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Abstract p15INK4b functions as a tumor suppressor and impli-
cated in cellular senescence. Here, we show that the Oct-1 bind-
ing site in the human p15INK4b gene promoter functions as a
silencer. Oct-1 specifically interacts with this binding site
in vitro and in vivo and SMRT and HDAC 1 are present in
the p15INK4b proximal promoter region. Moreover, mouse em-
bryo fibroblasts (MEFs) lacking Oct-1 have shown significantly
increased levels of p15INK4b protein compared to their normal
counterparts. Treatment with a histone deacetylase (HDAC)
inhibitor has activated the expression of p15INK4b in wild-type
MEFs but has no effect in MEFs lacking Oct-1, suggesting that
Oct-1 represses p15INK4b gene expression in an HDAC-depen-
dent manner. Finally, we show that the expression of Oct-1 pro-
tein significantly decreases, whereas p15INK4b protein
significantly increases with the cellular aging process. Taken to-
gether, these results suggest that Oct-1 is an important tran-
scriptional repressor for p15INK4b gene and the transcriptional
repression of the p15INK4b gene by Oct-1 may be one of the reg-
ulatory mechanisms of cellular senescence.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The p15INK4b protein is one of the cyclin-dependent kinase

(CDK) [1] inhibitors called INK4 family proteins, which bind

directly to CDK4/6 and are specific inhibitors of the cyclin D-

dependent kinases [2,3], with the result that p15INK4b arrests

cells in the Gl phase of the cell cycle. Furthermore, p15INK4b

functions as a tumor suppressor gene [4–8]. p15INK4b defi-

ciency enhances the susceptibility to retro virus-induced acute

myeloid leukemia (AML) in mice [7,8] and p15INK4b is inacti-

vated with a high frequency in hematopoietic neoplasms in hu-

mans [5]. A high proportion of T-cell childhood acute

lymphoblastic leukaemias have deletions of p15INK4b [6]. On

the other hand, the expression of p15INK4b increases in several

models of cellular senescence [6,9,10]. Overexpression of

p15INK4b induces replicative senescence, and inhibits telome-
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rase activity [11], suggesting that p15INK4b is involved in cellu-

lar senescence.

We previously cloned the 5 0-flanking region of the human

p15INK4b gene [12]. In this study, we performed functional

analysis of the promoter region, and found that the Oct-1

binding site in the human p15INK4b gene promoter functions

as a silencer in a histone deacetylase (HDAC)-dependent man-

ner. Several endogenous genes thought to be regulated by

Oct-1 were reported not to be altered in Oct-1-deficient mouse

embryo fibroblasts (MEFs)[13,14]. However, interestingly,

MEFs lacking Oct-1 have shown significantly increased levels

of p15INK4b protein compared to their normal counterparts.

Finally, we show that expression of Oct-1 protein significantly

decreases, whereas protein significantly increases with the cel-

lular aging process. Taken together, these results suggest that

Oct-1 is an important transcriptional repressor of the p15INK4b

gene, and raise a possibility that the transcriptional repression

of the p15INK4b gene by Oct-1 may be a new regulatory mech-

anism of cellular senescence.
2. Materials and methods

2.1. Plasmid constructions
The construction of the human p15INK4b gene promoter-luciferase

fusion plasmid, p15 (�7787/�1), has been described previously [12].
A DNA fragment of p15 (�559/�1) was generated by PCR using
p15 (�7787/�1) as a template, and it was inserted between the KpnI
site and NheI site in front of the luciferase reporter gene in pGVB2.
The 3 0-deletion mutants of p15 (�559/�1), such as p15 (�559/�80),
p15 (�559/�143), p15 (�559/�196) and p15 (�559/�210), were also
generated using PCR. These sense primer and antisense primers used
are listed as below. p15 (�559) sense:

5 0-GGTACCGCAGCCAGCATTCCTGGCGG-3 0; p15 (�1) anti-
sense: 5 0-GCTAGCTCCGCAGCCCCCAGACGCGC-3 0; p15 (�80)
antisense: 5 0-GCTAGCACGCTGCTCCGGCGCACTCT-3 0; p15
(�143) antisense: 5 0-GCTAGCCGTCCTTCTGCGGCTTGGGG-30;
p15 (�196) antisense: 5 0-GCTAGCTCCGGGCTTTTCCTGGC-
GCT-3 0; p15 (�210) antisense: 5 0-GCTAGCGGCGCTCAAGAAC-
CAGCGGG-3 0. Reporter plasmids with mutations in the Oct-1 bind-
ing site at �137/�125 were generated by site-directed mutagenesis
using a Quick Change XL Site-Directed Mutagenesis Kit (Stratagene,
CA, USA). The top strand of the oligonucleotides was as follows, p15
(�559/�80) Oct-1 mutant andp15 (�559/�1) Oct-1 mutant: 5 0-
GGACGACGGGAGGGGGGTGAAGCTGAGCCCAG-3 0. The
generated constructs were confirmed by sequencing.
2.2. Cells
Human immortalized keratinocyte HaCaT cells (a kind gift from Dr.

