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a b s t r a c t

Let p1, p2, . . . , pn be distinct primes. In 1970, Erdős, Herzog and Schönheim proved that if
D , |D| = m, is a set of divisors of N = pα1

1 · · · pαn
n , α1 ≥ α2 ≥ · · · ≥ αn, no two members

of the set being coprime and if no additional member may be included in D without
contradicting this requirement then m ≥ αn

n−1
i=1 (αi + 1). They asked to determine all

sets D such that the equality holds. In this paper we solve this problem. We also pose
several open problems for further research.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Many theorems on intersections of sets have been established. One of the intersection theorems is the next theorem of
Erdős, Ko and Rado.

Theorem A ([2, Erdős–Ko–Rado]). If A = {A1, A2, . . . , Am} is a family of (different) subsets of a given set M, |M| = n, such that
Ai ∩ Aj ≠ ∅ for every i, j, then
(a) m ≤ 2n−1 and for every n there are m = 2n−1 such subsets;
(b) if m < 2n−1 then additional members may be included in A, the enlarged family still satisfying Ai ∩ Aj ≠ ∅ for every i, j.

Theorem A is equivalent to the following theorem.

Theorem B. If A = {d1, d2, . . . , dm} is a set of (different) divisors of a given positive integer N,N = p1p2 · · · pn, where
p1, p2, . . . , pn are distinct primes, such that (di, dj) > 1 for every i, j, then
(a) m ≤ 2n−1 and for every n there are m = 2n−1 such divisors;
(b) if m < 2n−1 then additional members may be included in A, the enlarged set still satisfying (di, dj) > 1 for every i, j.

This means that if A is a maximal set with the property (di, dj) > 1 for every i, j, then |A| = 2n−1. If we allow repetitions
in M (resp. N is not squarefree), it is more convenient to state results with the language of divisors (see [1,3,4]).

In this paper, p1, p2, . . . , pn are always distinct primes. Erdős et al. [1] proved the following theorem.

Theorem C ([1, Erdős–Herzog–Schönheim]). If D, |D| = m, is a set of divisors of N = pα1
1 · · · pαn

n , α1 ≥ α2 ≥ · · · ≥ αn, no
two members of the set being coprime and if no additional member may be included in D without contradicting this requirement
then

m ≥ αn

n−1
i=1

(αi + 1).
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If D is the set of all positive divisors of N which are divisible by pn, then D satisfies the assumptions of Theorem C and
has the minimum size, that is,

|D| = αn

n−1
i=1

(αi + 1). (1)

In [1, Final remark], Erdős et al. remarked that it would be of interest to determine all sets D satisfying the assumptions of
Theorem C with (1).

In this paper we solve this problem. For convenience, we introduce the following definitions.

Definition 1. A set D of positive divisors of N is an N-set if no two elements of the set are coprime. An N-set D is maximal
if no additional divisor of N may be included.

Definition 2. For a set D of positive divisors of N = pα1
1 · · · pαn

n , an element d of D is a divisible minimal element if d is not
divisible by any other element of D . Denote by d(D) the set of all divisible minimal elements of D .

It is clear that if D is a maximal N-set and d ∈ D , then l ∈ D for all l | N with d | l. Now the Erdős–Herzog–Schönheim
problem above can be restated as follows.

Problem 1. Let N = pα1
1 · · · pαn

n , where α1 ≥ · · · ≥ αn > 0. Determine all the maximal N-sets D with the minimum size.

First we find some maximal N-sets D with the minimum size. Let

α1 ≥ · · · ≥ αu > αu+1 = · · · = αn.

If α1 = · · · = αn, let u = 0. For any v with 1 ≤ v ≤ n, let

D(pv) = {d : d | N, pv | d}.

Then all D(pv)(1 ≤ v ≤ n) are maximal N-sets. For u + 1 ≤ v ≤ nwe have

|D(pv)| = αv

n
i=1,i≠v

(αi + 1) = αn

n−1
i=1

(αi + 1).

For v ≤ uwe have

|D(pv)| = αv

n
i=1,i≠v

(αi + 1) > αn

n−1
i=1

(αi + 1).

Nowwe consider the special case αn = 1. Let D ′ be a maximal pu+1 · · · pn-set. By Theorem B we have |D ′
| = 2n−u−1. Let

D =


dd′

: d |
N

pu+1 · · · pn
, d′

∈ D ′


.

Since D ′ is a pu+1 · · · pn-set, we have D is an N-set. For l | N and l ∉ D , let l = l1l′1, where

l1 |
N

pu+1 · · · pn
, l′1 | pu+1 · · · pn.

