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Abstract

This paper gives embedding theorems for a very general class of weighted Bergman spaces: the results
include a number of classical Carleson embedding theorems as special cases. The little Hankel operators
on these Bergman spaces are also considered. Next, a study is made of Carleson embeddings in the right
half-plane induced by taking the Laplace transform of functions defined on the positive half-line (these
embeddings have applications in control theory): particular attention is given to the case of a sectorial
measure or a measure supported on a strip, and complete necessary and sufficient conditions for a bounded
embedding are given in many cases.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction and notation

This paper brings together two ideas which are fundamental to the study of Banach spaces
of analytic functions. First, there is the classical Paley–Wiener theorem (see, for example [19]).
This asserts that the Laplace transform (respectively, the Fourier transform) provides an iso-
metric isomorphism between the space L2(0,∞) and the Hardy space H 2 of the right-hand
half-plane C+ (respectively, the upper half-plane). There are many generalizations of this result
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given, as mentioned below; for example the weighted space L2(0,∞;dt/t) corresponds to the
Bergman space A2(C+). The strongest known generalization of this result is to the class of so-
called Zen spaces (in fact we provide a slightly stronger generalization below), determined by an
appropriate measure ν on the half-plane.

The other theme that features in this paper is the notion of a Carleson embedding. The classical
Carleson theorem is to do with finding a simple condition for the boundedness of the canonical
injection H 2(C+) → L2(μ), where μ is a Borel measure on C+, and has many applications in
function theory and harmonic analysis (again, [19] is a good reference for this). The embedding
theorem has also been generalized to the Bergman space.

Bringing these ideas together, we characterize the boundedness of Carleson embeddings for
the very general class of Zen spaces (subject to a necessary technical condition on the measure ν),
prove new results about the little Hankel operators on these spaces, and discuss in addition those
embeddings induced by the Laplace transform. Ultimately, this allows us to give precise results
even in the case of Lp for p �= 2, when there is no exact generalization of the Paley–Wiener
theorem.

Our results have applications in terms of interpolation in certain spaces of holomorphic func-
tions and also admissibility and controllability in diagonal semigroups, as outlined in Section 4.
(Full details will be presented elsewhere [14].)

So, let w denote a weight function on the imaginary axis iR, let μ be a positive regular Borel
measure on the right half-plane C+ and let 1 � p,q �∞. Embeddings of the form

Lp
v (iR) → Lq(C+,μ), (1)

where a locally integrable function f in the weighted Lp space L
p
v (iR) on the imaginary axis iR

is mapped to its Poisson extension on the right half-plane C+, are known as Carleson embed-
dings, and have been much studied in the literature. In linear control, another, related class of
embeddings plays an important role, namely embeddings of the form

Hp
β,w(0,∞) → Lq(C+,μ), f �→ Lf =

∞∫
0

e−t ·f (t) dt,

given by the Laplace transform L. Here, Hp
β,w denotes the Sobolev space of index β and

weight w: the case β = 0 corresponds to a weighted Lp space. We shall refer to such embeddings
as Laplace–Carleson embeddings.

In the easiest case, β = 0, w ≡ 1 and p = q = 2, the Laplace transform maps H2
0,1(R+) =

L2(R+) isometrically up to a constant to H 2(C+), which is a closed subspace of L2(iR), and
we only have to deal with the unweighted classical Carleson embedding theorem for p = 2. This
can be found in many places, for example, [7,19].

Theorem 1.1 (Carleson embedding theorem). Let μ be a positive regular Borel measure on the
right half-plane C+. Then the following are equivalent:

1. The natural embedding

Hp(C+) → Lp(C+,μ)

is bounded for some (or equivalently, for all) 1 � p < ∞.
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2. There exists a constant C > 0 such that∫
C+

∣∣kλ(z)
∣∣2

dμ(z) � C‖kλ‖2
H 2 for all λ ∈ C+,

where kλ(z) = 1
2π

1
z+λ

for λ, z ∈C+.

3. μ(QI ) � C|I | for all intervals I ⊂ iR,

where QI denotes the Carleson square

QI = {
z = x + iy ∈C+: iy ∈ I, 0 < x < |I |}.

In this case, μ is called a Carleson measure.

A further relatively easy case is p = q = 2 and w a power weight, w(t) = tα with α < 0. This
case corresponds to the classical embedding theorem for standard weighted Bergman spaces
on the half-plane by Duren, see e.g. [4]. For more general weights w, the Laplace–Carleson
embedding corresponds to a new embedding theorem for weighted Bergman spaces A2

ν on the
half-plane with a translation-invariant measure ν, which is the subject of Section 2. The main
embedding theorem here is Theorem 2.1, which gives necessary and sufficient conditions for the
boundedness of the embedding

Ap
ν ↪→ Lp(C+,μ).