N.E. Fusenig, German Cancer Research Center, Heidelberg, Ger-
many) and a human colorectal carcinoma cell line HCT116 (a kind gift
from Dr. B. Vogelstein, Johns Hopkins University School of Medicine,
blished by Elsevier B.V. All rights reserved.
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MD, USA) have been described [12]. Wild-type and Oct-1-deficient
mouse embryo fibroblasts (MEFs) were derived from 13.5-day em-
bryos and were immortalized using a serial 3T3 protocol [13]. Human
normal fibroblast TIG-1 cells (at 40 population doubling levels (PDLs)
(JCRB0503) and 60 PDLs (JCRB0505)) were purchased from the Hu-
man Science Research Resources Bank (Osaka, Japan) [15]. TIG-1
cells were cultured in Eagle’s minimum essential medium (Nissui, To-
kyo, Japan) supplemented with 10% FBS.

2.3. DNA transfection and promoter assays
Reporter constructs were co-transfected with pRL-TK (Promega,

WI, USA) to standardize by Renilla luciferase activity. HaCaT cells
(5 · 104 cells) were seeded in 48-well plates, and plasmids (0.4 lg of re-
porter plasmid and 0.069 lg of pRL-TK) were co-transfected using
LipofectAMINE and plus Reagent (Invitrogen, CA, USA). After
24 h of transfection, the cells were harvested. The luciferase activity
of each cell lysate was measured using a Dual-Luciferase Reporter
Plasmid System (Promega, WI, USA). The firefly luciferase activity
of each sample was normalized by its Renilla luciferase activity and
the fold activation was obtained by setting the control value to 1.0.
Each experiment was repeated at least three times. Data were analyzed
using the two-tailed Student’s t-test and differences were considered
significant from controls when P < 0.05.

2.4. Preparation of nuclear extracts and EMSA
Nuclear extracts of HaCaT cells were prepared as described previ-

ously [16]. Annealed oligonucleotides containing the sequences be-
tween positions �139 and �120 were labeled with [a-32P] dCTP and
were used as the probe (Fig. 2A). The reaction mixture for the EMSA
contained 8 mM Tris–HCl (pH 7.9), 24 mM HEPES-KCl (pH 7.9),
120 mM KCl, 24% glycerol, 2 mM EDTA, 2 mM DTT, 1.5 lg of
poly(dI–dC) and 9.25 lg of nuclear extract. Following preincubation,
the indicated cold competitors or antibodies were added to the mix-
ture, and the binding reaction was allowed to proceed at 4 �C for
20 min. The reaction mixture was further incubated for 20 min in the
presence of [32P]-labeled probe DNA. The antibodies used were anti-
Oct-1 (sc-232, Santa Cruz Biotechnology, CA, USA) and anti-Sp3
(sc-644, Santa Cruz Biotechnology). The sequences of the top strands
of oligonucleotides used in the competition analysis were as follows,
with mutations indicated by underlining: Wild (�139/�120), 5 0-
AGCTGGGAGGGTAATGAAGCTGAG-3 0; Mutant (�139/�120),
5 0-AGCTGGGAGGGGGGAGCTGGGAGGGGGGTGAAGCT-
GAG-3 0.

