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Abstract

We study exact renormalisation group equations for the 3d Ising universality class. At the Wilson—Fisher fixed point,
symmetric and antisymmetric correction-to-scaling exponents are computed with high accuracy for an optimised cutoff to
leading order in the derivative expansion. Further results are derived for other cutoffs including smooth, sharp and background
field cutoffs. An estimate for higher order corrections is given as well. We establish that the leading antisymmetric corrections
to scaling are strongly subleading compared to the leading symmetric ones.
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1. Introduction The original Ising model has a globd} symmetry.
However, many systems in the Ising universality
class like the liquid—gas and the electro-weak phase

Many physical systems with short range interac- transition do not possess th&, symmetry away
tions and a scalar order parameter display Ising uni- from the critical point. The presence of operators
versal behaviour close to the critical point. Initially in-  odd undeiZ, lead to additional corrections-to-scaling
troduced for the study of magnetic systems, the Ising exponents. In principle, deviations frof» symmetric
model also describes the physics of the liquid—gas scaling are detectable experimentally. Antisymmetric
phase transition, transitions in binary mixtures and in corrections to scaling- L~%° have been revealed in

Coulombic systems [1]. In high energy physics, Ising a Monte Carlo simulation of the electro-weak phase

universal behaviour is expected in various theories in- transition [4]. Previous theoretical studies of anti-

cluding the QCD phase transition with finite quark symmetric corrections to scaling are based onehe
masses [2], the chiral phase transition of QCD [2,3], expansion [5], the scaling field method [6], and the

and the electro-weak phase transition [4]. Wegner—Houghton equation [7].

In this Letter, we study corrections to scaling for the
3d Ising universality class using the exact renormal-

"~ E-mail addresses: daniel.litim@cern.ch (D.F. Litim), isation group, which is based on the Wilsonian idea

Ivergara@lauca.usach.cl (L. Vergara). of successively integrating out momentum modes (see
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[8] for reviews and references therein). This approach potential approximation consists in the ansatz
is implemented through an infra-red cutoff which, 1
/ddx (Uk(<p) + E%wamp)

within a few constraints, can be chosen freely. The [}, =

strengths of the method are its flexibility and its nu-

merical stability. Furthermore, a general optimisation for the effective action. It implies that higher order

procedure is available, enabling a choice of the infra- corrections proportional to the anomalous dimension
red cutoff best suited for the problem at hand [9]. To y of the fields are neglected. For the Ising universality
leading order in a derivative expansion, we employ an class, is of the order of a few percent. Inserting the

optimised cutoff and compute the first six subleading ansatz (2) into the flow equation (1) and evaluating it
corrections-to-scaling exponents with high accuracy. for constant fields leads to the flow for the effective

We also obtain results for smooth, sharp and back- potential U;. We introduce dimensionless variables

2

ground field cutoffs, and estimate higher order correc-
tions.

2. Renormalisation group and critical exponents

Renormalisation group methods have been usedu(¢) = Z EWP”-

very successfully in the computation of universal ob-

u(@) = Ux/k? and ¢ = pk'~/2, Then, finding a
fixed point amounts to solving;u = 0. To that
end we employ a polynomial truncation of the fixed
point potential, retaining vertex functiogg' up to a
maximum numbetrync,

Ntrunc

3

n=1"""

servables at second order phase transitions. A par-The potential has been normalised:a& = 0) = 0.

ticularly useful approach is the exact renormalisation
group (ERG), based on the Wilsonian idea of inte-
grating out momentum modes within a path integral
representation of quantum field theory [8]. In its mod-
ern form, the ERG flow for an effective actidn, for
bosonic fieldsy is given by the simple one-loop ex-
pression

1

1 _
& Ixlpl =5 Tr(I® + R)"o/R. @)

Here,r = Ink is the logarithmic scale parameter, the

trace denotes a momentum trace and a sum over in-¢ = —¢:

dices, " P[¢1(p, q) = 8°T"/5¢(p)sp(q), andR is an
infra-red momentum cutoff at the momentum sdale
The flow (1) interpolates between an initial (micro-
scopic) action in the ultra-violet and the full quantum
effective action in the infra-red. At every momentum
scalek, (1) receives its main contributions for mo-
menta aboutp? ~ k2. The regulator can be chosen
freely and allows for an optimisation of the flow within
general approximations [9]. The optimisation entails
improved convergence and stability properties of the
flow. In combination with the numerical stability of
the flow, it provides the basis for reliable predictions
based on systematic approximations to (1). An im-

The ansatz (3) leads tayyunc ordinary differential
equationsd;t; = B;. In three Euclidean dimensions,
the flow equation exhibits the nontrivial Wilson—
Fisher fixed point. # 0. Universal critical exponents
and corrections-to-scaling exponents are obtained as
the eigenvalues of the stability matrix at criticality
M;; = 0Bi/dtjl«. For convenience, we introduce the
set of¢-even couplingg., = 12, and¢-odd couplings

An = T2,_1. Under reflection in field space the cou-
plings and theiB-functions behave as

{ (A, A) = (b, =),
(B, B3) = (Bi, —B3).

