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Abstract

We study exact renormalisation group equations for the 3d Ising universality class. At the Wilson–Fisher fixed
symmetric and antisymmetric correction-to-scaling exponents are computed with high accuracy for an optimised
leading order in the derivative expansion. Further results are derived for other cutoffs including smooth, sharp and ba
field cutoffs. An estimate for higher order corrections is given as well. We establish that the leading antisymmetric cor
to scaling are strongly subleading compared to the leading symmetric ones.
 2003 Elsevier B.V.
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1. Introduction

Many physical systems with short range inter
tions and a scalar order parameter display Ising
versal behaviour close to the critical point. Initially i
troduced for the study of magnetic systems, the Is
model also describes the physics of the liquid–
phase transition, transitions in binary mixtures and
Coulombic systems [1]. In high energy physics, Is
universal behaviour is expected in various theories
cluding the QCD phase transition with finite qua
masses [2], the chiral phase transition of QCD [2
and the electro-weak phase transition [4].
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The original Ising model has a globalZ2 symmetry.
However, many systems in the Ising universa
class like the liquid–gas and the electro-weak ph
transition do not possess theZ2 symmetry away
from the critical point. The presence of operat
odd underZ2 lead to additional corrections-to-scalin
exponents. In principle, deviations fromZ2 symmetric
scaling are detectable experimentally. Antisymme
corrections to scaling∼ L−0.5 have been revealed i
a Monte Carlo simulation of the electro-weak pha
transition [4]. Previous theoretical studies of an
symmetric corrections to scaling are based on theε-
expansion [5], the scaling field method [6], and t
Wegner–Houghton equation [7].

In this Letter, we study corrections to scaling for t
3d Ising universality class using the exact renorm
isation group, which is based on the Wilsonian id
of successively integrating out momentum modes (
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[8] for reviews and references therein). This appro
is implemented through an infra-red cutoff whic
within a few constraints, can be chosen freely. T
strengths of the method are its flexibility and its n
merical stability. Furthermore, a general optimisat
procedure is available, enabling a choice of the in
red cutoff best suited for the problem at hand [9].
leading order in a derivative expansion, we employ
optimised cutoff and compute the first six sublead
corrections-to-scaling exponents with high accura
We also obtain results for smooth, sharp and ba
ground field cutoffs, and estimate higher order corr
tions.

2. Renormalisation group and critical exponents

Renormalisation group methods have been u
very successfully in the computation of universal o
servables at second order phase transitions. A
ticularly useful approach is the exact renormalisat
group (ERG), based on the Wilsonian idea of in
grating out momentum modes within a path integ
representation of quantum field theory [8]. In its mo
ern form, the ERG flow for an effective actionΓk for
bosonic fieldsϕ is given by the simple one-loop ex
pression

(1)∂tΓk[ϕ] = 1

2
Tr

(
Γ
(2)
k +R)−1

∂tR.

Here, t ≡ lnk is the logarithmic scale parameter, t
trace denotes a momentum trace and a sum ove
dices,Γ (2)[ϕ](p, q)≡ δ2Γ/δϕ(p)δϕ(q), andR is an
infra-red momentum cutoff at the momentum scalek.
The flow (1) interpolates between an initial (micr
scopic) action in the ultra-violet and the full quantu
effective action in the infra-red. At every momentu
scalek, (1) receives its main contributions for m
menta aboutp2 ≈ k2. The regulator can be chose
freely and allows for an optimisation of the flow with
general approximations [9]. The optimisation enta
improved convergence and stability properties of
flow. In combination with the numerical stability o
the flow, it provides the basis for reliable predictio
based on systematic approximations to (1). An
portant nonperturbative approximation scheme is
derivative expansion [10]. To leading order, the lo
potential approximation consists in the ansatz

(2)Γk =
∫
ddx

(
Uk(ϕ)+ 1

2
∂µϕ∂µϕ

)

for the effective action. It implies that higher ord
corrections proportional to the anomalous dimens
η of the fields are neglected. For the Ising universa
class,η is of the order of a few percent. Inserting t
ansatz (2) into the flow equation (1) and evaluatin
for constant fields leads to the flow for the effect
potentialUk . We introduce dimensionless variabl
u(φ) = Uk/k

d and φ = ϕk1−d/2. Then, finding a
fixed point amounts to solving∂tu = 0. To that
end we employ a polynomial truncation of the fix
point potential, retaining vertex functionsφn up to a
maximum numberntrunc,

(3)u(φ)=
ntrunc∑
n=1

1

n!τnφ
n.

