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Using the notion of two-scale convergence developed by Allaire, the homoge-
nization of a degenerate non-linear evolution equation with periodically oscillating
coefficients is presented. A two-scale homogenized system is obtained as the limit
of the periodic problem. Monotone operator methods and two-scale convergence
are employed to show that the solutions of the periodic problem converge to the
unique solution of the homogenized system. Homogenized initial conditions are
also obtained and the sense in which they hold for the homogenized initial value
problem is made specific. =~ © 1999 Academic Press

1. INTRODUCTION

We are concerned with the homogenization of non-linear degenerate
evolution equations of the abstract form,

%gf‘eué‘(t) +°(t,u’(t)) =f(1), (1.1)
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where %° is a linear operator that is non-negative and symmetric, but
degenerate, /¢ is a non-linear monotone operator, and both operators are
g-periodic in the spatial variables. Degenerate evolution equations of this
form arise in models of electrolytic microcapacitors. These are spongelike
structures (see [15] for a detailed account) and the highly singular nature
of their microscopic geometry necessitates some form of continuous ap-
proximation, such as homogenization, to model their behavior. In the
distributed capacitance model described in [8], the structure is modeled as
microcapacitor cells embedded in a macroscopic conducting medium. The
operator, %, is then necessarily degenerate since it involves capacitance
effects which are localized in the microcapacitor cells. Non-linear resis-
tance effects, incorporated in modeling the interface between the cells and
the conducting medium, give rise to nonlinearities in .. Similar non-linear
degenerate evolution equations also arise in problems of fluid flow and
diffusion of heat. See, for example, [16, Chap. 3, and the references
therein].

Well posedness and other results concerning such equations, as well as a
list of applications and a comprehensive bibliography are given in [14, 5].
Homogenization of non-linear second-order elliptic equations was consid-
ered as an example of the application of two-scale convergence in [1]. For
an overview of homogenization of diffusion equations as well as an
extensive bibliography see [9, 10]. Homogenization of systems of non-de-
generate parabolic equations modeling fluid flow in a porous medium has
been considered in [2, 4, 3, 6]. In [7] we considered the homogenization of
linear implicit and degenerate evolution equations using the method of
two-scale convergence. Here we show how the two-scale method can be
applied to non-linear degenerate evolution equations. In particular, we
consider a model of the form above in which the operator % is non-nega-
tive, but not necessarily strictly positive, and so the equation is actually of
elliptic—parabolic type. The combination of the nonlinearity of the
second-order term with this degeneracy is an obstacle in the homogeniza-
tion process. In addition the degenerate term forces us to carefully keep
track of the effect of homogenization on the initial condition, particularly
on the spaces involved since we wish to allow a relatively large set of
possible initial conditions. We see that the initial condition satisfied by the
resulting homogenized problem is directly influenced by the positivity of
#*4(x). The results of this paper are applied in [12] to give an alternative
derivation of the non-linear microstructure models presented in [8].

2. TWO-SCALE CONVERGENCE WITH A PARAMETER

Suppose that 2 < p < % and that € is a bounded open subset of RY
with 9Q a C! manifold, Y = [0,1]", and G is a subset of R™. (In what
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follows, G represents the domain of a parameter. Typically G =[0,T])
We denote spaces of Y-periodic functions by a subscript #. For example,
C,(Q) is the space of functions which are continuous and Y-periodic on
Q. We first quote some definitions and theorems from [1]. Since the
situation we consider here involves homogenization with respect to some,
but not all, variables, we have modified Allaire’s results as in [7] to allow
for homogenization with a parameter (which we denote by 7). These
changes do not affect the proofs, which can be found in [1], in any essential
way.

DeriniTION 2.1. A function, ¢ (x, ¢, y), which is Y-periodic in y and
which satisfies

x\7 ,
lim lp(x,z,—) dxdt=[ fw(x,t,y)” dydxdt, (2.1)
aOxXG & OxXG’Y

-0

is called an admissible test function. Here p’ is the conjugate of p, that is,
1/p+1/p =1.

