Two-Scale H omogenization of Non-Linear D egenerate Evolution Equations

G. W. Clark
Department of Mathematical Sciences, Virginia Commonwealth University, Richmond, Virginia 23284 E-mail: gwclark@ vcu.edu and

L. A. Packer
Department of Mathematics, University of Charleston, Charleston, South Carolina 29424
E-mail: packerl@ cofc.edu
Submitted by Mimmo Iannelli

R eceived M arch 15, 1999

U sing the notion of two-scale convergence developed by Allaire, the homogenization of a degenerate non-linear evolution equation with periodically oscillating coefficients is presented. A two-scale homogenized system is obtained as the limit of the periodic problem. M onotone operator methods and two-scale convergence are employed to show that the solutions of the periodic problem converge to the unique solution of the homogenized system. Homogenized initial conditions are also obtained and the sense in which they hold for the homogenized initial value problem is made specific. © 1999 A cademic Press

1. INTRODUCTION

We are concerned with the homogenization of non-linear degenerate evolution equations of the abstract form,

$$
\begin{equation*}
\frac{\partial}{\partial t} \mathscr{B}^{\varepsilon} u^{\varepsilon}(t)+\mathscr{A}^{\varepsilon}\left(t, u^{\varepsilon}(t)\right)=f(t) \tag{1.1}
\end{equation*}
$$

where $\mathscr{B}^{\varepsilon}$ is a linear operator that is non-negative and symmetric, but degenerate, $\mathscr{A}^{\varepsilon}$ is a non-linear monotone operator, and both operators are ε-periodic in the spatial variables. Degenerate evolution equations of this form arise in models of electrolytic microcapacitors. These are spongelike structures (see [15] for a detailed account) and the highly singular nature of their microscopic geometry necessitates some form of continuous approximation, such as homogenization, to model their behavior. In the distributed capacitance model described in [8], the structure is modeled as microcapacitor cells embedded in a macroscopic conducting medium. The operator, \mathscr{B}, is then necessarily degenerate since it involves capacitance effects which are localized in the microcapacitor cells. Non-linear resistance effects, incorporated in modeling the interface between the cells and the conducting medium, give rise to nonlinearities in \mathscr{A}. Similar non-linear degenerate evolution equations also arise in problems of fluid flow and diffusion of heat. See, for example, [16, Chap. 3, and the references therein].

W ell posedness and other results concerning such equations, as well as a list of applications and a comprehensive bibliography are given in [14,5]. Homogenization of non-linear second-order elliptic equations was considered as an example of the application of two-scale convergence in [1]. For an overview of homogenization of diffusion equations as well as an extensive bibliography see [9, 10]. Homogenization of systems of non-degenerate parabolic equations modeling fluid flow in a porous medium has been considered in [2, 4, 3, 6]. In [7] we considered the homogenization of linear implicit and degenerate evolution equations using the method of two-scale convergence. Here we show how the two-scale method can be applied to non-linear degenerate evolution equations. In particular, we consider a model of the form above in which the operator $\mathscr{B}^{\varepsilon}$ is non-negative, but not necessarily strictly positive, and so the equation is actually of elliptic-parabolic type. The combination of the nonlinearity of the second-order term with this degeneracy is an obstacle in the homogenization process. In addition the degenerate term forces us to carefully keep track of the effect of homogenization on the initial condition, particularly on the spaces involved since we wish to allow a relatively large set of possible initial conditions. We see that the initial condition satisfied by the resulting homogenized problem is directly influenced by the positivity of $\mathscr{B}^{\varepsilon}(x)$. The results of this paper are applied in [12] to give an alternative derivation of the non-linear microstructure models presented in [8].

2. TWO-SCALE CONVERGENCE WITH A PARAMETER

Suppose that $2 \leq p<\infty$ and that Ω is a bounded open subset of \mathbf{R}^{N} with $\partial \Omega$ a C^{1} manifold, $Y=[0,1]^{N}$, and G is a subset of \mathbf{R}^{M}. (In what
follows, G represents the domain of a parameter. Typically $G=[0, T]$.) We denote spaces of Y-periodic functions by a subscript \#. For example, $C_{\#}(\Omega)$ is the space of functions which are continuous and Y-periodic on Ω. We first quote some definitions and theorems from [1]. Since the situation we consider here involves homogenization with respect to some, but not all, variables, we have modified Allaire's results as in [7] to allow for homogenization with a parameter (which we denote by t). These changes do not affect the proofs, which can be found in [1], in any essential way.

Definition 2.1. A function, $\psi(x, t, y)$, which is Y-periodic in y and which satisfies

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega \times G} \psi\left(x, t, \frac{x}{\varepsilon}\right)^{p^{\prime}} d x d t=\int_{\Omega \times G} \int_{Y} \psi(x, t, y)^{p^{\prime}} d y d x d t \tag{2.1}
\end{equation*}
$$

is called an admissible test function. Here p^{\prime} is the conjugate of p, that is, $1 / p+1 / p^{\prime}=1$.
Definition 2.2. A sequence $\left\{u^{\varepsilon}\right\} \subseteq L^{p}(\Omega \times G)$ two-scale converges to $u_{0}(x, t, y) \in L^{p}(\Omega \times G \times Y)$ if for any admissible test function $\psi(x, t, y)$,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega} \int_{G} u^{\varepsilon}(x, t) \psi\left(x, t, \frac{x}{\varepsilon}\right) d t d x=\int_{\Omega} \int_{G} \int_{Y} u_{0}(x, t, y) \psi(x, t, y) d y d t d x \tag{2.2}
\end{equation*}
$$

