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Abstract G6P translocase (G6PT) is thought to play a crucial
role in transducing intracellular signaling events in brain tumor-
derived cancer cells. In this report, we investigated the contribu-
tion of G6PT to the control of U-87 brain tumor-derived glioma
cell survival using small interfering RNA (siRNA)-mediated sup-
pression of G6PT. Three siRNA constructs were generated and
found to suppress up to 91% G6PT gene expression. Flow
cytometry analysis of propidium iodide/Annexin-V-stained cells
indicated that silencing the G6PT gene induced necrosis and late
apoptosis. The anticancer agent curcumin, also inhibited G6PT
gene expression by more than 90% and triggered U-87 glioma
cells death. Overexpression of recombinant G6PT rescued the
cells from curcumin-induced cell death. Targeting G6PT expres-
sion may provide a new mechanistic rationale for the action of
chemopreventive drugs and lead to the development of new
anti-cancer strategies.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The incidence of malignant brain tumors is increasing in

both children and adults, and this type of cancer is often

unmanageable due to its diffuse infiltrating nature [1,2].

Although the prognosis is very grim, the standard therapies

for malignant gliomas, i.e., surgical resection and radiation

only retard glioma growth for a short period and, paradoxi-

cally, can facilitate recurrence in the long run [3]. Hence,

new approaches are needed to target the very infiltrating nat-

ure of this cancer and prevent recurrence. Lately, many dietary

polyphenols have been shown to have anti-cancer properties

due to their chemopreventive and anti-tumor activities [4,5].
Abbreviations: ATP, adenosine triphosphate; CHA, chlorogenic acid;
2-DG, 2-deoxy-DD-glucose; ECM, extracellular matrix; ER, endoplas-
mic reticulum; G6P, glucose-6-phosphate; G6Pase, glucose-6-phos-
phatase; G6PT, G6P translocase; GSD, glycogen storage disease;
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Among these, we have recently demonstrated that both the

green tea polyphenol epigallocatechin-3-gallate (EGCg) [6,7],

as well as chlorogenic acid (CHA) [8], efficiently inhibited sev-

eral glioblastoma cell invasive processes. Interestingly, glucose-

lowering properties have also been attributed to EGCg and

CHA, which also make them valuable anti-diabetic agents

[9,10]. Both the modulation of blood glucose levels and the

chemopreventive properties of EGCg and CHA could be

potentially linked to a common intracellular target, the micro-

somal glucose-6-phosphatase (G6Pase) system [11,12].

The G6Pase system catalyses the hydrolysis of glucose-6-

phosphate (G6P) to glucose and phosphate as a final step in

both glucose-producing pathways in the liver: gluconeogenesis

and glycogenolysis [13]. G6Pase is a multicomponent endo-

plasmic reticulum (ER) enzyme which rate-limiting step in

G6P hydrolysis is thought to be catalyzed by a G6P translo-

case (G6PT). Whereas only a low number of tissues do express

the G6Pase catalytic subunit and are gluconeogenic, G6PT’s

ubiquitous expression and functionality in non-gluconeogenic

tissues such as brain remains poorly characterized [14]. Recent

evidence, however, suggest that CHA, the most potent func-

tional inhibitor of G6PT, triggers a host of cellular events

including apoptosis in neutrophils and differentiated promye-

locytic HL-60 cells [15], and inhibition of matrix metallopro-

teinase (MMP) secretion in the human Hep3B hepatocellular

carcinoma cell line [16]. CHA also inhibits glioma cell migra-

tion, response to chemotactic growth factors, and secretion

of MMP [8], all prerequisite processes needed for tumor

growth. Whether G6PT is involved in the survival of brain

tumor-derived cancer cells is currently unknown.