DEFINITION 2.2. A sequence {u®} € LP(Q X G) two-scale converges to
uy(x,t,y) € L?(Q X G X Y) if for any admissible test function (x, ¢, y),

lmLqug(x,t)w(x,t, E)dtdx=/ﬂfG Luo(x,t,y)w(x,t,y)dydtdx.
(2.2)

THEOREM 2.1. If {u®} is a bounded sequence in L*(Q) X G), then there
exists a function uy(x,t,y) in LPY(Q X G X Y) and a subsequence of {u®}
which two-scale converges to u,. Moreover, the subsequence {u°} converges
weakly in LP(Q X G) to u(x,t) = [yuy(x,t,y)dy.

When the sequence, {u*}, is W' ?-bounded, we get:

THEOREM 2.2.  Let {u®} be a bounded sequence in L*(G; W' P(Q)) that
converges weakly to u in LP(G; WY P(Q)). Then {u®} two-scale converges to
u, and there is a function u(x,t,y) in L?(Q X G; W}?(Y)/R) such that,
up to a subsequence, V,u*® two-scale converges to V,u(x, t) + V,u,(x,t, y).

3. A DEGENERATE NON-LINEAR EVOLUTION EQUATION

We propose to extend our study of the two-scale homogenization of
evolution equations from [7] to non-linear evolution equations. Let I be a
separable, reflexive Banach space and suppose that we have w, € V, and
that for all £ > 0 we are given a monotone, continuous, symmetric linear
operator . V — V' and a family of monotone operators .«*(t,-):
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V—V' For p>2and feL”(,T;V'), we consider the problem of
finding u® € L?(0, T; V') such that

%%’%ﬁ(r) +&°(t,u(t)) =f(t) inV’, (3.1)

at a.e. t € [0, T], and such that #“u®(0) = Z*w, in some sense. We then
seek to identify the limiting behavior of the problem as ¢ — 0.

Assume that for some p > 2 and each i and j, 1 <i, j <N, we are
given a function a;;: X (0,7) X R — R such that

ai]-(y, t, ¢) is measurable in ¢, continuous in y and ¢ and Y-periodic in y,
(3.2)
la;(y.t, )| <clél” " +k(y,t) foryeY, 0<t<T,E€R, (3.3)

(a;(y.t.&) —ay(y.t.m))(& —m;) >0 forall £+ 7 inRY, (3.4)
a;i(y.t, §)¢ = al EP - k(y,t) forall £eRY, (3.5)

where a > 0, k € L?'(Q X (0, T)) and such that k(y, t) is Y-periodic in y.
(Here and in what follows, we employ an extended summation convention,
summing (from 1 to N) on all repeated indices, including those present in
the argument of the nonlinear functions a;;). Also, let F € LP(Q % (0,T))
and define V= W 7(Q) and 7= L?(0, T; V). Let b(x, y) > 0 be contin-
uous and Y-periodic in y such that |b(x, y)l < b*(x) € L1*(Q) where
g* = p*/(p* — 2) and p* is the Sobolev conjugate of p. Recall that the
imbedding 1 < L?"(Q) is continuous. For u and v in V' define

x
— 1,

u Jav
Mg(t’u)(v)zfgla”(e E(X))E(X)]dx

Fu(v) = fﬂb(x, %)u(x)v(x) dx,
and
f(6)(v) = /QF(x,t)v(x)dx.

From the assumptions above, we have that % .Z(V,V’). For each
g > 0, write b°(x) = b(x, %) and assume that w, is a measurable function
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on  such that
[ sup {b(x, )} wo(x) [ dv < . (3.6)
QyEY

Note that the Y-periodicity of b and Lemma 1.3 of [1] then show that
1622wl 12a) is bounded independently of e.

PrRopPOSITION 3.1. For each ¢ > 0 there is a unique solution u® in 7" of

%(L%”ug(t)) +&°(t,u®(t)) =f(t) in7", (3.7)
tli_)rrabj/z(x)u‘g(t) =bY?(x)w, inL*(Q). (3.8)

Furthermore, for 1 <i <N, a;/(3,t, du®/dx,(x)) is bounded independently
of & in L (Q X (0,T)) and b ?u’(t) is bounded in L*(0, T; L*(Q2)).