Theorem 2.1. If $\left\{u^{\varepsilon}\right\}$ is a bounded sequence in $L^{p}(\Omega \times G)$, then there exists a function $u_{0}(x, t, y)$ in $L^{p}(\Omega \times G \times Y)$ and a subsequence of $\left\{u^{\varepsilon}\right\}$ which two-scale converges to u_{0}. Moreover, the subsequence $\left\{u^{\varepsilon}\right\}$ converges weakly in $L^{p}(\Omega \times G)$ to $u(x, t)=\int_{Y} u_{0}(x, t, y) d y$.
W hen the sequence, $\left\{u^{\varepsilon}\right\}$, is $W^{1, p_{-}}$-bounded, we get:
Theorem 2.2. Let $\left\{u^{\varepsilon}\right\}$ be a bounded sequence in $L^{p}\left(G ; W^{1, p}(\Omega)\right)$ that converges weakly to u in $L^{p}\left(G ; W^{1, p}(\Omega)\right)$. Then $\left\{u^{\varepsilon}\right\}$ two-scale converges to u, and there is a function $u_{1}(x, t, y)$ in $L^{p}\left(\Omega \times G ; W_{\#}^{1, p}(Y) / \mathbf{R}\right)$ such that, up to a subsequence, $\nabla_{x} u^{\varepsilon}$ two-scale converges to $\nabla_{x} u(x, t)+\nabla_{y} u_{1}(x, t, y)$.

3. A DEGENERATE NON-LINEAR EVOLUTION EQUATION

We propose to extend our study of the two-scale homogenization of evolution equations from [7] to non-linear evolution equations. Let V be a separable, reflexive Banach space and suppose that we have $w_{0} \in V$, and that for all $\varepsilon>0$ we are given a monotone, continuous, symmetric linear operator $\mathscr{B}^{\varepsilon}: V \rightarrow V^{\prime}$ and a family of monotone operators $\mathscr{A}^{\varepsilon}(t, \cdot)$:
$V \rightarrow V^{\prime}$. For $p \geq 2$ and $f \in L^{p^{\prime}}\left(0, T ; V^{\prime}\right)$, we consider the problem of finding $u^{\varepsilon} \in L^{p}(0, T ; V)$ such that

$$
\begin{equation*}
\frac{\partial}{\partial t} \mathscr{B}^{\varepsilon} u^{\varepsilon}(t)+\mathscr{A}^{\varepsilon}\left(t, u^{\varepsilon}(t)\right)=f(t) \quad \text { in } V^{\prime} \tag{3.1}
\end{equation*}
$$

at a.e. $t \in[0, T]$, and such that $\mathscr{B}^{\varepsilon} u^{\varepsilon}(0)=\mathscr{B}^{\varepsilon} w_{0}$ in some sense. We then seek to identify the limiting behavior of the problem as $\varepsilon \rightarrow 0$.
A ssume that for some $p \geq 2$ and each i and $j, 1 \leq i, j \leq N$, we are given a function $a_{i j}: \Omega \times(0, T) \times \mathbf{R} \rightarrow \mathbf{R}$ such that
$a_{i j}(y, t, \xi)$ is measurable in t, continuous in y and ξ and Y-periodic in y,

$$
\begin{gather*}
\left|a_{i j}(y, t, \xi)\right| \leq c|\xi|^{p-1}+k(y, t) \text { for } y \in Y, 0 \leq t \leq T, \xi \in \mathbf{R}, \tag{3.3}\\
\left(a_{i j}\left(y, t, \xi_{j}\right)-a_{i j}\left(y, t, \eta_{j}\right)\right)\left(\xi_{i}-\eta_{i}\right)>0 \quad \text { for all } \vec{\xi} \neq \vec{\eta} \text { in } \mathbf{R}^{N}, \tag{3.4}\\
a_{i j}\left(y, t, \xi_{j}\right) \xi_{i} \geq \alpha|\vec{\xi}|^{p}-k(y, t) \quad \text { for all } \vec{\xi} \in \mathbf{R}^{N},
\end{gather*}
$$

where $\alpha>0, k \in L^{p^{\prime}}(\Omega \times(0, T))$ and such that $k(y, t)$ is Y-periodic in y. (H ere and in what follows, we employ an extended summation convention, summing (from 1 to N) on all repeated indices, including those present in the argument of the nonlinear functions $a_{i j}$). A lso, let $F \in L^{p^{\prime}}(\Omega \times(0, T))$ and define $V=W_{0}^{1, p}(\Omega)$ and $\mathscr{V}=L^{p}(0, T ; V)$. Let $b(x, y) \geq 0$ be continuous and Y-periodic in y such that $|b(x, y)| \leq b^{*}(x) \in L^{q *}(\Omega)$ where $q^{*} \equiv p^{*} /\left(p^{*}-2\right)$ and p^{*} is the Sobolev conjugate of p. Recall that the imbedding $V \hookrightarrow L^{p^{*}}(\Omega)$ is continuous. For u and v in V define

$$
\begin{aligned}
\mathscr{A}^{\varepsilon}(t, u)(v) & =\int_{\Omega}\left[a_{i j}\left(\frac{x}{\varepsilon}, t, \frac{\partial u}{\partial x_{j}}(x)\right) \frac{\partial v}{\partial x_{i}}(x)\right] d x, \\
\mathscr{B}^{\varepsilon} u(v) & =\int_{\Omega} b\left(x, \frac{x}{\varepsilon}\right) u(x) v(x) d x,
\end{aligned}
$$

and

$$
f(t)(v)=\int_{\Omega} F(x, t) v(x) d x .
$$

From the assumptions above, we have that $\mathscr{B}^{\varepsilon} \in \mathscr{L}\left(V, V^{\prime}\right)$. For each $\varepsilon>0$, write $b^{\varepsilon}(x)=b\left(x, \frac{x}{\varepsilon}\right)$ and assume that w_{0} is a measurable function
on Ω such that

$$
\begin{equation*}
\int_{\Omega} \sup _{y \in Y}\{b(x, y)\}\left|w_{0}(x)\right|^{2} d x<\infty . \tag{3.6}
\end{equation*}
$$

Note that the Y-periodicity of b and Lemma 1.3 of [1] then show that $\left\|b_{\varepsilon}^{1 / 2} w_{0}\right\|_{L^{2}(\Omega)}$ is bounded independently of ε.