The scaling solution is symmetric under— —a¢.
Hence alkp-odd couplings., vanish at the fixed point.
The computation of critical exponents is simplified by
observing thap; (1, 1) = —p; (A, —2) for all A. This
follows from (3) and (4). In particularg; vanishes
identically at » = 0, where all derivatives ofg;
w.rt. the symmetric couplings vanish at the fixed
point. Therefore, the stability matrid at criticality
simplifies and becomes equivalent to the matrix

(5 ¢)

(4)

®)

portant nonperturbative approximation scheme is the with A = 8, /9|, B =8B, /dx|x andC = 3B; /0Al..

derivative expansion [10]. To leading order, the local

In consequence, the eigenvaluesifreduce to those
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of the submatriced andC. The matrixA carries the the fixed point). Hence, thg-even eigenvalues remain
information about the critical exponemtind the sym- unchanged, as is clearly seen in Fig. 1. The numerical

metric corrections to scaling, while the matidxcon- values for thep-even eigenvalues are identical to those
tains the information about antisymmetric corrections which are found in a polynomial expansion jn=
to scaling. $2)2.

Next, we turn to thep-odd corrections to scaling
(Figs. 2—-4). We have computed the eigenvalues of the

3. Resaults

6

In this section, we present our results for the
universal eigenvalues of the stability matrix. The fixed
point is determined in truncations up iQunc = 40. 4
The optimised regulatoRep: = (k% — ¢2)0(k? — ¢?)
is employed to improve the convergence and stability
of the flow [9,11,12]. The stability matrix is evaluated
with two different methods: an expansion in powers 2
of the field about vanishing field, and an expansion

W
in Legendre polynomials. The latter case involves an ."“u“.mmm

integration in field space.

Wa

Our numerical results are given in Tables 1 and 2, 0
and in Figs. 1-4. First, we discuss our results for _y—l
the ¢-even corrections to scaling. In Fig. 1, the B
three leading eigenvalues of are displayedy—1, )

w and wy. Notice that the eigenvalues are identical § OIr 15 2 2 0 3 4

for truncations(n,n + 1), if n is even. The reason
for this is simple: increasing the truncation by a
¢-odd coupling does neither change the dimension Fig. 1. The exponents, » andw; from a polynomial truncation to
of the matrix A, nor the numerical values of the ©rderntuncaboutvanishing field.

fixed couplings (becausg¢-odd couplings vanish at

Ntrunc

Table 1 7 a)
¢-even andp-odd eigenvaluesRopt, ntrunc = 40) 1
¢-even ¢-odd 6
Yh -25
v 0.6495 Yshift -05 5
w1 0.655 1 1.88
w2 3.18 w2 45
w3 5.9 3 7 4
3
Table 2
¢-even andp-odd eigenvaluesRopt, ntrunc = 22, ¢max = 0.46) 5
¢-even ¢-odd
Yh -25
v 0.649562 Yshift -05 5 10 15 20 25 30 35 40
w1 0.6557 @1 1.886 n
3] 3.180 w2 4524 trunc
w3 5912 @3 7.33

Fig. 2. The exponenb; (see Fig. 1).
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Fig. 4. The exponenbs (see Fig. 1).

matrix C for niync Up to ngunc = 40. We find two
eigenvaluey, = —5/2 and ghit = —1/2, related to
redundant operators [6]. All other eigenvalues are pos-
itive. We denote them a&,. The leading non-trivial
¢-odd correction-to-scaling exponent as a function

of the truncation is displayed in Fig. 2. (In the litera-
ture, w1 is sometimes denoted as, or ws.) Our re-
sults forw, andws are given in Figs. 3 and 4, respec-
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tively. Notice that the pattern of the results, with in-
creasing truncation, is similar to the pattern found in
theg-even sector. The results for two subsequent trun-
cations(n, n + 1) for n odd are close to each other for
sufficiently large truncation. The reason for this is the
following: increasing the truncation bygeven cou-
pling does not change the dimension of the maffix
However, it does change the numerical value of the
fixed point, and hence the eigenvalue<ofWith in-
creasing truncation, the numerical change within the
¢-even couplings at the fixed point is very small and
eventually, the eigenvalues @f become insensitive
to the addition of ap-even coupling. This is nicely
observed in the results presented in Figs. 2-4. Com-
paring the symmetric with the antisymmetric correc-
tions to scaling, the general pattern we find is that
O<wi<wi<--<wy <@y <---