Proof. Fix ¢>0and 0 <t < T. From (3.5 we have that there is a
C > 0 (independent of ¢ and &) such that for any v € V:

&#(t,0)(v) = Cllolp =k, 1) [lrca)].- (3.9)

Thus for each £ and ¢, (¢, - ) is coercive and so its realization in 7 is
coercive. From (3.4), &°(¢,- ): V — V' is strictly monotone, and from (3.2)
and (3.3) it is hemicontinuous and bounded. Furthermore, since, for each ¢
with 0 <t < T, &? is continuous, linear, symmetric, and monotone on
L2(Q), we may define a seminorm on L*(Q) by (%?-,-). Following
Showalter [14], denote the completion of the resulting seminormed space
by V¢ and the dual Hilbert space by (F¢) with scalar product satisfying

(%°u, e%’SL')(V;)' =Z°u(v).

From Corollary 3.6.3. of [14] we have that, given any &, in (V) there is a
solution of (3.7) satisfying

limB°us(t) = &. (3.10)
t—0
Setting &, = b/?w, with w, defined as above, (3.6) gives that &, lies in

(V#). Thus (3.10) can be written as (3.8). Note that since the equation (3.7)
holds in I’ we have that

(@00 )+ (1 () (1) =) () (3a)
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for 0 <t < T, where {g,v) =g(v) for g V', v € V. Since &* is sym-
metric and does not depend on ¢,

L PR LA P
= 2<%(9§’8u""),u8>. (3.12)

Suppose that u¢ and v¢ are both solutions of (3.7), (3.8). Then subtracting
yields

%(%"”“(u"’“(r) —0v°(1))) +&°(t,u’(t)) —&°(t,0°(t)) =0 inZ".
Applying this to u® — v*, integrating in ¢ and applying (3.12) gives
2% (us(t) —ve (1)) (u (1) —v°(1))
+j;(&3/€(t,u8(t)) —a*(1,0°(1))) (u* (1) — v°(1)) dt = 0.
Since #° is monotone and ¢ is strictly monotone this gives u®(¢) —

ve(¢t) = 0, thus establishing uniqueness. Finally, we prove the boundedness
results. Integrating (3.11) in ¢ gives

K(eur (), us (o) + [Cor(nur (1), u (0) de

- fot< F(2),us (1)) di + 3162 *wllizo)- (3.13)
Thus (3.9) and the monotonicity of % imply that

2
15 < Ky + ko (I fllo el + 162 2wollza) ),

and since p > 1 and b}/?w, is uniformly bounded in L*(Q), this gives that
u® is bounded in 7 (independently of ). From (3.3):

X ou’®
a,-j(;,t, (x))

&xj

LP(Qx(0,T))
N p—1

<c),

j=1

u’

P + Nkl Lrax @, 1y- (3.14)

LP(Qx(0,T))

J
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Remark 3.1. In the following we do not attempt to find optimal spaces
for initial conditions since these change with each &. The assumption (3.6)
provides us with a rather large space from which to draw initial conditions
for any £ > 0 and we see later that (3.6) is quite convenient.

With the bounds of Proposition 3.1 and Theorems 2.1 and 2.2, we can
obtain functions u € L?(0, T; W ?(Q)), u, € LP(Q X (0, T); W P(Y)/
R), u* € L2(Q X Y),and g, (for 1 <i < N)in L (Q x (0,T) X Y) such

2

that for some subsequence u®, u®—u, and u®—u weakly in 7,
2 2
Vou® = Voulx, 1) + Vouy(x, t,y), b?u(T)— u*(x, y), and

2
a;; (5 t,0u/dx)(x, 1) > g forl <i < N.
For any smooth test function ¢ we have

(@) () 45 (1w (D) 0(1) = [0 (1).

Integrating this in ¢, we obtain

—/Tf b(x, E)u‘g(x,t)lp’(x,t) dxdt + fOTanij(%,t, &_lf)iwdxdt

0 -0 IX;

[l D o2

+[OTfQF(x,t)¢(x,t) ddt. (3.15)

Choose ¢ € W7(0,T; C5(Q)) and ¢, € W20, T; C5(Q; C4(Y))). Note

that ¢, is Y-periodic in y = Z. Set (x,1) = ¢(x,1) + e@,(x,£,2%) in
(3.15) to obtain

X

x
—fo b(x, —)u‘g(x,t)(go’(x,t) + acp’l(x,t, —)) dxdt
0’0 e e
T x dut\( de dp;  dey
+ A=t — —
fofﬁa”(“’" 9%, (