Aside from regulating the rate limiting step of G6P transport

through the ER membrane, alternate G6PT roles include aden-

osine triphosphate (ATP)-mediated calcium sequestration in

the ER lumen [17], and function as a G6P receptor/sensor

[18]. Such underestimated G6PT-mediated ER functions may

collectively be responsible for crucial survival processes such

as cell proliferation, cell cycle division, extracellular matrix

(ECM) degradation, and response to growth factors during

brain tumor development [19]. Moreover, enhanced glucose

utilization in vitro, as well as in vivo, is correlated with the de-

gree of malignancy, but also with poor prognosis for patients

with glioma tumors [20,21]. Selective interference with G6PT

functions may thus be an attractive therapeutic approach to

metabolic control of glioma cell growth. Interestingly, glioma

cell proliferation and survival have recently been shown to
blished by Elsevier B.V. All rights reserved.
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be affected by curcumin (diferuloyl-methane), the yellow pig-

ment found in the spice turmeric [22,23]. Because curcumin

regulates key enzymes involved in carbohydrate metabolism

[24,25] and shows chemopreventive properties [26,27], we

investigated the effects of curcumin on G6PT gene expression

and U-87 glioma cells survival.
2. Materials and methods

2.1. Cell culture and transfection method
The U-87 glioma cell line was purchased from American Type Cul-

ture Collection and cultured in Eagle’s minimum essential medium
(MEM) containing 10% (v/v) fetal bovine serum (FBS) (HyClone Lab-
oratories, Logan, UT), 2 mM glutamine, 100 units/ml penicillin and
100 lg/ml streptomycin, at 37 �C under a humidified atmosphere con-
taining 5% CO2. The rabbit polyclonal antiserum against human
G6PT (p46) was a kind gift from Dr. Gerald van de Werve (Centre
de Recherche du CHUM, University of Montreal, Que.) [28]. The
G6PT plasmid was generously provided by Dr. Christopher Newgard
(University of Texas Southwestern Medical Center, Dallas, TX) and
recombinant protein expression validated [28]. U-87 glioma cells were
transiently transfected with the cDNA construct or with 20 nM small
interfering ribonucleic acid (siRNA) (see below) using Lipofectamine
2000 (Invitrogen, Burlington, Ont.). The occurrence of G6PT specific
gene knockdown as well as G6PT overexpression was also evaluated
by semi-quantitative RT-PCR. All experiments involving these cells
were performed 36 h following transfection. Mock transfections of
U-87 cultures with pcDNA (3.1+) expression vector alone were used
as controls.
2.2. RNA interference
RNA interference experiments were performed using Lipofect-

amine 2000. Three siRNA oligonucleotides for human G6PT (gene
ID: NM_001467) and mismatch siRNA were synthesized by EZBio-
lab Inc. (Westfield, IN), and annealed to form duplexes. The
sequences of the three siRNA used in this study are as follows:
siG6PT #1: 5 0-GCACUACAGUUGGAGCACAdTdT-3 0 (sense)
and 5 0-UGUGCUCCAACUGUAGUGCdTdT-30 (antisense), siG6PT
#2: 5 0-CUGUGAUCUUCUCAGCCAUdTdT-30 (sense) and 5 0-
AUGGCUGAGAAGAUCACAGdTdT-30 (antisense); siG6PT #3:
5 0-CGAAACAUCCGCACCAAGAdTdT-3 0 (sense) and 5 0-UCUUG-
GUGCGGAUGUUUCGdTdT-30 (antisense).
2.3. Semi-quantitative and quantitative real-time reverse transcriptase-

polymerase chain reaction (RT-PCR) analysis
Total RNA was extracted from cultured monolayers of U-87 cells