The potential has been normalised asu(φ = 0) = 0.
The ansatz (3) leads tontrunc ordinary differential
equations∂tτi ≡ βi . In three Euclidean dimension
the flow equation exhibits the nontrivial Wilson
Fisher fixed pointu∗ �= 0. Universal critical exponent
and corrections-to-scaling exponents are obtaine
the eigenvalues of the stability matrix at criticali
Mij = ∂βi/∂τj |∗. For convenience, we introduce th
set ofφ-even couplingsλn = τ2n andφ-odd couplings
λ̄n = τ2n−1. Under reflection in field space the co
plings and theirβ-functions behave as

(4)φ→ −φ:
{
(λ, λ̄)→ (λ,−λ̄),
(βλ,βλ̄)→ (βλ,−βλ̄).

The scaling solution is symmetric underφ → −φ.
Hence allφ-odd couplings̄λ∗ vanish at the fixed point
The computation of critical exponents is simplified
observing thatβλ̄(λ, λ̄) = −βλ̄(λ,−λ̄) for all λ. This
follows from (3) and (4). In particular,βλ̄ vanishes
identically at λ̄ = 0, where all derivatives ofβλ̄
w.r.t. the symmetric couplings vanish at the fix
point. Therefore, the stability matrixM at criticality
simplifies and becomes equivalent to the matrix

(5)

(
A B

0 C

)

withA≡ ∂βλ/∂λ|∗,B ≡ ∂βλ/∂λ̄|∗ andC ≡ ∂βλ̄/∂λ̄|∗.
In consequence, the eigenvalues ofM reduce to those



D.F. Litim, L. Vergara / Physics Letters B 581 (2004) 263–269 265

ns

he
ed

ility
d
rs

ion
an

2,
for
e

al
n
a
ion
e
t

in
rical
se

g
the
of the submatricesA andC. The matrixA carries the
information about the critical exponentν and the sym-
metric corrections to scaling, while the matrixC con-
tains the information about antisymmetric correctio
to scaling.

3. Results

In this section, we present our results for t
universal eigenvalues of the stability matrix. The fix
point is determined in truncations up tontrunc = 40.
The optimised regulatorRopt = (k2 − q2)θ(k2 − q2)

is employed to improve the convergence and stab
of the flow [9,11,12]. The stability matrix is evaluate
with two different methods: an expansion in powe
of the field about vanishing field, and an expans
in Legendre polynomials. The latter case involves
integration in field space.

Our numerical results are given in Tables 1 and
and in Figs. 1–4. First, we discuss our results
the φ-even corrections to scaling. In Fig. 1, th
three leading eigenvalues ofA are displayed,ν−1,
ω and ω2. Notice that the eigenvalues are identic
for truncations(n,n + 1), if n is even. The reaso
for this is simple: increasing the truncation by
φ-odd coupling does neither change the dimens
of the matrix A, nor the numerical values of th
fixed couplings (becauseφ-odd couplings vanish a

Table 1
φ-even andφ-odd eigenvalues (Ropt, ntrunc= 40)

φ-even φ-odd

yh −2.5
ν 0.6495 yshift −0.5
ω1 0.655 ω̄1 1.88
ω2 3.18 ω̄2 4.5
ω3 5.9 ω̄3 7

Table 2
φ-even andφ-odd eigenvalues (Ropt, ntrunc= 22,φmax= 0.46)

φ-even φ-odd

yh −2.5
ν 0.649562 yshift −0.5
ω1 0.6557 ω̄1 1.886
ω2 3.180 ω̄2 4.524
ω3 5.912 ω̄3 7.33
the fixed point). Hence, theφ-even eigenvalues rema
unchanged, as is clearly seen in Fig. 1. The nume
values for theφ-even eigenvalues are identical to tho
which are found in a polynomial expansion inρ =
φ2/2.

Next, we turn to theφ-odd corrections to scalin
(Figs. 2–4). We have computed the eigenvalues of

Fig. 1. The exponentsν, ω andω2 from a polynomial truncation to
orderntrunc about vanishing field.

Fig. 2. The exponent̄ω1 (see Fig. 1).
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Fig. 3. The exponent̄ω2 (see Fig. 1).

Fig. 4. The exponent̄ω3 (see Fig. 1).

matrix C for ntrunc up to ntrunc = 40. We find two
eigenvaluesyh = −5/2 and yshift = −1/2, related to
redundant operators [6]. All other eigenvalues are p
itive. We denote them as̄ωn. The leading non-trivia
φ-odd correction-to-scaling exponentω̄1 as a function
of the truncation is displayed in Fig. 2. (In the liter
ture, ω̄1 is sometimes denoted asωA or ω5.) Our re-
sults forω̄2 andω̄3 are given in Figs. 3 and 4, respe
tively. Notice that the pattern of the results, with i
creasing truncation, is similar to the pattern found
theφ-even sector. The results for two subsequent tr
cations(n,n+ 1) for n odd are close to each other f
sufficiently large truncation. The reason for this is
following: increasing the truncation by aφ-even cou-
pling does not change the dimension of the matrixC.
However, it does change the numerical value of
fixed point, and hence the eigenvalues ofC. With in-
creasing truncation, the numerical change within
φ-even couplings at the fixed point is very small a
eventually, the eigenvalues ofC become insensitive
to the addition of aφ-even coupling. This is nicely
observed in the results presented in Figs. 2–4. C
paring the symmetric with the antisymmetric corre
tions to scaling, the general pattern we find is t
0<ω1< ω̄1< · · ·<ωn < ω̄n < · · ·.