Proposition 3.1. For each $\varepsilon>0$ there is a unique solution u^{ε} in \mathscr{V} of

$$
\begin{align*}
\frac{\partial}{\partial t}\left(\mathscr{B}^{\varepsilon} u^{\varepsilon}(t)\right)+\mathscr{A}^{\varepsilon}\left(t, u^{\varepsilon}(t)\right) & =f(t) \quad \text { in } \mathscr{V}^{\prime} \tag{3.7}\\
\lim _{t \rightarrow 0} b_{\varepsilon}^{1 / 2}(x) u^{\varepsilon}(t) & =b_{\varepsilon}^{1 / 2}(x) w_{0} \quad \text { in } L^{2}(\Omega) . \tag{3.8}
\end{align*}
$$

Furthermore, for $1 \leq i \leq N, a_{i j}\left(\frac{x}{\varepsilon}, t, \partial u^{\varepsilon} / \partial x_{j}(x)\right)$ is bounded independently of ε in $L^{p^{\prime}}(\Omega \times(0, T))$ and $b_{\varepsilon}^{1 / 2} u^{\varepsilon}(t)$ is bounded in $L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$.

Proof. Fix $\varepsilon>0$ and $0 \leq t \leq T$. From (3.5) we have that there is a $C>0$ (independent of t and ε) such that for any $v \in V$:

$$
\begin{equation*}
\mathscr{A}^{\varepsilon}(t, v)(v) \geq C\left[\|v\|_{V}^{p}-\|k(\cdot, t)\|_{L^{p^{\prime}}(\Omega)}\right] . \tag{3.9}
\end{equation*}
$$

Thus for each ε and $t, \mathscr{A}^{\varepsilon}(t, \cdot)$ is coercive and so its realization in \mathscr{V} is coercive. From (3.4), $\mathscr{A}^{\varepsilon}(t, \cdot)$: $V \rightarrow V^{\prime}$ is strictly monotone, and from (3.2) and (3.3) it is hemicontinuous and bounded. Furthermore, since, for each t with $0 \leq t \leq T, \mathscr{B}^{\varepsilon}$ is continuous, linear, symmetric, and monotone on $L^{2}(\Omega)$, we may define a seminorm on $L^{2}(\Omega)$ by $\left\langle\mathscr{B}^{\varepsilon} \cdot, \cdot\right\rangle$. Following Showalter [14], denote the completion of the resulting seminormed space by V_{b}^{e} and the dual Hilbert space by $\left(V_{b}^{e}\right)^{\prime}$ with scalar product satisfying

$$
\left(\mathscr{B}^{\varepsilon} u, \mathscr{B}^{\varepsilon} v\right)_{\left(V_{b}^{\varepsilon}\right)^{\prime}}=\mathscr{B}^{\varepsilon} u(v) .
$$

From Corollary 3.6.3. of [14] we have that, given any ξ_{0} in $\left(V_{b}^{s}\right)^{\prime}$, there is a solution of (3.7) satisfying

$$
\begin{equation*}
\lim _{t \rightarrow 0} \mathscr{B}^{\varepsilon} u^{\varepsilon}(t)=\xi_{0} . \tag{3.10}
\end{equation*}
$$

Setting $\xi_{0}=b_{\varepsilon}^{1 / 2} w_{0}$ with w_{0} defined as above, (3.6) gives that ξ_{0} lies in $\left(V_{b}^{\varepsilon}\right)^{\prime}$. Thus (3.10) can be written as (3.8). N ote that since the equation (3.7) holds in V^{\prime} we have that

$$
\begin{equation*}
\left\langle\frac{\partial}{\partial t}\left(\mathscr{B}^{\varepsilon} u^{\varepsilon}(t)\right), u^{\varepsilon}(t)\right\rangle+\left\langle\mathscr{A}^{\varepsilon}\left(t, u^{\varepsilon}(t)\right), u^{\varepsilon}(t)\right\rangle=\left\langle f(t), u^{\varepsilon}(t)\right\rangle \tag{3.11}
\end{equation*}
$$

for $0 \leq t \leq T$, where $\langle g, v\rangle=g(v)$ for $g \in V^{\prime}, v \in V$. Since \mathscr{B}^{s} is symmetric and does not depend on t,

$$
\begin{align*}
\frac{\partial}{\partial t}\left\langle\left(\mathscr{B}^{\varepsilon} u^{\varepsilon}\right), u^{\varepsilon}\right\rangle & =\left\langle\mathscr{B}^{\varepsilon} \frac{\partial u^{\varepsilon}}{\partial t}, u^{\varepsilon}\right\rangle+\left\langle\mathscr{B}^{\varepsilon} u^{\varepsilon}, \frac{\partial u^{\varepsilon}}{\partial t}\right\rangle \\
& =2\left\langle\frac{\partial}{\partial t}\left(\mathscr{B}^{\varepsilon} u^{\varepsilon}\right), u^{\varepsilon}\right\rangle . \tag{3.12}
\end{align*}
$$