using TRIzol reagent (Life Technologies, Gaithersburg, MD). One
microgram of total RNA was used for first strand cDNA synthesis fol-
lowed by specific gene product amplification with the One-Step RT-
PCR kit (Invitrogen) for semi-quantitative PCR products abundance
analysis. Primers for G6Pase-a (forward: 5 0-TTCAGCCACATCCA-
CAGCATC-30, reverse: 50-GGGGTTTCAAGGAGTCAAAGACG-30),
for G6Pase-b (forward: 5 0-ACTCTTCCTGACTTCTTGTGTGCC-
3 0, reverse: 5 0-TTGCCTTTGCTCTTTGGGGG-3 0) and for G6PT
(forward: 5 0-CAGGGCTATGGCTATTATCGCAC-3 0, reverse: 5 0-
ATGGCTCAAACCACTTCCGCAG-3 0) were all derived from hu-
man sequences. b-actin cDNA amplification was used as an internal
house-keeping gene control. PCR conditions were optimized so that
the gene products were examined at the exponential phase of their
amplification [8] and the products were resolved on 1.8% agarose gels
containing 1 lg/ml ethidium bromide. For quantitative RT-PCR,
cDNA synthesis was performed by using 2 lg of total RNA, random
hexamers and MULV reverse transcriptase reagents (ROCHE) as in-
structed by the manufacturer. Real-time PCR was performed with
the SybrGreen Universal Master Mix (Invitrogen) according to the
manufacturer’s protocol, in which 50 ng of cDNA was amplified for
G6PT gene and 5 ng amplified for 18S ribosomal RNA using specific
primers at a final concentration of 200 nM in 2· SybrGreen Master
Mix in a total volume of 50 ll. The thermocycler parameters for the
real-time PCR consisted of two initial steps (50 �C for 2 min, followed
by 95 �C for 10 min), 40 cycles of DNA amplification (95 �C for 15 s,
58 �C for 15 s, 72 �C for 20 s). At the end of the PCR a melting curve
(disassociation curve) was run to ensure that only a single specific
product was amplified. Relative transcript quantities were calculated
as DCT values, as recommended by the manufacturer with 18S ribo-
somal RNA as the endogenous reference amplified from the samples.
2.4. Analysis of cell death by flow cytometry
Cell death was assessed by flow cytometry in cells treated with cur-

cumin (Sigma, Oakville, ON), as well as in untransfected (mock) cells
or cells transfected with the G6PT cDNA or with siG6PT #3 oligonu-
cleotides. Adherent and floating cells were harvested by trypsin diges-
tion and gathered to produce a single cell suspension. The cells were
pelleted by centrifugation and washed with phosphate-buffered saline
(PBS). Then, 2 · 105 cells were pelleted and suspended in 200 lL of
buffer solution and stained with annexin-V–fluorescein isothiocyanate
and propidium iodide (PI) according to the manufacturer’s protocol
(BD Biosciences, Mississauga, Ont.). The cells were diluted by adding
300 lL of buffer solution and processed for data acquisition and anal-
ysis on a Becton–Dickinson FACS Calibur flow cytometer using Cell-
Quest Pro software. The X- and Y-axes indicate the fluorescence of
annexin-V and PI, respectively. It was possible to detect and quantita-
tively compare the percentages of gated populations in all of the four
regions delineated. In the early stages of apoptosis, phosphatidylserine
is well known to translocate to the outer surface of the plasma mem-
brane, which still remains physically intact. As annexin-V binds to
phosphatidylserine but not to PI, and the dye is incapable of passing
the plasma membrane, it is excluded in early apoptosis (annexin-V+/
PI�). Cells in late apoptosis are stained with annexin-V and PI (annex-
in-V+/PI+). Necrotic cells have lost the integrity of their plasma mem-
brane and are predominantly stained with PI (annexin-V�/PI+).
2.5. Statistical data analysis
Data are representative of three or more independent experiments.

Statistical significance was assessed using non-parametric one-way
ANOVA with GraphPad Prism Version 4.0. Probability values of less
than 0.05 were considered significant, and an asterisk (*) identifies such
significance in each figure.
3. Results

3.1. Specific G6PT gene silencing in U-87 glioma cells

We first assessed microsomal G6PT gene expression, as well

as the expression of glucose-6-phosphatase (G6Pase) isoforms

a and b isoforms. Total RNA was extracted from HepG2 hep-

atoma and U-87 glioma cells, and then gene expression levels

were analyzed by RT-PCR. As it would be expected for a cell

line derived from a gluconeogenic tissue, HepG2 cells ex-

pressed all three components of the G6Pase system, with a

higher expression of G6Pase-b (Fig. 1A). In contrast to

HepG2, only G6PT and G6Pase-b transcripts were signifi-

cantly expressed in U-87 glioma cells, with very low to unde-

tectable levels of G6Pase-a (Fig. 1A). This is in agreement

with previous reports demonstrating a lack of G6Pase-a
expression in brain-derived cells [14]. Because previous evi-

dence demonstrated that functional inhibition of the micro-

somal G6PT with CHA abrogates the cell migration and

chemotactic response of U-87 cells to growth factors [8], we

have generated siRNA constructs designed to specifically

downregulate G6PT gene expression in U-87 glioma cells.