By l ∉ D we have l′1 ∉ D ′. Since D ′ is a maximal pu+1 · · · pn-set, there exists d′
∈ D ′ such that (l′1, d

′) = 1. Thus (l, d′) = 1
and d′

∈ D . Thus we have proved that D is a maximal N-set. We have

|D| = |D ′
|

u
i=1

(αi + 1) = 2n−u−1
u

i=1

(αi + 1) = αn

n−1
i=1

(αi + 1).

In this paper we show that these are all the maximal N-sets D with the minimum size.

Theorem 1. Let N = pα1
1 · · · pαn

n with α1 ≥ α2 ≥ · · · ≥ αu > αu+1 = · · · = αn ≥ 2. Then the following statements are
equivalent to each other.

(a) D is a maximal N-set with the minimum size.
(b) D is a maximal N-set with d(D) = {pv} for some u + 1 ≤ v ≤ n.
(c) D = {d : d | N, pv | d} for some u + 1 ≤ v ≤ n.
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Theorem 2. Let N = pα1
1 · · · pαn

n with α1 ≥ α2 ≥ · · · ≥ αu > αu+1 = · · · = αn = 1. Then the following statements are
equivalent to each other.

(a) D is a maximal N-set with the minimum size.
(b) D is a maximal N-set with d(D) ⊆ {d : d | pu+1 · · · pn}.
(c)

D =


dd′

: d |
N

pu+1 · · · pn
, d′

∈ D ′


for a maximal pu+1 · · · pn-set D ′.

For a set T of positive divisors of N , let R(T ,N) be the set of all positive divisors of N which are divisible by at least one
of the elements of T . It is easy to see that R(T ,N) is an N-set if and only if T is an N-set.

With these notations, we have the following theorems.

Theorem 3. Let N = pα1
1 · · · pαn

n with α1 ≥ α2 ≥ · · · ≥ αu > αu+1 = · · · = αn = 1, and let T1, . . . , Tk be all sets of positive
divisors of pu+1 · · · pn such that for each i,

(a) no two elements of Ti are coprime;
(b) no element of Ti is divisible by another element of Ti;
(c) any divisor of pu+1 · · · pn is either coprime to some element of Ti or divisible by one element of Ti.

Then R(T1,N), . . . , R(Tk,N) are all the maximal N-sets D with the minimum size.

Example. Let N = 420 = 22
· 3 · 5 · 7. Then pu+1 · · · pn = 3 · 5 · 7 and the sets satisfying (a)–(c) are

T1 = {3}, T2 = {5}, T3 = {7}, T4 = {3 · 5, 3 · 7, 5 · 7}.

Thus there are exactly four maximal 420-sets R(T1,N), R(T2,N), R(T3,N), R(T4,N) with the minimum size.

Theorem 4. Let N = pα1
1 · · · pαn

n with α1 ≥ α2 ≥ · · · ≥ αu > αu+1 = · · · = αn ≥ 2. Then R({pu+1},N), . . . , R({pn},N) are
all the maximal N-sets D with the minimum size.

Theorem 4 follows from Theorem 1 immediately. We pose the following problem.

Problem 2. Determine the number H(N) of maximal N-sets D with the minimum size.

Remark. If N = pα1
1 · · · pαn

n with α1 ≥ α2 ≥ · · · ≥ αu > αu+1 = · · · = αn > 1, then by Theorem 4 we have H(N) = n − u.
For the case N = pα1

1 · · · pαn
n with α1 ≥ α2 ≥ · · · ≥ αu > αu+1 = · · · = αn = 1, then H(N) is the number of sets with

(a)–(c) in Theorem 3.

2. Preliminary lemmas

Let N = pα1
1 · · · pαn

n , where α1 ≥ · · · ≥ αn > 0. Let N ′
= p1 · · · pn. For d | N ′, define

α(d) =


pi|d

αi, d̄ =
N ′

d
.

Let

A = {d : d | N ′, d ∈ D}

and

An = {d : d ∈ A, pn | d}, A′

n = {d : d ∈ A, pn - d}.

In this section we always assume that D is a maximal N-set. Then A is a maximal N ′-set.

Lemma 1. Let pv ∈ D for some u + 1 ≤ v ≤ n. Then d(D) = {pv} for some u + 1 ≤ v ≤ n.