2.5. Chromatin immunoprecipitations
ChIP assays were performed as described previously [17]. After

immunoprecipitation with an antibody against Oct-1 (sc-232, Santa
Cruz Biotechnology), SMRT (sc-1612, Santa Cruz Biotechnology),
HDAC1 (sc-8410, Santa Cruz Biotechnology), or an irrelevant control
protein, GAPDH (5G4, Hy Test Ltd., Turku, Finland), the recovered
DNA was analyzed using PCR amplification with the Gene Taq NT
(Nippon Gene, Toyama, Japan). PCR was carried out as follows: 1
cycle at 95 �C for 5 min; 40 cycles at 95 �C for 10 s, 60 �C for 5 s,
72 �C for 30 s; and 1 cycle at 4 �C for 10 min, using primers (sense,
5 0-ATTCTTTGCCGGCTGGCTCCCC-3 0 and antisense, 5 0-CCGGA-
TAATCCACCGTTGGCCG-3 0) that amplify the region between posi-
tions �373 and �26 from the first base of the translation initiation
codon of the p15INK4b gene. Three-fold diluted ‘‘Input’’ DNA and
anti-GAPDH antibody served as positive and negative controls,
respectively, and the products were analyzed by electrophoresis. The
detected band was confirmed to be this region of the p15INK4b gene
by sequencing.

2.6. Protein isolation and western blot analysis
The protein isolation and western blot analysis have been described

previously [18,19]. The protein extract was loaded onto a 7% or 12%
polyacrylamide gel, electrophoresed, and transferred to a nitrocellulose
membrane. A rabbit polyclonal antibody to p15INK4b (sc-612, Santa
Cruz Biotechnology) or Oct-1 (sc-232, Santa Cruz Biotechnology)
was used as the primary antibody and a-Tubulin (Oncogene Research
Product, CA, USA) was used as a loading control. The signal was then
developed with the enhanced chemiluminescence system (Amersham
Pharmacia Biotech, UK Limited). Bands were quantified using Scion
Image software (Scion Co., MD, USA).
3. Results

3.1. The potential Oct-1 binding site in the p15INK4b gene

promoter functions as a silencer in HaCaT cells

To precisely know the regulatory mechanisms of the

p15INK4b gene, we have recently cloned and sequenced a

7.8 kb fragment of the human p15INK4b gene promoter region

[12]. The p15INK4b gene promoter was previously cloned by

Li et al. [20], and they reported the Sp1 binding sites from

nt �432 to �423 are important for the basal promoter

activity of p15INK4b. However, their p15INK4b regions lacked

the upstream region containing bases �277 to �1 from the

initiation codon. A computer search for potential regulatory

elements in this region was performed using MatInspector

V2.2 at the TRANSFAC WWW site [21]. It elucidated the

existence of multiple potential transcription factor-binding

sites such as the STATx, c-Rel and Oct-1 binding site

(Fig. 1A), which may transcriptionally regulate p15INK4b gene

expression. To investigate any involvement of such a region

in p15INK4b gene transcription, we generated p15 (�559/�1)

and its 3 0-deletion constructs. The promoter activity of the

p15 (�559/�80) construct was slightly increased compared

with that of the p15 (�559/�1) construct, but the promoter

activities of the 3 0-deleted constructs of p15 (�559/�143),

p15 (�559/�196) and p15 (�559/�210) markedly increased,

by about 3.2- to 4.4-fold compared to that of the p15

(�559/�1) construct in human immortalized keratinocyte

HaCaT cells (Fig. 1B). These results suggest that a silencer

for the p15INK4b promoter activity may exist in this region

from nt �142 to �80. This region contains a potential Oct-

1 binding site (5 0-AGGGTAATGAAGC-3 0, nt �137 to

�125) (Fig. 1A). To clarify whether this potential Oct-1 bind-

ing site functions as the silencer, point mutations (sequence:

TAA to GGG) were introduced into the element in the p15

(�559/�80) and p15 (�559/�1) construct. The promoter

activity of the p15 (�559/�80) Oct-1 mutant increased 2.6-

fold compared to that of the p15 (�559/�80) construct,

and was almost equivalent to that of p15 (�559/�143)

(Fig. 1B). Similarly, the promoter activity of p15 (�559/�1)

Oct-1 mutant was enhanced 2.9-fold compared with that of

p15 (�559/�1) in HaCaT cells (Fig. 1C). We confirmed that

the same results were also obtained in the human colorectal

carcinoma cell line HCT116 (data not shown). Taken to-

gether, these results suggest that the potential Oct-1 binding

site functions as a silencer for the p15INK4b gene promoter

activity.
3.2. Oct-1 specifically interacts with potential Oct-1 binding site

in vitro and in vivo and SMRT and HDAC1 are present in

the p15INK4b proximal promoter region

Several studies have recently reported that the transcrip-

tional factor Oct-1 acts as a transcriptional repressor [22,23].