Three siRNA constructs were designed and cell transfection

performed as described in Section 2. Semi-quantitative RT-

PCR analysis showed that G6PT transcription was specifically

downregulated by all three constructs, while G6Pase-b gene

expression remained unaffected by any of the constructs

(Fig. 1B). Relative PCR product abundance was quantified



Fig. 1. Specific G6PT gene silencing in U-87 glioma cells. (A) Brain tumor-derived U-87 glioma cells were cultured until they reached approximately
90% confluency. Total RNA was extracted and RT-PCR performed in order to generate the cDNA reflecting gene expression levels of G6PT
(380 bp), G6Pase-a (360 bp), and G6Pase-b (236 bp) as described in Section 2. HepG2 hepatoma cells were used as positive controls for the presence
of all three genes. (B) Three siRNA constructs were generated to knock-down the human G6PT gene in U-87 glioma cells. Cells were either
transfected with the siRNA constructs, mock-transfected or transfected with a scrambled negative control construct (Neg. Ctrl) as described in
Section 2. Total RNA was isolated 36 h post-transfection and the cDNA of G6PT or G6Pase-b amplified as described in Section 2. A representative
ethidium bromide-stained agarose gel of the levels of the respective amplicons is shown. (C) Scanning densitometry of the cDNA products was
performed on each gel and the average values ± S.E.M. of four independent experiments are shown. (D) Total membrane-enriched fraction was
isolated from mock, cells transfected with siG6PT construct #3 or with G6PT cDNA (Tx) and immunodetection for G6PT performed (NS, non-
specific immunoreactive band).
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in cells transfected with siG6PT constructs #1, #2, and #3, and

G6PT gene expression was inhibited by 32%, 55% and 91%,

respectively (Fig. 1C). Quantitative analysis using real-time

RT-PCR was also performed and confirmed the maximum de-

crease observed in the siG6PT #3 condition by a factor of

9.65 ± 0.18. Although treatment with a combination of the

respective constructs was not tested, subsequent experiments

were performed using siG6PT construct #3. Total mem-

brane-enriched fraction was isolated from mock, cells transfec-

ted with siG6PT construct #3 or with G6PT cDNA.

Immunodetection for the G6PT protein was performed as pre-

viously described and validated [28], and shows that both the

gene silencing as well as the overexpression significantly mod-

ulated G6PT protein expression (Fig. 1D).

3.2. G6PT gene silencing triggers U-87 glioma cell death

To investigate the specific contribution of G6PT to cell sur-

vival processes, we used siG6PT construct #3 to downregulate

G6PT gene expression. This construct specifically silenced the

G6PT gene and not that of G6Pase-b and MT1-MMP, a mem-

brane-bound matrix metalloproteinase that we have previously

shown to regulate, in part, the invasiveness of U-87 glioma

cells [7,29] (Fig. 2A). We next assessed cell survival using flow

cytometry with propidium iodide and annexin-V staining. Our

results show that, in siG6PT-transfected cells, there was an in-

crease in overall cell death as demonstrated by a significant

shift in fluorescence in cells that stained positive for necrosis

(Fig. 2B, upper left quadrant) as well as in late phase of apop-

tosis (Fig. 2B, upper right quadrant). Quantification of these

data shows that G6PT gene downregulation triggered a 1.5-

fold increase in cell necrosis and a 2.4-fold increase in cells

undergoing the late stage of apoptosis (Fig. 2C). Altogether,

these results suggest that G6PT is an important pro-survival
protein and that any alteration in its expression could be del-

eterious to the cell.

3.3. The anticancer molecule curcumin inhibits G6PT gene

expression in U-87 glioma cells

Since curcumin (diferuloyl-methane) has recently been

attributed chemopreventive properties [26,27], and appears to

affect glioma cell proliferation and survival [22,23], we investi-

gated whether it would affect G6PT gene expression in U-87

glioma cells. Cells were treated with increasing concentrations

of curcumin and then total RNA was isolated to assess G6PT

and G6Pase-b gene expression using RT-PCR (Fig. 3A). While

G6Pase-b and actin relative gene expression levels were not al-

tered, 35 lM curcumin downregulated G6PT transcript levels

by more than 90% (Fig. 3B) and by a factor of 10.22 ± 0.18

as quantified by real-time RT-PCR. These effects of curcumin

suggest that, among its many intracellular protein targets,

G6PT may be crucial for U-87 glioma cell survival.