We have also computed the critical exponents by
using the approach of [7]. Expanding the scaling po-
tential and the eigenperturbations in terms of orthogo-
nal polynomials (Legendre polynomials) implies that
the matrix elements of (5) involve an integration in
field spacep € [—¢max Pmax]- The weak dependence
oNn ¢max is fixed by requiring that the-even eigenval-
ues agree to high accuracy with the known values ob-
tained in [12] using an expansion jn= ¢2/2 about
the potential minimump = pg. This procedure im-
proves the numerical convergence. Our results for the
eigenvalues are given in Table 2. They are consistent
with and have a higher accuracy than those given in
Table 1.

Next we discuss our results based on other regu-
larisations including the power law cutoff, the sharp
cutoff and a background field cutoff. Varying the mo-
mentum dependence of the regulakdirom “smooth”
to “sharp” allows for an estimate of higher order cor-
rections due to operators neglected in the present ap-
proximation, e.g., [13]. We have computed the
even andp-odd eigenvalues for a smooth power-like
regulator Rquariic = k2 - (¢*/k%), for the sharp cutoff
Rsharp= lim, o0 ak?6 (k? — ¢?), and for a background
field cutoff Rpg. Results are summarised in Fig. 5 and
Table 3.

The power-law cutoffRquartic iS optimised in the
sense of [9]. We find that the flow based ®quartic
has similar stability and convergence properties as
the flow with Ropt, €.9., Fig. 5. Also, the numerical
results as given in Table 3 are within 5% or less
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10 15 20 25 30

Ntrunc

Fig. 5. The exponenb, from a polynomial expansion up to order
ntrunc, @and in comparison for the sharp, the background field (bg),
the optimised (opt) and the quartic cutoff (see text).

to each other. The sharp cutoff does not lead to an

optimised flow [9]. It displays instabilities within a
local polynomial expansion about vanishing field [12,
14]. This is confirmed in our analysis. In Fig. 5, the
¢-odd eigenvaluev; is displayed up to a truncation
nyrunc = 30. The local field expansion based Bgharp
oscillates in the eight-fold patteg- + + + — — ——)
about its mean value, reminiscent of the four-fold
pattern in an expansion in? [12]. The expansion
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v is ~ 8% larger than the value foRopt [11], and

~ 10% larger than the physical value. These properties
indicate that quantitative results from the sharp cutoff
flow within a given truncation, although qualitatively
correct, are less reliable than those by optimised
cutoffs.

The instability in the stability matrix of the sharp
cutoff flow is removed by expanding the fixed point
potential and the eigenperturbations in terms of Legen-
dre polynomials. For the eigenvalues, we adibghx
as described above to improve the numerical conver-
gence. Our results are given in Table 3, and by the
dashed line in Fig. 5. In the-even sector, our re-
sults agree to all significant digits with those by Mor-
ris (quartic cutoff) [15], Comellas and Travesset (sharp
cutoff) [16] and Litim (optimised cutoff) [12]. This
provides a nontrivial consistency check, because the
numerical methods employed in [15,16], in [12], and
here, are all different. The main new results concern
the eigenvalues in theé-odd sector, where we also
confirm the first two eigenvalues by Tsypin (sharp cut-
off) [7] (see also [17]).

Now we proceed with the background field flow,
where plain momenta? in the regulator are replaced
by I'®[¢], the full inverse propagator evaluated
at some background fielp [18] (see also [19]).
Identifying the background field with the physical
mean leads to a partial diagonalisation, which should
further stabilise the flow. Background field flows
are closely related to the proper-time renormalisation
group of Liao [20], to which they reduce once an

fails to converge at the present order. The asymptotic additional flow term proportional ta I"® is dropped.

value fora; is indicated by the dashed line. Moreover,
the eigenvalues fotyync = 16,17,24 and 25 possess
a small imaginary part, which is not displayed in

Implicit to this approach is that differences between
fluctuation and background field are neglected—an
approximation, which in the present theory becomes

Fig. 5. These findings are a reflection of an intrinsic €Xact in the infra-red limit. Hence, as detailed in

instability of the sharp cutoff flow. Furthermore, the

[18], we expect this approximation to be viable in the

sharp cutoff value for the leading critical exponent Vicinity of a critical point.