We have also computed the critical exponents
using the approach of [7]. Expanding the scaling
tential and the eigenperturbations in terms of ortho
nal polynomials (Legendre polynomials) implies th
the matrix elements of (5) involve an integration
field spaceφ ∈ [−φmax, φmax]. The weak dependenc
onφmax is fixed by requiring that theφ-even eigenval-
ues agree to high accuracy with the known values
tained in [12] using an expansion inρ = φ2/2 about
the potential minimumρ = ρ0. This procedure im-
proves the numerical convergence. Our results for
eigenvalues are given in Table 2. They are consis
with and have a higher accuracy than those give
Table 1.

Next we discuss our results based on other re
larisations including the power law cutoff, the sha
cutoff and a background field cutoff. Varying the m
mentum dependence of the regulatorR from “smooth”
to “sharp” allows for an estimate of higher order co
rections due to operators neglected in the presen
proximation, e.g., [13]. We have computed theφ-
even andφ-odd eigenvalues for a smooth power-li
regulatorRquartic= k2 · (q4/k4), for the sharp cutof
Rsharp= lima→∞ ak2θ(k2−q2), and for a backgroun
field cutoffRbg. Results are summarised in Fig. 5 a
Table 3.

The power-law cutoffRquartic is optimised in the
sense of [9]. We find that the flow based onRquartic
has similar stability and convergence properties
the flow with Ropt, e.g., Fig. 5. Also, the numerica
results as given in Table 3 are within 5% or le



D.F. Litim, L. Vergara / Physics Letters B 581 (2004) 263–269 267

r
bg),

an
a
2,

he
n

ld

otic
er,
s
in
sic
e
nt

ties
toff
ly
sed

p
int
en-

ver-
the
-
r-

arp

the
nd
ern
o
ut-

w,
d

ed
.
al
uld
s

tion
an

en
an
es
in
he
Fig. 5. The exponent̄ω1 from a polynomial expansion up to orde
ntrunc, and in comparison for the sharp, the background field (
the optimised (opt) and the quartic cutoff (see text).

to each other. The sharp cutoff does not lead to
optimised flow [9]. It displays instabilities within
local polynomial expansion about vanishing field [1
14]. This is confirmed in our analysis. In Fig. 5, t
φ-odd eigenvaluēω1 is displayed up to a truncatio
ntrunc = 30. The local field expansion based onRsharp
oscillates in the eight-fold pattern(+ + + + − − −−)
about its mean value, reminiscent of the four-fo
pattern in an expansion inφ2 [12]. The expansion
fails to converge at the present order. The asympt
value forω̄1 is indicated by the dashed line. Moreov
the eigenvalues forntrunc = 16,17,24 and 25 posses
a small imaginary part, which is not displayed
Fig. 5. These findings are a reflection of an intrin
instability of the sharp cutoff flow. Furthermore, th
sharp cutoff value for the leading critical expone
ν is ∼ 8% larger than the value forRopt [11], and
∼ 10% larger than the physical value. These proper
indicate that quantitative results from the sharp cu
flow within a given truncation, although qualitative
correct, are less reliable than those by optimi
cutoffs.

The instability in the stability matrix of the shar
cutoff flow is removed by expanding the fixed po
potential and the eigenperturbations in terms of Leg
dre polynomials. For the eigenvalues, we adjustφmax
as described above to improve the numerical con
gence. Our results are given in Table 3, and by
dashed line in Fig. 5. In theφ-even sector, our re
sults agree to all significant digits with those by Mo
ris (quartic cutoff) [15], Comellas and Travesset (sh
cutoff) [16] and Litim (optimised cutoff) [12]. This
provides a nontrivial consistency check, because
numerical methods employed in [15,16], in [12], a
here, are all different. The main new results conc
the eigenvalues in theφ-odd sector, where we als
confirm the first two eigenvalues by Tsypin (sharp c
off) [7] (see also [17]).