3.4. The overexpression of recombinant G6PT rescues U-87

glioma cells from curcumin-induced cell death

We next addressed whether G6PT possesses any pro-survival

functions in U-87 glioma cells. Untransfected (mock) cells or

cells transfected with an expression vector for G6PT [8] were

exposed to increasing concentrations of curcumin and cell

death was evaluated by flow cytometry as in Fig. 2. Overex-

pression of recombinant G6PT had no effect on cell survival

in untreated cells (Fig. 4A). However, curcumin dose-depen-

dently triggered an increase in cell death (combined necrosis,

early and late apoptosis) that reached an optimal effect at

25 lM (Fig. 4B), and concomitantly reduced cell viability in

untransfected mock cells (Fig. 4B). When transiently transfec-

ted in U-87 glioma cells, the newly expressed G6PT prevented



Fig. 2. G6PT gene silencing triggers U-87 glioma cell death. (A)
SiRNA construct #3 was used to transfect U-87 glioma cells in order
to decrease G6PT gene expression. Total RNA was isolated and the
gene expression of G6PT, G6Pase-b, and MT1-MMP evaluated by
RT-PCR as described in Section 2. (B) Cell apoptosis/necrosis was
evaluated by flow cytometry in cells that were stained with propidium
iodide (FL2-H) and annexin-V (FL1-H) as described in Section 2. (C)
A representative quantification is shown for each of the quadrants in
(B). The results are presented as follows: lower left quadrant, live cells
from untransfected (mock) or cells transfected with the G6PT siRNA;
upper left quadrant, cells undergoing necrosis; lower right quadrant,
cells in the early phase of apoptosis; and upper right quadrant, cells in
late phase of apoptosis.

Fig. 3. The anti-cancer molecule curcumin inhibits G6PT gene expres-
sion in U-87 glioma cells. U-87 glioma cells were serum-starved and
treated with different concentrations of curcumin for 18 h. (A) Total
RNA was isolated and G6PT, G6Pase-b, and b-actin mRNA levels
were evaluated by RT-PCR as described in Section 2. A representative
ethidium bromide-stained agarose gel of the observed amplicons is
shown. (B) Scanning densitometry was used to evaluate the extent of the
effect of curcumin on G6PT (white bars) and G6Pase-b (black bars)
gene expression. Values were normalized with reference to the values for
the b-actin gene. The results represent the mean values ± S.E.M. of
three experiments.
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cells from undergoing apoptosis (Fig. 4A). In fact, 40–55% of

cells treated with 25–35 lM of curcumin were rescued from

entering apoptosis (Fig. 4B). Altogether, these data strongly

suggest that G6PT regulates crucial pro-survival processes in

U-87 glioma cells. Our results also suggest that targeting

G6PT function or gene/protein expression may permit the

development of new anticancer strategies.
4. Discussion

Glucose is absolutely essential for the survival and function

of the brain since, in this tissue, there is no endogenous glucose

production. Glucose availability thus remains exclusively

dependent upon blood supply which is generated in the post-
prandial state by the hydrolysis of G6P through the hepatic

and renal G6Pase system. Although the coupling of the

G6Pase-b, the catalytic subunit isoform expressed in astrocytes

[14], with G6PT activities enabled the formation of an active

G6Pase complex, the physiological significance of this finding

remains uncertain since brain G6Pase-b has only about 12%

of the activity of hepatic G6Pase-a [30]. Moreover, when co-

expressed with recombinant G6PT, the G6Paseb-G6PT com-

plex showed only �25% of the maximal G6P accumulation

activity of the liver complex [30]. Thus, the physiological roles

of the native G6Pase-b remain to be confirmed as initial re-

ports ascribed very low to undetectable activity for this protein

[31].