Table 3

¢-even andg-odd eigenvalues for the sharp, quartic, optimised and background field cutoff, ¢sigg= 0.43,0.45, 046, and 046,

respectively (see text)

¢-even Rsharp Rquartic Ropt Rpg ¢-odd Rsharp Rquartic Ropt Rpg
v 0.6895 06604 0649562 0625979
w1 0.5952 06285 06557 0762204 1 1.691 1812 1886 2163
wp 2.838 3048 3180 36845 @2 3.998 432 4524 5313
w3 518 563 5912 7038 @3 6.38 696 7.33 885
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Here, we use the flowy, I}, = Trexp—l“k(z)/k2 For the optimised flow, the leading symmetric
to leading order in a derivative expansion. It is a and antisymmetric correction-to-scaling exponents are
background field flow in the proper-time approxima- « = 0.6557 andw4 = 1.886. For different regulari-
tion with regulatorRpg given by (13), (14) of [18]. sations ranging from sharp to optimised cutoffs and
Amongst the proper-time flows, it has best stability including (excluding) the background field flow, the
properties [21] (see also [11]). This is reflected by exponents vary betweesn ~ 0.60—Q076 (0.60—0.66)
the very fast convergence af; with the truncation andwy ~ 1.7-22 (1.7-1.9). Higher order corrections
(Fig. 1). We also stress that the first two eigenvalues in due to a nonvanishing anomalous dimension lead to
the ¢-even sector, which agree with earlier results in = 0.8, and similar corrections are expected §of.
[21,22], are very close to the physical values. The fur- Expressed in terms of the exponef = wsv, our
ther subleading corrections-to-scaling exponents areresults areA, ~ 1.22 for the optimisedA, ~ 1.2
increasingly larger than the values ®gpt. This trend for the quartic,A4 ~ 1.17 for the sharp andiy ~
is indicative for the potential effect of higher order cor- 1.35 for the background field cutoff. This compares
rections. well with A4 ~ 1.3 which is often assumed in the

Finally we comment on the Polchinski renormal- analysis of experimental data, e.g., [26]. The lead-
isation group [23]. It is related to the flow (1) by a ing symmetric corrections to scaling are= wv ~
Legendre transform and additional field rescalings. In 0.42—-048, increasing towarda ~ 0.52 once anom-
consequence, both methods have inequivalent deriv-alous dimensions are taken into account. This cutoff
ative expansions. To leading order, the Polchinski dependence indicates the expected size of higher or-
flow is independent of the regularisation [24], in con- der effects. Our results fas4 are consistent with the
tradistinction to the present approach, e.g., [12]. For estimatews > 1.5 based on Padé resummation of the
Ropt, critical exponents in thep-even sector agree e-expansion [5], and withws =~ 2.4 from the scal-
to high precision with those from the Polchinski ing field method [6]. We notice that all sharp cutoff
flow. The numerical value for theé-odd eigenvalue  eigenvalues are systematically smaller than those from
@1 given in Table 2 forRqp, also agrees with pre-  any other cutoff. This reflects, we believe, the noto-
liminary results from the Polchinski flow [25]. If  riously poor convergence behaviour of sharp cutoff
these findings persist, they confirm the deeper link flows.
between the two methods even for theodd sec- In conclusion, we have established that the leading
tor. antisymmetric corrections to scaling are consistently
suppressed compared to the leading symmetric ones.
Within the errors, the exponenb, is more than
twice as big asw. Hence, the scaling behaviour
~ L795 as seen in a Monte Carlo simulation of
the electro-weak theory clearly dominates over both

We have studied symmetric and antisymmetric cor- the leading symmetricv L=“ and antisymmetric
rections to scaling at criticality for systems belonging ~ L~“4 corrections to scaling and therefore cannot be
to the 3d Ising universality class. The first six sub- explained with the exponeaty,.
leading universal corrections-to-scaling exponents are
obtained from an exact renormalisation group. Best
results are achieved for optimised flows, which have
enhanced convergence and stability properties. In ad- Acknowledgements
dition, we have assessed the cutoff dependence for
smooth, sharp and a background field cutoff. This
study also served as an indicator for higher order ef- L.V. would like to thank C. Bervillier for e-
fects. Results from the standard and the backgroundmail correspondence. D.F.L. thanks the University
field flows have to be seen on slightly different foot- of Santiago de Chile for hospitality. This work was
ings due to qualitative differences in the approxima- supported in part by Fondecyt-CHILE Nos. 1020061
tions. and 7020061.

4. Discussion and conclusion
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