Suppose that u^{ε} and v^{ε} are both solutions of (3.7), (3.8). Then subtracting yields

$$
\frac{\partial}{\partial t}\left(\mathscr{B}^{\varepsilon}\left(u^{\varepsilon}(t)-v^{\varepsilon}(t)\right)\right)+\mathscr{A}^{\varepsilon}\left(t, u^{\varepsilon}(t)\right)-\mathscr{A}^{\varepsilon}\left(t, v^{\varepsilon}(t)\right)=0 \quad \text { in } \mathscr{V}^{\prime}
$$

A pplying this to $u^{\varepsilon}-v^{\varepsilon}$, integrating in t and applying (3.12) gives

$$
\begin{aligned}
& \frac{1}{2} \mathscr{B}^{\varepsilon}\left(u^{\varepsilon}(t)-v^{\varepsilon}(t)\right)\left(u^{\varepsilon}(t)-v^{\varepsilon}(t)\right) \\
& \quad+\int_{0}^{t}\left(\mathscr{A}^{\varepsilon}\left(t, u^{\varepsilon}(t)\right)-\mathscr{A}^{\varepsilon}\left(t, v^{\varepsilon}(t)\right)\right)\left(u^{\varepsilon}(t)-v^{\varepsilon}(t)\right) d t=0 .
\end{aligned}
$$

Since $\mathscr{B}^{\varepsilon}$ is monotone and $\mathscr{A}^{\varepsilon}$ is strictly monotone this gives $u^{\varepsilon}(t)-$ $v^{\varepsilon}(t)=0$, thus establishing uniqueness. Finally, we prove the boundedness results. Integrating (3.11) in t gives

$$
\begin{gather*}
\frac{1}{2}\left\langle\left(\mathscr{B}^{\varepsilon} u^{\varepsilon}(t)\right), u^{\varepsilon}(t)\right\rangle+\int_{0}^{t}\left\langle\mathscr{A}^{\varepsilon}\left(t, u^{\varepsilon}(t)\right), u^{\varepsilon}(t)\right\rangle d t \\
=\int_{0}^{t}\left\langle f(t), u^{\varepsilon}(t)\right\rangle d t+\frac{1}{2}\left\|b_{\varepsilon}^{1 / 2} w_{0}\right\|_{L^{2}(\Omega)}^{2} . \tag{3.13}
\end{gather*}
$$

Thus (3.9) and the monotonicity of $\mathscr{B}^{\varepsilon}$ imply that

$$
\left\|u^{\varepsilon}\right\|_{\mathscr{Y}}^{p} \leq k_{1}+k_{2}\left(\|f\|_{\mathscr{C}^{\prime}}\left\|u^{\varepsilon}\right\|_{\mathscr{V}}+\left\|b_{\varepsilon}^{1 / 2} w_{0}\right\|_{L^{2}(\Omega)}^{2}\right),
$$

and since $p>1$ and $b_{\varepsilon}^{1 / 2} w_{0}$ is uniformly bounded in $L^{2}(\Omega)$, this gives that u^{ε} is bounded in \mathscr{V} (independently of ε). From (3.3):

$$
\begin{align*}
& \left\|a_{i j}\left(\frac{x}{\varepsilon}, t, \frac{\partial u^{\varepsilon}}{\partial x_{j}}(x)\right)\right\|_{L^{p^{\prime}(\Omega \times(0, T))}} \\
& \quad \leq c \sum_{j=1}^{N}\left\|\frac{\partial u^{\varepsilon}}{\partial x_{j}}\right\|_{L^{p}(\Omega \times(0, T))}^{p-1}+N\|k\|_{L^{p}(\Omega \times(0, T))} . \tag{3.14}
\end{align*}
$$

Remark 3.1. In the following we do not attempt to find optimal spaces for initial conditions since these change with each ε. The assumption (3.6) provides us with a rather large space from which to draw initial conditions for any $\varepsilon>0$ and we see later that (3.6) is quite convenient.
With the bounds of Proposition 3.1 and Theorems 2.1 and 2.2, we can obtain functions $u \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right), u_{1} \in L^{p}\left(\Omega \times(0, T) ; W_{\#}^{1, p}(Y) /\right.$ R), $u^{*} \in L^{2}(\Omega \times Y)$, and g_{i} (for $\left.1 \leq i \leq N\right)$ in $L^{p^{\prime}}(\Omega \times(0, T) \times Y)$ such that for some subsequence $u^{\varepsilon}, u^{\varepsilon} \xrightarrow{2} u$, and $u^{\varepsilon} \rightharpoonup u$ weakly in \mathscr{V}, $\nabla_{x} u^{\varepsilon} \xrightarrow{2} \nabla_{x} u(x, t)+\nabla_{y} u_{1}(x, t, y), \quad b_{\varepsilon}^{1 / 2} u^{\varepsilon}(T) \xrightarrow{2} u^{*}(x, y)$, and $a_{i j}\left(\frac{x}{\varepsilon}, t, \partial u^{\varepsilon} / \partial x_{j}(x, t)\right) \xrightarrow{2} g_{i}$ for $1 \leq i \leq N$.