Our current study supports the possibility of alternate func-

tions of the ubiquitously expressed G6PT in non-gluconeo-

genic tissues distinct from the classical G6Pase system. For

instance, translocation of G6P by G6PT within the ER may

serve to feed a luminal hexose-6-phosphate dehydrogenase,

which ubiquitous expression is consistent with that of G6PT

[13]. In fact, this enzyme serves to provide the reducing equiv-

alents needed for several important reductases that protect the

ER against damage by reactive oxygen species. Lack of protec-

tion may result in premature cell death through apoptosis. Our

findings thus provide a molecular mechanism accounting for

the function and pro-survival effects of G6PT in brain tu-

mor-derived cancer cells. The involvement of G6PT in brain

tumor-derived cell survival processes could also be of major



Fig. 4. The overexpression of recombinant G6PT rescues U-87 glioma cells from curcumin-induced cell death. (A) Untransfected (mock) U-87
glioma cells or cells transfected with the G6PT expression vector were serum-starved and treated with different concentrations of curcumin for 18 h.
To evaluate cell death, we used flow cytometry of propidium iodide and annexin-V-stained cells as described in Section 2. (B) Quantification was
performed as in the legend to Fig. 2. Cell viability values come from the lower, left quadrant, while cell death represents the combined values of
necrosis, early, and late apoptosis. White bars: mock cells; black bars: G6PT-transfected cells.
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physiological significance. Consequently, specific interference

with G6PT functions [8,15] or expression [this study] becomes

an attractive strategy for therapeutic control of glioma cell

growth, and selective inhibition of G6PT may provide an ideal

approach for the metabolic regulation of brain tumor cells.

Several inhibitors of G6PT have been reported [32–36] and in-

clude complex natural products such as ilicicolinic acid B, her-

icenal C, mumbaistatin, kodaistatins [37], and derivatives of

CHA [11]. Aside from CHA, few of these documented G6PT

inhibitors have been systematically tested for their anti-cancer

properties. Our study provides a further molecular-level expla-

nation for the chemopreventive properties of curcumin [22,23]

by targeting the pro-survival functions of G6PT in U-87 gli-

oma cells.

Several approaches have been used to differentially modulate

glucose flux and energy supply in cancer cells. We have re-

cently shown that the glucose antimetabolite, 2-deoxy-DD-glu-

cose (2-DG), a competitive inhibitor of glucose transport

and phosphorylation known to block glycolytic flux therefore

modulating the synthesis of ATP [38], also inhibited the secre-

tion of MMP by U-87 glioma cells. This compound inhibited

intracellular transduction in response to sphingosine-1-phos-

phate [8], presumably by a mechanism involving the ATP-
dependent calcium-sequestering activity of G6PT. Since the

failure of radiotherapy in cerebral gliomas is primarily due

to the diffuse infiltrating nature of the tumor, the abrupt

changes in glycolytic energy demands of the brain tumor-de-

rived cells may trigger growth arrest and/or cell death [39].

Thus, an important implication of the current study is the po-

tential therapeutic impact of targeting G6PT functions as part

of a radiotherapeutic regimen. Therefore, it is tempting to

speculate that strategies aiming at the inhibition of G6PT

would be beneficial in conjunction with radiotherapeutic

modalities. In support of that hypothesis, in vitro studies per-

formed in established glioma cell lines show that exposure to 2-

DG for a few hours after irradiation significantly increased

radiation-induced cellular damage [40], and that cancer radio-

therapy was optimized in 2-DG dose escalation studies [41].

Deficiency in G6PT function has long been recognized to

cause glycogen storage disease type 1b (GSD-1b) [42,43]. In-

deed, at least 69 distinct mutations in the G6PT gene, which

either greatly reduced or completely abolished G6PT function,

have been identified and lead to premature death [42,44]. Over

the last few years, other unrecognized functions of G6PT have

been identified. For instance, polymorphonuclear leukocytes

from GSD-1b patients exhibit impaired mobility, chemotaxis,
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and Ca2+ flux responses [44]. In addition, their respiratory

burst, pentose phosphate shunt, glycolytic activity and phago-

cytotic activity are also diminished. Inhibition of G6PT func-

tions also resulted in dysfunctional apoptotic neutrophils

from GSD-1b patients [15]. These observations strongly sup-

port a crucial role for G6PT in keeping optimal cellular func-

tions. While the role of G6PT in carbohydrate metabolism is

well understood, its roles in alternate mechanisms such as in

immune deficiency or in cancer are relatively unknown. In

conclusion, our data suggest that G6PT plays a central role

in regulating glioblastoma cell survival and invasiveness. Strat-

egies aiming at the inhibition of G6PT functions with antican-

cer agents, such as the naturally occurring curcumin, may

provide a new mechanistic rationale for the action of chemopre-

ventive drugs and lead to the development of new anticancer

strategies.
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