Now we proceed with the background field flo
where plain momentaq2 in the regulator are replace
by Γ (2)[φ̄], the full inverse propagator evaluat
at some background field̄φ [18] (see also [19])
Identifying the background field with the physic
mean leads to a partial diagonalisation, which sho
further stabilise the flow. Background field flow
are closely related to the proper-time renormalisa
group of Liao [20], to which they reduce once
additional flow term proportional to∂tΓ (2) is dropped.
Implicit to this approach is that differences betwe
fluctuation and background field are neglected—
approximation, which in the present theory becom
exact in the infra-red limit. Hence, as detailed
[18], we expect this approximation to be viable in t
vicinity of a critical point.
Table 3
φ-even andφ-odd eigenvalues for the sharp, quartic, optimised and background field cutoff, usingφmax = 0.43,0.45, 0.46, and 0.46,
respectively (see text)

φ-even Rsharp Rquartic Ropt Rbg φ-odd Rsharp Rquartic Ropt Rbg

ν 0.6895 0.6604 0.649562 0.625979
ω1 0.5952 0.6285 0.6557 0.762204 ω̄1 1.691 1.812 1.886 2.163
ω2 2.838 3.048 3.180 3.6845 ω̄2 3.998 4.32 4.524 5.313
ω3 5.18 5.63 5.912 7.038 ω̄3 6.38 6.96 7.33 8.85
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Here, we use the flow∂tΓk = Trexp−Γ (2)k /k2

to leading order in a derivative expansion. It is
background field flow in the proper-time approxim
tion with regulatorRbg given by (13), (14) of [18].
Amongst the proper-time flows, it has best stabi
properties [21] (see also [11]). This is reflected
the very fast convergence of̄ω1 with the truncation
(Fig. 1). We also stress that the first two eigenvalue
theφ-even sector, which agree with earlier results
[21,22], are very close to the physical values. The
ther subleading corrections-to-scaling exponents
increasingly larger than the values forRopt. This trend
is indicative for the potential effect of higher order co
rections.

Finally we comment on the Polchinski renorm
isation group [23]. It is related to the flow (1) by
Legendre transform and additional field rescalings
consequence, both methods have inequivalent d
ative expansions. To leading order, the Polchin
flow is independent of the regularisation [24], in co
tradistinction to the present approach, e.g., [12].
Ropt, critical exponents in theφ-even sector agre
to high precision with those from the Polchins
flow. The numerical value for theφ-odd eigenvalue
ω̄1 given in Table 2 forRopt, also agrees with pre
liminary results from the Polchinski flow [25]. I
these findings persist, they confirm the deeper
between the two methods even for theφ-odd sec-
tor.

4. Discussion and conclusion

We have studied symmetric and antisymmetric c
rections to scaling at criticality for systems belongi
to the 3d Ising universality class. The first six su
leading universal corrections-to-scaling exponents
obtained from an exact renormalisation group. B
results are achieved for optimised flows, which ha
enhanced convergence and stability properties. In
dition, we have assessed the cutoff dependence
smooth, sharp and a background field cutoff. T
study also served as an indicator for higher order
fects. Results from the standard and the backgro
field flows have to be seen on slightly different foo
ings due to qualitative differences in the approxim
tions.
For the optimised flow, the leading symmet
and antisymmetric correction-to-scaling exponents
ω = 0.6557 andωA = 1.886. For different regulari
sations ranging from sharp to optimised cutoffs a
including (excluding) the background field flow, th
exponents vary betweenω ≈ 0.60–0.76 (0.60–0.66)
andωA ≈ 1.7–2.2 (1.7–1.9). Higher order correction
due to a nonvanishing anomalous dimension lea
ω ≈ 0.8, and similar corrections are expected forωA.
Expressed in terms of the exponent∆A = ωAν, our
results are∆A ≈ 1.22 for the optimised,∆A ≈ 1.2
for the quartic,∆A ≈ 1.17 for the sharp and∆A ≈
1.35 for the background field cutoff. This compar
well with ∆A ≈ 1.3 which is often assumed in th
analysis of experimental data, e.g., [26]. The le
ing symmetric corrections to scaling are∆ = ων ≈
0.42–0.48, increasing towards∆ ≈ 0.52 once anom
alous dimensions are taken into account. This cu
dependence indicates the expected size of highe
der effects. Our results forωA are consistent with th
estimateωA > 1.5 based on Padé resummation of
ε-expansion [5], and withωA ≈ 2.4 from the scal-
ing field method [6]. We notice that all sharp cuto
eigenvalues are systematically smaller than those f
any other cutoff. This reflects, we believe, the no
riously poor convergence behaviour of sharp cu
flows.

In conclusion, we have established that the lead
antisymmetric corrections to scaling are consiste
suppressed compared to the leading symmetric o
Within the errors, the exponentωA is more than
twice as big asω. Hence, the scaling behavio
∼ L−0.5 as seen in a Monte Carlo simulation
the electro-weak theory clearly dominates over b
the leading symmetric∼ L−ω and antisymmetric
∼ L−ωA corrections to scaling and therefore canno
explained with the exponentωA.
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