For any smooth test function ψ we have

$$
\frac{\partial}{\partial t}\left(\mathscr{B}^{\varepsilon} u^{\varepsilon}(t)\right) \psi(t)+\mathscr{A}^{\varepsilon}\left(t, u^{\varepsilon}(t)\right) \psi(t)=f(t) \psi(t) .
$$

Integrating this in t, we obtain

$$
\begin{align*}
& -\int_{0}^{T} \int_{\Omega} b\left(x, \frac{x}{\varepsilon}\right) u^{\varepsilon}(x, t) \psi^{\prime}(x, t) d x d t+\int_{0}^{T} \int_{\Omega} a_{i j}\left(\frac{x}{\varepsilon}, t, \frac{\partial u^{\varepsilon}}{\partial x_{j}}\right) \frac{\partial \psi}{\partial x_{i}} d x d t \\
& \quad=\int_{\Omega} b\left(x, \frac{x}{\varepsilon}\right) u^{\varepsilon}(x, 0) \psi(x, 0) d x-\int_{\Omega} b\left(x, \frac{x}{\varepsilon}\right) u^{\varepsilon}(x, T) \psi(x, T) d x \\
& \quad+\int_{0}^{T} \int_{\Omega} F(x, t) \psi(x, t) d x d t \tag{3.15}
\end{align*}
$$

Choose $\varphi \in W^{1, p}\left(0, T ; C_{0}^{\infty}(\Omega)\right)$ and $\varphi_{1} \in W^{1, p}\left(0, T ; C_{0}^{\infty}\left(\Omega ; C_{\#}^{\infty}(Y)\right)\right)$. Note that φ_{1} is Y-periodic in $y=\frac{x}{\varepsilon}$. Set $\psi(x, t)=\varphi(x, t)+\varepsilon \varphi_{1}\left(x, t, \frac{x}{\varepsilon}\right)$ in (3.15) to obtain

$$
\begin{gather*}
-\int_{0}^{T} \int_{\Omega} b\left(x, \frac{x}{\varepsilon}\right) u^{\varepsilon}(x, t)\left(\varphi^{\prime}(x, t)+\varepsilon \varphi_{1}^{\prime}\left(x, t, \frac{x}{\varepsilon}\right)\right) d x d t \\
+\int_{0}^{T} \int_{\Omega} a_{i j}\left(\frac{x}{\varepsilon}, t, \frac{\partial u^{\varepsilon}}{\partial x_{j}}\right)\left(\frac{\partial \varphi}{\partial x_{i}}+\varepsilon \frac{\partial \varphi_{1}}{\partial x_{i}}+\frac{\partial \varphi_{1}}{\partial y_{i}}\right) d x d t \\
=\int_{\Omega} b^{\varepsilon}(x) w_{0}(x)\left(\varphi(x, 0)+\varepsilon \varphi_{1}\left(x, 0, \frac{x}{\varepsilon}\right)\right) d x \\
\quad-\int_{\Omega} b^{\varepsilon}(x) u^{\varepsilon}(x, T)\left(\varphi(x, T)+\varepsilon \varphi_{1}\left(x, T, \frac{x}{\varepsilon}\right)\right) d x \\
\quad+\int_{0}^{T} \int_{\Omega} F(x, t)\left(\varphi(x, t)+\varepsilon \varphi_{1}\left(x, t, \frac{x}{\varepsilon}\right)\right) d x d t \tag{3.16}
\end{gather*}
$$

where the ' denotes $\frac{\partial}{\partial t}$. Note that $b \varphi, b \varphi^{\prime}$, and $\partial \varphi / \partial x_{i}+\varepsilon\left(\partial \varphi_{1} / \partial x_{i}\right)+$ $\partial \varphi_{1} / \partial y_{i}$ are admissible (in the sense of (2.1)). U sing the two-scale convergence of $u^{\varepsilon}, \nabla_{x} u^{\varepsilon}, b_{\varepsilon}^{1 / 2} u^{\varepsilon}(T)$, and $a_{i j}\left(\frac{x}{\varepsilon}, t, \partial u / \partial x_{j}(x)\right)$, and letting $\varepsilon \rightarrow 0$ in (3.16) we get

$$
\begin{align*}
-\int_{0}^{T} \int_{\Omega} \int_{Y} b(x, y) u \varphi^{\prime} d y d x d t+\int_{0}^{T} \int_{\Omega} \int_{Y} g_{i}(x, y)\left(\frac{\partial \varphi}{\partial x_{i}}+\frac{\partial \varphi_{1}}{\partial y_{i}}\right) d y d x d t \\
\quad=\int_{0}^{T} \int_{\Omega} F(x, t) \varphi(x, t) d x d t+\int_{\Omega} \int_{Y} b(x, y) w_{0}(x) \varphi(x, 0) d y d x \\
\quad-\int_{\Omega} \int_{Y} b^{1 / 2}(x, y) u^{*}(x, y) \varphi(x, T) d y d x \tag{3.17}
\end{align*}
$$

From (3.17) we note that u and \vec{g} satisfy

$$
\int_{0}^{T} \int_{\Omega} \int_{Y} g_{i} \frac{\partial \varphi_{1}}{\partial y_{i}} d y d x d t=0,
$$

and

$$
\begin{gather*}
-\int_{0}^{T} \int_{\Omega}\left(\int_{Y} b d y\right) u \varphi^{\prime} d x d t+\int_{0}^{T} \int_{\Omega}\left(\int_{Y} g_{i} d y\right)\left(\frac{\partial \varphi}{\partial x_{i}}\right) d x d t \\
=\int_{0}^{T} \int_{\Omega} F \varphi d x d t+\int_{\Omega}\left(\int_{Y} b d y\right) w_{0}(x) \varphi(x, 0) d x \\
-\int_{\Omega} \int_{Y} b^{1 / 2}(x, y) u^{*}(x, y) d y \varphi(x, T) d x \tag{3.18}
\end{gather*}
$$

for any φ and φ_{1} as chosen above. Thus

$$
\begin{equation*}
-\frac{\partial}{\partial y_{i}} g_{i}(x, y)=0 \quad \text { in }[0, T] \times \Omega \times Y \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\int_{Y} b d y\right) \frac{\partial u}{\partial t}-\frac{\partial}{\partial x_{i}}\left(\int_{Y} g_{i} d y\right)=F \quad \text { in }[0, T] \times \Omega \tag{3.20}
\end{equation*}
$$

Furthermore, applying (3.20) in (3.18) gives us

$$
\begin{equation*}
\left(\int_{Y} b d y\right) u(T)=\int_{Y} b^{1 / 2} u^{*} d y \tag{3.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\int_{Y} b d y\right) u(0)=\left(\int_{Y} b d y\right) w_{0} . \tag{3.22}
\end{equation*}
$$

Before proceeding we make two useful observations which we state as lemmas.