Proof. Since D is an N-set, we have pv | d for all d ∈ D . Hence d(D) = {pv}. This completes the proof of Lemma 1. �

Lemma 2. Let d | N ′. Then exactly one of d and d̄ is in A.

Proof. Since (d, d̄) = 1 and A is the N ′-set, we know that at most one of d and d̄ is in A.
Suppose that d ∉ A. By the maximality of A there exists d′

∈ A such that (d, d′) = 1. Hence d′
| d̄. Again, by the

maximality of A and d′
| d̄ we have d̄ ∈ A. This completes the proof of Lemma 2. �
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Lemma 3. We have

An ∪ {d̄ : d ∈ A′

n} = {lpn : l | p1 · · · pn−1}.

Proof. It is clear thatAn ∪{d̄ : d ∈ A′
n} ⊆ {lpn : l | p1 · · · pn−1}. Now let l | p1 · · · pn−1. Suppose that lpn ∉ An. Then lpn ∉ A.

By Lemma 2 we have lpn ∈ A. Thus lpn ∈ A′
n. So lpn = lpn ∈ {d̄ : d ∈ A′

n}. This completes the proof of Lemma 3. �

Lemma 4. Let D be a maximal N-set with the minimum size and A′
n = {d1, d2, . . . , ds}. Then there exists a permutation

i1, i2, . . . , is of 1, 2, . . . , s such that

d̄ij | djpn, α(dj) = α(d̄ij), j = 1, 2, . . . , s.

Proof. For d = pβ1
i1

· · · pβk
ik

with 0 < βj ≤ αij(1 ≤ j ≤ k), by themaximality ofD , we have d ∈ D if and only if pi1 · · · pik ∈ A.
So

|D| =


d∈A

α(d) =


d∈An

α(d) +


d∈A′

n

α(d). (2)

By Lemma 3 we have (α(1) = 1)

αn

n−1
i=1

(αi + 1) =


l|p1···pn−1

α(lpn) =


d∈An

α(d) +


d∈A′

n

α(d̄). (3)

Since D is a maximal N-set with the minimum size, we have

|D| = αn

n−1
i=1

(αi + 1). (4)

By (2)–(4) we have
d∈A′

n

α(d) =


d∈A′

n

α(d̄). (5)

In order to prove Theorem C, Erdős, Herzog and Schönheim proved a combinatorial theorem [1, Theorem 3]. We will
employ its following equivalent form to prove Lemma 4.

Theorem D. Let M be a squarefree integer. Denote by d̄′
= M/d for d | M. If F = {d1, d2, . . . , ds} is a set of divisors of M such

that di | d | M ⇒ d ∈ F , then there exists a permutation i1, i2, . . . , is of 1, 2, . . . , s such that d̄ij
′
| dj (1 ≤ j ≤ s).

In order to employ Theorem D, let M = p1 · · · pn−1 and F = A′
n. If di | d | M , then by the maximality of A we have

d ∈ A′
n. Noting that

d̄i
′
=

M
di

=
N ′/di
pn

=
d̄i
pn

,

by Theorem D there exists a permutation i1, i2, . . . , is of 1, 2, . . . , s such that

d̄ij
pn

| dj, 1 ≤ j ≤ s.

That is, d̄ij | djpn. Let djpn = d̄ijej (1 ≤ j ≤ s). Since dij ∈ A, by Lemma 2 we have d̄ij ∉ A. Thus d̄ij/pn ∉ A(1 ≤ j ≤ s) by the
maximality of A. So ej > 1 (1 ≤ j ≤ s), otherwise, d̄ij/pn = dj ∈ A, a contradiction. Thus, for 1 ≤ j ≤ s, we have

α(dj)α(pn) = α(djpn) = α(d̄ijej) = α(d̄ij)α(ej) ≥ α(d̄ij)α(pn).

Hence

α(dj) ≥ α(d̄ij), 1 ≤ j ≤ s. (6)

By (5) and (6) we have

α(dj) = α(d̄ij), 1 ≤ j ≤ s.

This completes the proof of Lemma 4. �

Lemma 5. We have D = R(d(D),N).
Proof. By the maximality of D and d(D) ⊆ D we have R(d(D),N) ⊆ D . By the definition of d(D) and R(d(D),N) we
have D ⊆ R(d(D),N). So D = R(d(D),N). This completes the proof of Lemma 5. �
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3. Proof of Theorems

Proof of Theorem 1. (a) ⇒ (b): By Lemma 1 we may assume that {pu+1, . . . , pn} ∩ D = ∅. Then pn ∉ A. By Lemma 2 we
have p̄n ∈ A. That is, p̄n ∈ A′

n. Let A′
n = {d1, d2, . . . , ds}. By Lemma 4 there exists a permutation i1, i2, . . . , is of 1, 2, . . . , s

such that

d̄ij | djpn, α(dj) = α(d̄ij).