We then examined whether the Oct-1 protein can interact with

this potential Oct-1 binding site using electrophoretic mobility

shift assays (EMSAs). EMSAs using nuclear extracts isolated

from HaCaT cells were performed with labeled wild-type

(Wild) �139 to �120 or its mutant (Mutant) fragment as

probes (Fig. 2A). As shown in Fig. 2B, the transcription factor

Oct-1 binds to the potential Oct-1 binding site of the p15INK4b

gene promoter. Next, to directly examine whether Oct-1 was

associated with the human p15INK4b gene proximal promoter
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Fig. 1. p15INK4b promoter activity in HaCaT cells. (A) Nucleotide sequence of the 5 0-flanking region of the human p15INK4b gene. The nucleotide
number is counted from the first base of the initiation codon. The arrowhead indicates the transcriptional start site of the human p15INK4b gene.
Potential binding sites of transcriptional factors are underlined. The arrows indicate the 3 0-end of the deletion constructs of the p15INK4b gene
promoters shown in (B) and (C). (B) Deletion analysis of the p15INK4b promoter. (C) Mutation analysis of the p15INK4b promoter. Data are shown as
means ± S.D. (n = 3). *, P < 0.05; **, P < 0.01.
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region in vivo, a chromatin immunoprecipitation (ChIP) assay

was performed. The amplified 348-bp DNA fragment is indi-

cated in Fig. 2C. Consistent with our EMSA results, the tran-

scription factor Oct-1 was associated with the p15INK4b gene

proximal promoter region in HaCaT cells (Fig. 2D, lane 2).

According to recent studies about the transcriptional regula-

tion of Oct-1, a silencing mediator for retinoid and thyroid

hormone receptors (SMRT) interacts with Oct-1 and acts as

a transcriptional repressor [24,25]. Furthermore, SMRT is

known to be a corepressor associated with histone deacetylases

(HDACs) [26]. Therefore, we investigated whether SMRT and

HDAC1 were also associated with the human p15INK4b gene

proximal promoter region containing the Oct-1 binding site

in vivo. As shown in lanes 4 and 5 of Fig. 2D, not only Oct-

1, but also SMRT and HDAC1, were also associated with

the endogenous p15INK4b gene promoter. These results suggest

that these proteins may form complexes and suppress p15INK4b

gene expression.
3.3. Oct-1 represses the endogenous expression of the p15INK4b

protein in an HDAC-dependent manner

To further examine the relationship between Oct-1 and

p15INK4b gene expressions, we examined the expression levels

of the p15INK4b and Oct-1 proteins using wild-type mouse em-

bryo fibroblasts (MEFs) and Oct-1 deficient MEFs [13]. The

expression of the p15INK4b protein in Oct-1 deficient MEFs

significantly increased compared with that in its wild-type

counterpart (Fig. 3A), suggesting that the Oct-1 protein re-

presses endogenous p15INK4b gene expression. In Fig. 2D, we

showed that SMRT and HDAC1 were present in the p15INK4b

gene proximal promoter region. The repressive mechanism of

Oct-1 is explained by the fact that its POU domain interacts

with the SMRT, which is known to be a corepressor associated

with HDACs [24–26]. Many studies have suggested that acet-

ylation and deacetylation of histones have important roles in

gene expressions [27]. HDACs form complexes with several

transcriptional corepressors, including mSin3A, N-CoR and
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SMRT, and HDAC-corepressor complexes act as transcrip-

tional repressors and suppress gene expression [26]. Therefore,

we investigated whether an HDAC inhibitor, trichostatin A

(TSA), affects p15INK4b gene expression in MEFs. TSA acti-

vated the expression of p15INK4b in a dose-dependent manner

in wild-type MEFs, but had no effect in MEFs lacking Oct-1

(Fig. 3B). These results suggest that Oct-1 negatively regulates

the endogenous expression of the p15INK4b protein in an

HDAC-dependent manner.

3.4. The expression of Oct-1 protein significantly decreases,

whereas p15INK4b protein significantly increases with the

cellular aging process in TIG-1 cells

Oct-1 represses the collagenase gene, one of the cellular

aging-associated genes, and functions as a possible transcrip-

tional repressor, whose function decreases with cellular senes-

cence [28]. In addition, the expression of p15INK4b increases in

several models of cellular senescence [6,9,10]. The overexpres-

sion of p15INK4b induces replicative senescence, and inhibits

telomerase activity [11], suggesting that p15INK4b is involved

in cellular senescence. However, no mechanisms as to the

endogenous activation of p15INK4b expression were clarified.