Lemma 3.2.

$$
\left(\int_{Y} b d y\right)^{1 / 2} u(0)=\left(\int_{Y} b(x, y) d y\right)^{1 / 2} w_{0}(x)
$$

and $\left(\int_{Y} b(x, y) d y\right)^{1 / 2} w_{0}(x)$ is in $L^{2}(\Omega)$.
Proof. The equality comes directly from (3.22). From Lemma 1.3 of [1] we have that

$$
\int_{\Omega} \int_{Y} b(x, y) w_{0}^{2}(x) d y d x=\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left(b_{\varepsilon}^{1 / 2}(x) w_{0}(x)\right)^{2} d x
$$

and thus (3.6) gives the stated result.
Lemma 3.3.

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega} b_{\varepsilon}(x)\left(u^{\varepsilon}(x, T)\right)^{2} d x \geq \int_{\Omega} \int_{Y} b(x, y) d y|u(x, T)|^{2} d x
$$

Proof. A pplying H older's inequality to (3.21) yields

$$
\left(\int_{Y} b d y\right)^{1 / 2} u(T) \leq\left(\int_{Y}\left(u^{*}\right)^{2} d y\right)^{1 / 2}
$$

and Proposition 1.6 of [1] gives

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega} b_{\varepsilon}(x)\left(u^{\varepsilon}(x, T)\right)^{2} d x \geq\left\|u^{*}\right\|_{L^{2}(\Omega \times Y)}^{2},
$$

from which the result follows.
We must now identify g_{i} in terms of a, u, and u_{1}. Following Allaire in [1], for $1 \leq i \leq N$ let φ_{i} and Φ be in $C_{0}^{\infty}\left(\Omega \times(0, T) ; C_{\#}^{\infty}(Y)\right)$ and for $\varepsilon>0$ and $\lambda>0$ define test functions

$$
\mu_{i}^{\varepsilon}(x)=\frac{\partial}{\partial x_{i}}\left[u(x)+\varepsilon \Phi\left(x, t, \frac{x}{\varepsilon}\right)\right]+\lambda \varphi_{i}\left(x, t, \frac{x}{\varepsilon}\right) .
$$

N ote that $\mu_{i}^{\varepsilon}(x)$ and (because of the continuity assumption) $a_{i j}\left(\frac{x}{\varepsilon}, t, \mu_{i}^{\varepsilon}(x)\right)$ are admissible test functions and

$$
\mu_{i}^{\varepsilon}(x) \xrightarrow{2} \mu_{i}^{0}=\frac{\partial u}{\partial x_{i}}+\frac{\partial \Phi}{\partial y_{i}}(x, t, y)+\lambda \varphi_{i}(x, t, y) .
$$

U sing the monotonicity condition (3.4) yields

$$
\begin{gathered}
\int_{0}^{T} \int_{\Omega}\left(a_{i j}\left(\frac{x}{\varepsilon}, t, \frac{\partial u^{\varepsilon}}{\partial x_{j}}(x)\right)-a_{i j}\left(\frac{x}{\varepsilon}, t, \mu_{j}^{\varepsilon}(x)\right)\right) \\
\quad \times\left(\frac{\partial u^{\varepsilon}}{\partial x_{i}}(x, t)-\mu_{i}^{\varepsilon}(x)\right) d x d t \geq 0 .
\end{gathered}
$$

Expanding and employing (3.13) at $t=T$ yields

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega} F(x) u^{\varepsilon}(x, t) d x d t-\frac{1}{2}\left\|b_{\varepsilon}^{1 / 2} u^{\varepsilon}(T)\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{2}\left\|b_{\varepsilon}^{1 / 2} w_{0}\right\|_{L^{2}(\Omega)}^{2} \\
&+\int_{0}^{T} \int_{\Omega}\left(-a_{i j}\left(\frac{x}{\varepsilon}, t, \mu_{j}^{\varepsilon}\right) \frac{\partial u^{\varepsilon}}{\partial x_{i}}-a_{i j}\left(\frac{x}{\varepsilon}, t, \frac{\partial u^{\varepsilon}}{\partial x_{j}}\right) \mu_{i}^{\varepsilon}\right. \\
&\left.+a_{i j}\left(\frac{x}{\varepsilon}, t, \mu_{j}^{\varepsilon}\right) \mu_{i}^{\varepsilon}\right) d x d t \geq 0 .
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$, the two-scale convergence of $u^{\varepsilon}(t)$ and $a_{i j}\left(\frac{x}{\varepsilon}, t, \partial u^{\varepsilon} / \partial x_{j}(x)\right)$ and the continuity of $a_{i j}$ give in the limit,

$$
\begin{align*}
& \int_{0}^{T} \int_{\Omega} F(x) u(x, t) d x d t-\lim _{\varepsilon \rightarrow 0} \frac{1}{2}\left\|b_{\varepsilon}^{1 / 2} u^{\varepsilon}(T)\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{2} \int_{\Omega} \int_{Y} b w_{0}^{2} d y d x \\
& \quad+\int_{0}^{T} \int_{\Omega} \int_{Y}\left[-a_{i j}\left(y, t, \mu_{j}^{0}\right)\left(\frac{\partial u}{\partial x_{i}}+\frac{\partial u_{1}}{\partial y_{i}}\right)-g_{i} \mu_{i}^{0}\right] d y d x d t \\
& \quad+\int_{0}^{T} \int_{\Omega} \int_{y} a_{i j}\left(y, t, \mu_{j}^{0}\right) \mu_{i}^{0} \geq 0 . \tag{3.23}
\end{align*}
$$