Without loss of generality, we may assume that di1 = p̄n. Then α(d1) = α(d̄i1) = α(pn) = αn. Since α1 ≥ α2 ≥ · · · ≥ αu >
αu+1 = · · · = αn ≥ 2, we have d1 ∈ {pu+1, . . . , pn}, a contradiction with {pu+1, . . . , pn} ∩ D = ∅.

(b) ⇒ (c): It follows from Lemma 5.
(c) ⇒ (a): It follows from the arguments before Theorem 1.
This completes the proof of Theorem 1. �

Proof of Theorem 2. (a) ⇒ (b): By Lemma 1 we may assume that {pu+1, . . . , pn} ∩ D = ∅. Then pn ∉ A. By Lemma 2 we
have p̄n ∈ A. That is, p̄n ∈ A′

n. Let A′
n = {d1, d2, . . . , ds}. By Lemma 4 there exists a permutation i1, i2, . . . , is of 1, 2, . . . , s

such that d̄ij | djpn, α(dj) = α(d̄ij). As in Lemma 4, let djpn = d̄ijej(1 ≤ j ≤ s). Since αn = 1 and α(dj) = α(d̄ij), we have
α(ej) = 1(1 ≤ j ≤ s). Hence, for 1 ≤ v ≤ u and 1 ≤ j ≤ swe have pv - ej and

pv | dj ⇔ pv | d̄ij ⇔ pv - dij .

Thus, for 1 ≤ v ≤ uwe have

|{j : pv | dj}| = |{j : pv - dij}| = |{j : pv - dj}|.

So, for 1 ≤ v ≤ uwe have

|{j : pv | dj}| = |{j : pv - dj}| =
1
2
|A′

n|. (7)

Let d(D) = {h1, h2, . . . , ht}. Then hi - hj for all i ≠ j. Without loss of generality, we may assume that pn - hi (1 ≤ i ≤ r) and
pn | hj (r + 1 ≤ j ≤ t). Then each di ∈ A′

n is divisible by at least one of h1, h2, . . . , hr . Since D is a maximal N-set, we have
d(D) ⊆ A. So h1, h2, . . . , hr ∈ A′

n. Fix 1 ≤ v ≤ u. Without loss of generality, we may assume that h1, h2, . . . , hw are all hi
with pv - hi and pn - hi.

Let B = {d : pv - d, d ∈ A′
n}. By (7) we have

|{pvd : d ∈ B}| = |B| =
1
2
|A′

n|.

Since B ∩ {pvd : d ∈ B} = ∅, we have A′
n = B ∪ {pvd : d ∈ B}. Let d ∈ B. If w < i ≤ r , then by pv | hi we have hi - d. If

r < i ≤ t , then by pn | hi and d ∈ A′
n we have hi - d. That is, d is not divisible by any hi with i > w. So d is divisible by one of

h1, h2, . . . , hw . Thus each d′
∈ A′

n is divisible by one of h1, h2, . . . , hw . Since w ≤ r and h1, h2, . . . , hr ∈ A′
n and hi - hj for

all i ≠ j, we have w = r . Thus, we have proved that for all 1 ≤ v ≤ uwe have pv - hi (1 ≤ i ≤ r).
Now we have proved that for any given i with 1 ≤ i ≤ t , if pn - hi, then pv - hi for any 1 ≤ v ≤ u. Since

αu+1 = · · · = αn = 1, the primes pu+1, . . . , pn are in the same position. Hence, for any given i, j with 1 ≤ i ≤ t and
u + 1 ≤ j ≤ n, if pj - hi, then pv - hi for any 1 ≤ v ≤ u. This means that for 1 ≤ i ≤ t , if pu+1 · · · pn - hi, then
(p1 · · · pu, hi) = 1, i.e., hi | pu+1 · · · pn. So, for each 1 ≤ i ≤ t , either pu+1 · · · pn | hi or hi | pu+1 · · · pn. Since hi - hj for all
i ≠ j, we have either pu+1 · · · pn | hi for all 1 ≤ i ≤ t or hi | pu+1 · · · pn for all 1 ≤ i ≤ t . If pu+1 · · · pn | hi for all 1 ≤ i ≤ t ,
then pn | hi for all 1 ≤ i ≤ t . Thus pn | d for all d ∈ A, a contradiction with p̄n ∈ A and pn - p̄n. Hence hi | pu+1 · · · pn for all
1 ≤ i ≤ t . That is,

d(D) ⊆ {d : d | pu+1 · · · pn}.