Therefore, to analyse the physiological relationship between

Oct-1 and p15INK4b during the cellular aging process, we

examined the expression levels of the Oct-1 and p15INK4b pro-

tein using young and senescent human normal fibroblast TIG-

1 cells. In comparison with young TIG-1 cells, the expression

of the Oct-1 protein significantly decreased and the expression

of the p15INK4b protein significantly increased in senescent

TIG-1 cells (Fig. 4A). To investigate whether the activation

of the p15INK4b protein is mediated through the release of

the Oct-1 protein on the Oct-1 binding site in the p15INK4b
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promoter, we performed EMSAs the same as in Fig. 2B using

nuclear extracts isolated from young and senescent TIG-1

cells. The Oct-1 protein interacted with the Oct-1 binding site

(Fig. 4B) and the interaction significantly decreased in senes-

cent TIG-1 cells compared to young TIG-1 cells (Fig. 4C).

Next, to examine whether Oct-1 was associated with the hu-

man p15INK4b gene proximal promoter region in vivo, we per-

formed ChIP assays using young and senescent TIG-1 cells.

The transcription factor Oct-1 was associated with the

p15INK4b gene proximal promoter region in young TIG-1 cells

compared to senescent TIG-1 cells (Fig. 4D, lanes 2 and 5).

These results suggest that the increased expression of p15INK4b

in senescent cells is due to the decreased level of the Oct-1 and

the release of Oct-1 protein from the Oct-1 binding site in the

p15INK4b promoter region.
4. Discussion

In this study, we showed that Oct-1 functions as a transcrip-

tional repressor of the p15INK4b gene. The repressive mecha-

nism of Oct-1 is explained by the fact that its POU domain

interacts with SMRT, which is known to be a corepressor asso-

ciated with HDACs [24–26]. A lot of studies have suggested

that the acetylation and deacetylation of histones have impor-

tant roles in gene expression [27]. HDACs form complexes

with several transcriptional corepressors, including mSin3A,

N-CoR, and SMRT, and HDAC-corepressor complexes act

as transcriptional repressors and suppress gene expression

[29–31]. Therefore, our findings that not only Oct-1 but also

SMRT and HDAC1 were associated with the p15INK4b gene

proximal promoter region in vivo suggest that these proteins

may form complexes and suppress p15INK4b gene expression.

We have recently reported that HDAC inhibitors, TSA and so-
dium butyrate, activated the p15INK4b gene expression through

its promoter [12]. We speculate that recovery of the repressive

function of Oct-1 by HDAC inhibitors may in part contribute

to the up-regulation of p15INK4b gene expression by HDAC

inhibitors. However, Oct-1 binding site is the 5 0UTR of

p15INK4b gene. Therefore, the mutation of the Oct-1 binding

site could influence p15INK4b gene mRNA stability and/or

translation effects.

Recently, an Oct-1-deficient mouse was generated by gene

targeting, and the role of Oct-1 in vivo was examined. How-

ever, Wang et al. have shown that several endogenous genes,

such as Ig, histone H2B, U2 snRNA and U6 snRNA, thought

to be regulated by Oct-1, underwent no change in their expres-

sions in Oct-1 deficient MEFs compared with those in Oct-1

wild-type MEFs [13,14]. This apparent discrepancy suggested

that the loss of Oct-1 protein might not be sufficient to affect

the endogenous expressions of these genes, possibly due to

the existence of binding sites for multiple transcriptional fac-

tors in endogenous promoters. However, in this study, we

found that the p15INK4b protein expression significantly in-

creases in Oct-1 deficient MEFs compared to its wild-type

counterpart. Our results suggest that Oct-1 is an important

transcriptional regulator for the endogenous expression of

the p15INK4b gene.

Finally, we clearly indicated that there is an inverse correla-

tion between Oct-1 and p15INK4b expressions during the cellular

aging process. As described above, the p15INK4b gene is impli-

cated in cellular senescence [6,9–11]. For example, T-lympho-

cytes display high levels of p15INK4b protein as they enter into

replicative senescence [6]. Furthermore, p15INK4b functions as

a tumor-suppressor gene [4–8]. These findings suggest that the

inactivation of the p15INK4b gene enables hematopoietic cells

to avoid senescence and leads to malignancies. Taken together

with the previous findings that p15INK4b plays important roles



1092 T. Hitomi et al. / FEBS Letters 581 (2007) 1087–1092
in cellular senescence and tumor suppression, transcriptional

repression of the p15INK4b gene by Oct-1 may be one of the

important regulatory mechanisms of senescence and malignant

transformation.
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