N —)dxdt
= fﬂbg(x)wo(x)(ﬁo(xvo) + S(Pl(x'o’ E)) dx

- &
ax; ax; ay;

_fﬂbs(x)ua(x,T)(co(x,T) + 89"1("’T’ %)) *

+/0TfQF(x,t)(<p(x,t) + 8@1(%& %)) dxdt,  (3.16)
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where the " denotes . Note that be, bg', and de/dx; + e(d¢,/dx;) +
d¢,/dy; are admlssmle (|n the sense of (2.1)). Using the two-scale conver-

gence of u®, Vu®, by/*u*(T), and a,;(%, 1, du/dx,(x)), and letting & — 0
in (3.16) we get

_fOTfQLb(x,y)uqo'dydxdt+/oT/ fg'(x y)(— + L;_y,)d dx dt

— [[[ F(x.0)g(x, ) dvdr + [ [ b(x,y)wo(x)9(x,0) dyd
0 “Q 0’y
—f jbl/z(x,y)u*(x,y)¢(x,T) dy dx. (3.17)
Q'Y
From (3.17) we note that u and g satisfy
J
[ [ &=t dydvdr =o,
0 7oty dy;

and

T

dy)ugo’dxdwrfonﬂ([g,dy)( )dxdt

AT
fofﬂ ¢dxdt+f (fbdy)wo(x)¢(x 0) dx

bd

—fﬂ/ybl/z(x,y)u*(x,y) dy o(x,T) dx (3.18)

for any ¢ and ¢, as chosen above. Thus
J
—&—gi(x,y) =0 in[0,T] X Q XY, (3.19)
Vi
and
(/bdy)———(fgldy) F in[0,T]xQ.  (3.20)

Furthermore, applying (3.20) in (3.18) gives us

(/dey)u(T) - fybl/zu* dy, (3.21)
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and

([dey)u(O) = (fybdy)wo. (3.22)

Before proceeding we make two useful observations which we state as
lemmas.

LEMMA 3.2.

1/2

(/dey)l/zu(o) = (fyb(x,y) dy) wo(x),

and ([yb(x, y) dy)*?wy(x) is in L*(Q).

Proof. The equality comes directly from (3.22). From Lemma 1.3 of [1]
we have that

[ | pCeyywi(x) dyde = tim [ (b(x)wo(x)’ d

and thus (3.6) gives the stated result. ||

LEMMA 3.3.

lim fnbg(x)(us(x, 7))’ dx > /nyb(x, y) dylu(x,T) | dx

Proof. Applying Holder’s inequality to (3.21) yields

(fybdy)l/zu(T) < (/y(u*)2 dy)l

and Proposition 1.6 of [1] gives

/2

lim [ b,(x)(u(x,T))" de = llu*F2cax),
e—>070

from which the result follows. |}

We must now identify g; in terms of a, u, and u,. Following Allaire in
[1], for 1 <i < N let ¢, and ® be in C5(Q X (0, T); C;(Y)) and for ¢ > 0
and A > 0 define test functions

wi(x) = %[u(x) + sd)(x,t, E)} + )upi(x,t, E)

l
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Note that u(x) and (because of the continuity assumption) a;;(%, ¢, u(x))
are admissible test functions and

2, Ju od A
f(x) Sl = — + —(x,1,y) + Agi(x,1,).
wi(x) = = e g (b y) Fhedx y)

i i

Using the monotonicity condition (3.4) yields

L,

a,»j(z,t, (;—L):(x)) - aij(%’t’ ,u,f(x)))

—&ug - W dx d, 0
X J £ t > 0.

Expanding and employing (3.13) at ¢t = T yields
r e 1 1/2,,¢ 2 1 172, 12
[O fQF(x)u (x,t) drdt — E”bg u (T) || 20 + SlI6 2 wollZza)
T X Ju®
+f() /;)(_aij(ZIL/J*j) ox, — 4

X
+a..(— t ME)I_LF
ij 8, v i

X Ju®

_,t, —_—
axj

&

M

dxdt = 0.