(b) ⇒ (c): Let D ′
= D ∩ {d : d | pu+1 · · · pn}. Since D is an N-set, D ′ is a pu+1 · · · pn-set. For d | pu+1 · · · pn, if

d ∉ D ′, then d ∉ D . Since D is a maximal N-set, there exists l ∈ D such that (d, l) = 1. By the definition of d(D), l
is divisible by an element l′ of d(D). So (d, l′) = 1. By d(D) ⊆ {d : d | pu+1 · · · pn} we have l′ ∈ D ′. Thus we have
proved that D ′ is a maximal pu+1 · · · pn-set. By d(D) ⊆ {d : d | pu+1 · · · pn} we have d(D ′) = d(D). By Lemma 5 we have
D ′

= R(d(D ′), pu+1 · · · pn) = R(d(D), pu+1 · · · pn). Again, by Lemma 5 and d(D) ⊆ {d : d | pu+1 · · · pn} we have

D = R(d(D),N) =


dd′

: d |
N

pu+1 · · · pn
, d′

∈ R(d(D), pu+1 · · · pn)


=


dd′

: d |
N

pu+1 · · · pn
, d′

∈ D ′


.

(c) ⇒ (a): It follows from the arguments before Theorem 1.
This completes the proof of Theorem 2. �
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Proof of Theorem 3. Suppose that D is a maximal N-set with the minimum size. By Theorem 2 we have

d(D) ⊆ {d : d | pu+1 · · · pn}.

Since no two elements of D are coprime, we know that no two elements of d(D) are coprime. That is (a). By the definition
of d(D) we know that no element of d(D) is divisible by another element of d(D). That is (b). Let l | pu+1 · · · pn. If l ∈ D ,
then l is divisible by an element of d(D). If l ∉ D , then, by the maximality of D , there exists d1 ∈ D with (d1, l) = 1. Since
d1 ∈ D , there exists d ∈ d(D) with d | d1. Hence (d, l) = 1. That is (c). Hence d(D) is one of T1, . . . , Tk. By Lemma 5 we
have D = R(d(D),N). Hence D is one of R(T1,N), . . . , R(Tk,N).

Now we show that each R(Ti,N) is a maximal N-set with the minimum size.
Since no two elements of Ti are coprime, we know that no two elements of R(Ti,N) are coprime. That is, R(Ti,N) is an

N-set. In order to prove that R(Ti,N) is maximal, it is enough to prove that for any l > 1 with l | N and l ∉ R(Ti,N) there
exists d ∈ R(Ti,N) with (d, l) = 1. It is enough to prove that there exists d ∈ Ti with (d, l) = 1. Let l1 = (l, pu+1 · · · pn).
Noting that Ti is a set of positive divisors of pu+1 · · · pn, it is enough to prove that there exists d ∈ Ti with (d, l1) = 1. Since
l ∉ R(Ti,N), we know that l is not divisible by any element of Ti. So l1 is not divisible by any element of Ti. By the definition
of Ti (i.e. (c) of Theorem 3), there exists d ∈ Ti with (d, l1) = 1. Thuswe have proved that R(Ti,N) is a maximalN-set. Noting
that no element of Ti is divisible by another element of Ti, we have d(R(Ti,N)) = Ti. Since Ti ⊆ {d : d | pu+1 · · · pn}, by
Theorem 2 we have R(Ti,N) has the minimum size. This completes the proof of Theorem 3. �

4. Final remarks

Finally we pose the following problems for further research.

Problem 3. Fix t ≥ 2 and N = pα1
1 · · · pαn

n , α1 ≥ α2 ≥ · · · ≥ αn. Let D be a set of positive divisors d of N which have exactly
t distinct prime factors (i.e. ω(d) = t) such that no two members of the set being coprime and no additional member may
be included in D without contradicting this requirement. Determinem(N, t) = min |D|.

Problem 4. Fix t ≥ 2 and N = pα1
1 · · · pαn

n , α1 ≥ α2 ≥ · · · ≥ αn. Let D be a set of positive divisors d of N which have
exactly t prime factors (i.e. Ω(d) = t) such that no two members of the set being coprime and no additional member may
be included in D without contradicting this requirement. DetermineM(N, t) = min |D|.
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