Since $a_{i j}(y, t, \xi)$ is continuous we may replace $\Phi(x, t, y)$ by a sequence converging strongly in $L^{p}\left(\Omega \times(0, T)\right.$; $\left.W_{\#}^{1, p}(Y) / \mathbf{R}\right)$ to $u_{1}(x, t, y)$, thus replacing μ_{i}^{0} in (3.23) with $\partial u / \partial x_{i}+\partial u_{1} / \partial y_{i}+\lambda \varphi_{i}$. Integration by parts
and (3.19) then give

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}\left(F(x)+\frac{\partial}{\partial x_{i}}\left(\int_{Y} g_{i} d y\right)\right) u(x, t) d x d t \\
& \quad-\lim _{\varepsilon \rightarrow 0} \frac{1}{2}\left\|b_{\varepsilon}^{1 / 2} u^{\varepsilon}(T)\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{2} \int_{\Omega} \int_{Y} b(x, y) w_{0}^{2}(x) d y d x \\
& \quad+\int_{0}^{T} \int_{\Omega} \int_{Y}\left[a_{i j}\left(y, t, \frac{\partial u}{\partial x_{j}}+\frac{\partial u_{1}}{\partial y_{j}}+\lambda \varphi_{j}\right)-g_{i}\right] \lambda \varphi_{i} d y d x d t \geq 0 .
\end{aligned}
$$

Finally, (3.20)-(3.22) show that the first two lines of the above sum to

$$
\frac{1}{2} \int_{\Omega} \int_{Y} b(x, y) d y|u(x, T)|^{2} d x-\lim _{\varepsilon \rightarrow 0} \frac{1}{2}\left\|b_{\varepsilon}^{1 / 2} u^{\varepsilon}(T)\right\|_{L^{2}(\Omega)}^{2},
$$

which by Lemma 3.3 is negative. Thus dividing by λ and letting $\lambda \rightarrow 0$ we see that for every φ_{i},

$$
\int_{0}^{T} \int_{\Omega} \int_{Y}\left[a_{i j}\left(y, t, \frac{\partial u}{\partial x_{j}}+\frac{\partial u_{1}}{\partial y_{j}}\right)-g_{i}\right] \varphi_{i} d y d x d t \geq 0
$$

We therefore have proved the desired result, namely, that

$$
a_{i j}\left(y, t, \frac{\partial u}{\partial x_{j}}+\frac{\partial u_{1}}{\partial y_{j}}\right)=g_{i}, \quad \text { in } \Omega \times(0, T) \times Y .
$$

We have shown that every subsequence of $u^{\varepsilon}(t)$ has a further subsequence for which the above convergence holds, and thus that the entire sequence converges.
Theorem 3.4. With the spaces and operators defined as above, the solution u^{ε} of (3.7) satisfies the following: $u^{\varepsilon} \rightharpoonup u$ weakly in \mathscr{V} and $\nabla_{x} u^{\varepsilon} \xrightarrow{2} \nabla_{x} u(x, t)+\nabla_{y} u_{1}(x, t, y)$. Furthermore, the unique two-scale limit (u, u_{1}) satisfies the two-scale homogenized system

$$
\begin{array}{r}
\frac{\partial}{\partial y_{i}} a_{i j}\left(y, t, \frac{\partial u}{\partial x_{j}}+\frac{\partial u_{1}}{\partial y_{j}}\right)=0 \text { in } \Omega \times(0, T) \times Y, \\
\left(\int_{Y} b d y\right) \frac{\partial u}{\partial t}-\frac{\partial}{\partial x_{i}}\left(\int_{Y} a_{i j}\left(y, t, \frac{\partial u}{\partial x_{j}}+\frac{\partial u_{1}}{\partial y_{j}}\right) d y\right)=F \quad \text { in } \Omega \times(0, T), \tag{3.25}
\end{array}
$$

and u satisfies the homogenized initial condition

$$
\begin{equation*}
\left(\int_{Y} b d y\right)^{1 / 2} u(0)=\left(\int_{Y} b d y\right)^{1 / 2} w_{0} \quad \text { in } L^{2}(\Omega) \tag{3.26}
\end{equation*}
$$

Proof. O nly uniqueness of solutions remains to be shown. If $\left(u, u_{1}\right)$ and (v, v_{1}) are both solutions of (3.24)-(3.26) then subtracting yields

$$
\begin{aligned}
&\left(\int_{Y} b d y\right) \frac{\partial(u-v)}{\partial t}-\frac{\partial}{\partial x_{i}}\left(\int _ { Y } \left(a_{i j}\left(y, t, \frac{\partial u}{\partial x_{j}}+\frac{\partial u_{1}}{\partial y_{j}}\right)\right.\right. \\
&\left.\left.-a_{i j}\left(y, t, \frac{\partial v}{\partial x_{j}}+\frac{\partial v_{1}}{\partial y_{j}}\right)\right) d y\right)=0 .
\end{aligned}
$$

