 2 m) under Free-Clamped (F-C) boundary
conditions are, respectively, found to be 3.2015, 8.0134, 13.409,
18.770 and 24.133 from the analytical (exact)method (Eq. (73)),
the modified wave propagation method with few numbers of
partitions (a novel method in this paper) and F.E.M.

Also, results of the first five mode shapes for the first five
non-dimensional natural frequencies (knL) for the transverse
vibration of non-uniform beams n = 1, L = 1 m and
L1 = 2 m under free-clamped boundary conditions are
given in Figures 7–11. The mode shapes of the modified wave
propagation method (Eq. (67)), the analytical method (Eq. (73))
and F.E.M. are given. The above-mentioned figures show that
the accuracy of the modified wave propagation method (the
method introduced in this paper) is very high.

6. Conclusion

The modified wave propagation method was used to
calculate the natural frequencies and mode shapes for the
lateral vibration of a stepped beam, with the intention of
obtaining the natural frequencies and mode shapes for non-
uniform beams by partitioning them into a collection of
continuous segments with constant cross-sections.
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Figure 7: Mode shape of non-uniform beam for KL = 3.2015 (Free-Clamp).
Figure 8: Mode shape of non-uniform beam for KL = 8.0134 (Free-Clamp).
Figure 9: Mode shape of non-uniform beam for KL = 13.409 (Free-Clamp).
Figure 10: Mode shape of non-uniform beam for KL = 18.77 (Free-Clamp).
Waves in positive and negative directions at the end
of each segment are expressed in terms of the waves at
the entrance of an initial segment. Subsequently, dimensions
of the transmission matrix remain constant if the number
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Figure 11: Mode shape of non-uniform beam for KL = 24.133 (Free-Clamp).
of segments is increased, while in general, in the wave
propagation method, dimensions of the transmission matrix
increase upon increasing the number of segments; this makes
calculation of the characteristic equation and mode shape very
simple. Besides, the method presented in this paper has the
benefit of calculating all natural frequencies and mode shapes,
while approximate methods, such as the weighted residual,
Rayleigh–Ritz and finite difference methods, have their own
shortcomings, such as having only a limited number of natural
frequencies. Also, since each segment has an exact analytical
solution, in contrast to other approximate methods, much
higher accuracy is obtained even with only a few numbers of
partitions.
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