Letting & — 0, the two-scale convergence of u°(¢t) and a, (%, t, du’/dx;(x))
and the continuity of a;; give in the limit,

1 1
fonQF(x)”(x't) ddt — lim = b2 (T) [ 20y + Efgfbeg dy dx
T du Ju
+f0 fﬂfy[_“if(y't’“?) ax, + a_yll) — g, | dydxdt
T
[ ] fy“i/(y’f’f’«f)ﬂ? > 0. (3.23)

Since a,,(y,t, ¢) is continuous we may replace ®(x,¢,y) by a sequence
converging strongly in L”(Q X (0, T); W ?(Y)/R) to u,(x,t,y), thus re-
placing w? in (3.23) with du/dx; + du,/dy, + Ag,. Integration by parts
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and (3.19) then give
" F i d dxd
[ (PG + 5o [ o) dear
1 1/2, s 2 1 2
= lim 622 (T) [z + 5 [ [ bCxyIwE() dy s

+/0Tf9/[,,(yt ‘t‘ﬁz_by‘jﬂg

)

.]/\goi dydxdt > 0.
Finally, (3.20)-(3.22) show that the first two lines of the above sum to

bsl/zug(T) ||2L?(m’

2 .
tf [ pey) dolu(x, 1) dx — lim 3

which by Lemma 3.3 is negative. Thus dividing by A and letting A — 0 we
see that for every ¢,

fff[ ,](yt o &L;]l) —g,]qo,dydxdt>0

We therefore have proved the desired result, namely, that

u duy in Q 0T y
a |y t,—+—| =g, NQAX(0,T) XY.
i\ o Ty, | T8 (0.7)
We have shown that every subsequence of u*(¢) has a further subsequence
for which the above convergence holds, and thus that the entire sequence
converges. I

THEOREM 3.4. With the spaces and operators defined as above, the
solution u® of (3.7) satisfies the following: u® — u weakly in 7" and

2
V.u®— Vou(x,t) + Vyul(x, t,y). Furthermore, the unique two-scale limit
(u, u,) satisfies the two-scale homogenized system

i M) g X (0.T) XY 3.24
—a; |y t,— + —| = x (0,T) XY, :
7yl Y x oy, in (0,7) (3.24)

Ju Jd

(fybdy)z - (?—xi(fyaij

=F inQx(0,7),

du du, p
!tl - + -
Y ox; y; Y

(3.25)
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and u satisfies the homogenized initial condition

1/2

(fybdy)l/zu(o) - (fybdy) wo in L2(9). (3.26)

Proof.  Only uniqueness of solutions remains to be shown. If (u, u;) and
(v, v,) are both solutions of (3.24)—(3.26) then subtracting yields

&(u—u) J Ju du,
(/bd) —a—%(fy(aij(y,t,g-l-a—yj)

Multiplying by u — v and integrating by parts in x gives

L) 5w
L (ol S 2] 2 2

X9y
J
Xa—(u —v)dydxdt =0, (3.27)
X

and from (3.24),

f ( ( du &ul) ( Jav &vl)) ( )d 0
ai' y’t‘ + - ai' y,t. + u, —v ly = U.
y| Y dx; ay; ! dx; ay; || 9y,

(3.28)

The first term in (3.27) is non-negative (a statement similar to (3.12) holds
here also) so adding the zero terms of (3.28) in (3.27) yields

[ |a LIS I R
olaly | V7T ax; ay; KA R

Xpo 9y

u Ju, Jv v,
f—+— - — — — | dydxdt < 0.
ox; ay; ox; ay

i i

The strict monotonicity assumption (3.4) then implies that

du duy % du,
—_—t — = — + — (3.29)
ﬁxj (9y]- 0xj ay].
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for j = 1,..., N. Integrating (3.29) over Y and the Y-periodicity of «, and
v, give that du/dx; = dv/dx; and so that u = v since both lie in
L0, T; Wy P(Q). Using this in (3.29) then gives V,u, = Vv,. This is
enough to give uniqueness of u, in LP(Q X (0, T); W, ?(Y)/R). |

Remark 3.2. As is typical of this approach to homogenization, the
two-scale homogenized problem (3.25) preserves the structure of the
original problem. However, in contrast to the usual results, the form of the
final problem is not a single partial differential equation, but a coupled
system of equations involving both the macroscopic (x) and microscopic
(y) variables, with the coupling specified by the non-linear relation (3.24).
Finally, we note that the homogenized initial condition (3.26) holds at a.e.
point x € Q for which [, b(x, y)dy > 0.
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