M ultiplying by $u-v$ and integrating by parts in x gives

$$
\begin{align*}
\int_{0}^{t} \int_{\Omega} & \left(\int_{Y} b d y\right) \frac{\partial(u-v)}{\partial t}(u-v) d x d t \\
& +\int_{0}^{t} \int_{\Omega} \int_{Y}\left(a_{i j}\left(y, t, \frac{\partial u}{\partial x_{j}}+\frac{\partial u_{1}}{\partial y_{j}}\right)-a_{i j}\left(y, t, \frac{\partial v}{\partial x_{j}}+\frac{\partial v_{1}}{\partial y_{j}}\right)\right) \\
& \quad \times \frac{\partial}{\partial x_{i}}(u-v) d y d x d t=0 \tag{3.27}
\end{align*}
$$

and from (3.24),

$$
\begin{equation*}
\int_{Y}\left(a_{i j}\left(y, t, \frac{\partial u}{\partial x_{j}}+\frac{\partial u_{1}}{\partial y_{j}}\right)-a_{i j}\left(y, t, \frac{\partial v}{\partial x_{j}}+\frac{\partial v_{1}}{\partial y_{j}}\right)\right) \frac{\partial}{\partial y_{i}}\left(u_{1}-v_{1}\right) d y=0 \tag{3.28}
\end{equation*}
$$

The first term in (3.27) is non-negative (a statement similar to (3.12) holds here also) so adding the zero terms of (3.28) in (3.27) yields

$$
\begin{gathered}
\int_{0}^{t} \int_{\Omega} \int_{Y}\left(a_{i j}\left(y, t, \frac{\partial u}{\partial x_{j}}+\frac{\partial u_{1}}{\partial y_{j}}\right)-a_{i j}\left(y, t, \frac{\partial v}{\partial x_{j}}+\frac{\partial v_{1}}{\partial y_{j}}\right)\right) \\
\cdot\left(\frac{\partial u}{\partial x_{i}}+\frac{\partial u_{1}}{\partial y_{i}}-\frac{\partial v}{\partial x_{i}}-\frac{\partial v_{1}}{\partial y_{i}}\right) d y d x d t \leq 0
\end{gathered}
$$

The strict monotonicity assumption (3.4) then implies that

$$
\begin{equation*}
\frac{\partial u}{\partial x_{j}}+\frac{\partial u_{1}}{\partial y_{j}}=\frac{\partial v}{\partial x_{j}}+\frac{\partial v_{1}}{\partial y_{j}} \tag{3.29}
\end{equation*}
$$

for $j=1, \ldots, N$. Integrating (3.29) over Y and the Y-periodicity of u_{1} and v_{1} give that $\partial u / \partial x_{j}=\partial v / \partial x_{j}$ and so that $u=v$ since both lie in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$. U sing this in (3.29) then gives $\nabla_{y} u_{1}=\nabla_{y} v_{1}$. This is enough to give uniqueness of u_{1} in $L^{p}\left(\Omega \times(0, T)\right.$; $\left.W_{\#}^{1, p}(Y) / \mathbf{R}\right)$.

Remark 3.2. As is typical of this approach to homogenization, the two-scale homogenized problem (3.25) preserves the structure of the original problem. However, in contrast to the usual results, the form of the final problem is not a single partial differential equation, but a coupled system of equations involving both the macroscopic (x) and microscopic (y) variables, with the coupling specified by the non-linear relation (3.24). Finally, we note that the homogenized initial condition (3.26) holds at a.e. point $x \in \Omega$ for which $\int_{Y} b(x, y) d y>0$.

REFERENCES

1. G. Allaire, H omogenization and two-scale convergence, SIAM J. Math. Anal. 23 (1992), 1482-1518.
2. T. A rbogast, A nalysis of the simulation of single phase flow through a naturally fractured reservoir, SIAM J. Numer. Anal. 26 (1989), 12-29.
3. T. A rbogast, J. D ouglas, Jr., and U. H ornung, D erivation of the doubly porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal. 21 (1990), 823-836.
4. A. Bourgeat, S. Luckhaus, and A. Mikelić, Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow, SIAM J. Math. Anal. 27 (1996), 1520-1543.
5. R. W. Carroll and R. E. Showalter, "Singular and Degenerate Cauchy Problems," A cademic Press, New Y ork, 1976.
6. G. W. Clark, Derivation of microstructure models of fluid flow by homogenization, J. Math. Anal. Appl. 226 (1998), 364-376.
7. G. W. Clark and L. A. Packer, Two-scale convergence of degenerate evolution equations, J. Math. Anal. Appl. 214 (1997), 420-438.
8. B. L. Hollingsworth and R. E. Showalter, Semilinear degenerate parabolic systems and distributed capacitance models, Discrete Continuous Dynamical Syst. 1 (1995), 59-76.
9. U. H ornung, "H omogenization and Porous M edia," Springer-V erlag, New Y ork, 1997.
10. V.V.Jikov, S. M. K ozlov, and O. A. Oleinik, "H omogenization of Differential O perators and Integral Functionals," Springer-V erlag, Berlin, 1994.
11. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal. 20 (1989), 608-623.
12. L. A. Packer, A two-scale derivation of distributed models of microcapacitors, in preparation.
13. E. Sanchez-Palencia, "Non-homogenous M edia and Vibration Theory," Lecture Notes in Physics, V ol. 127, Springer-V erlag, New Y ork, 1980.
14. R.E. Showalter, "M onotone Operators in Banach Space and Nonlinear Partial Differential Equations," Mathematical Surveys and Monographs, Vol. 49, Amer. Math. Soc., Providence, RI, 1996.
15. D. M. Trotter, Capacitors, Scientific American 259 (1988), 86-90B.
16. A. V isintin, "M odels of Phase Transition," Birkhäuser, Boston, 1996.