In the case of general 1 � p,q � ∞, p > 2, the Laplace–Carleson embeddings are very subtle
even in the case that w = 1, due to the oscillatory part of the Laplace transform integral kernel.
A general characterization seems out of reach at the moment, but with additional conditions on
the support of the measure μ, a full characterization can sometimes be given. This is the content
of Section 3: here the main theorems include Theorems 3.3 and 3.5, which give precise conditions
for the boundedness of a Laplace–Carleson embedding

L : Lp(0,∞) → Lq(C+,μ), f �→ Lf,

for sectorial measures μ.
Some applications are outlined in Section 4.
The reproducing kernel functions for H 2(C+) are denoted by kλ, λ ∈ C+, where kλ(z) =

1
2π

1
z+λ

for z ∈ C+, and satisfy f (λ) = 〈f, kλ〉 for f ∈ H 2(C+). Note that ‖kλ‖2 = 1
4π Reλ

. We
will also frequently use the Poisson kernel

pλ(t) = 1

π

y

x2 + (y − t)2
(z = x + iy ∈C+, t ∈ R),

which is related to the reproducing kernel kλ by

1

‖kλ‖2

∣∣kλ(it)
∣∣2 = pλ(t) for t ∈ R.
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2. Embedding theorems for weighted Bergman spaces

In this section, we will be interested in embeddings

Ap
ν (C+) ↪→ Lp(C+,μ),

where A
p
ν (C+) is a weighted Bergman space defined below and ν is a translation-invariant pos-

itive regular Borel measure on C+, that is, ν = ν̃ ⊗ λ, where λ denotes Lebesgue measure and
ν̃ is a positive regular Borel measure on [0,∞). This corresponds to the case of radial measures
on the unit disc.

The investigation of such embeddings has a long history, starting with [3] for the case of
the standard weighted Bergman space on C+ with dν̃(t) = tβ dt for β > −1, respectively the
standard weights (1 − |z|)β on the disc. Oleinik [20] observed already in 1974 that for measures
ρ(t) dt , where the weight ρ decreases very fast towards t = 0, such as ρ(t) = e−1/t1+γ

, γ > 0, it
is not sufficient to compare the weights of Carleson squares μ(QI ) and ν(QI ) (or equivalently,
to compare the measures of Euclidean balls D centered on the imaginary axis). Instead, in the
example above one has to consider the measures of Euclidean balls away from the imaginary
axis,

Dz = D

(
z,

(Re z)1+γ

(1 + Re z)γ

)

for z ∈ C+. Roughly speaking, the faster the weight ρ(t) decreases for t → 0, the smaller the
radius of the ball Dz in relation to the distance of z to the imaginary axis, and the more detailed
information on the measure μ is required. Recently, necessary and sufficient conditions have
been found for the case even faster decreasing weights ρ(t), such as double exponentials [21].
Our aim in this section is somewhat different: we want to find a class of measures ν̃ as large as
possible, for which a characterization in terms of Carleson squares, and in terms of testing on
powers of reproducing kernels kz, z ∈ C+, is possible.

Our approach relies on a dyadic decomposition of the half-plane adapted to the measure which
is somewhat technical, but has the advantage that no smoothness or continuity properties of
the measure are required. Clearly, we need a growth condition on ν̃ in 0 and the most natural
condition to impose is the well-known (
2) (doubling) condition at 0.

One motivation to treat this general setting, apart from the interest of Carleson-type embed-
ding theorems in their own right, is to obtain Laplace–Carleson embedding theorems on a large
class of weighted spaces L2

w(0,∞) (see Theorem 2.4 below), which are important in Control
Theory. This is exploited in [14]. On the other hand, the general embedding theorem makes
it also possible to study other important operators of analytic function spaces, such as Hankel
operators and Volterra-type integration operators, in a more general setting. Such operators on
weighted Bergman spaces for various classes of weights have for example been studied in [16,1]
and recently in [21,6]. As an example of this type of application, we study little Hankel operators
on Zen spaces in Section 2.2.

2.1. Carleson measure on Zen spaces

Let ν̃ be a positive regular Borel measure on [0,∞) satisfying the following (
2)-condition:

R := sup
ν̃[0,2t)

< ∞. (
2)

t>0 ν̃[0, t)
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This is sometimes referred to as a doubling condition, and such measures have been studied
in the theory of harmonic analysis and partial differential equations for many years (an early
reference is [23]). Let ν be the positive regular Borel measure on C+ = [0,∞) × R given by
dν = dν̃ ⊗ dλ, where λ denotes Lebesgue measure. In this case, for 1 � p < ∞, we call

Ap
ν =

{
f :C+ →C analytic: sup

ε>0

∫
C+

∣∣f (z + ε)
∣∣p dν(z) < ∞

}

a Zen space on C+. If ν̃({0}) > 0, then by standard Hardy space theory, f has a well-defined
boundary function f̃ ∈ Lp(iR), and we can give meaning to the expression

∫
C+ |f (z)|p dν(z).

Therefore, we may write

‖f ‖A
p
ν

=
( ∫

C+

∣∣f (z)
∣∣p dν(z)

)1/p

.

Note that this expression makes sense in the case that ν̃({0}) = 0 (e.g. the Bergman space), since
f is still defined ν-a.e. on C+. Clearly the space A2

ν is a Hilbert space.
Well-known examples of Zen spaces are Hardy space Hp(C+), where ν̃ is the Dirac measure

in 0, or the standard weighted Bergman spaces A
p
α , where dν̃(t) = tα dt , α > −1. Some further

examples constructed from Hardy spaces on shifted half-planes were given by Zen Harper in
[10,11]. Note that by the (
2)-condition, there exists N ∈ N such that kN

λ ∈ A
p
ν for all λ ∈ C+

and all 1 � p < ∞. Here is our embedding theorem for Zen spaces.

Theorem 2.1. Let 1 � p < ∞, let A
p
ν be a Zen space on C+, with measure ν = ν̃ ⊗ λ as above,

and let μ be a positive regular Borel measure on C+. Then the following are equivalent:

1. The embedding A
p
ν ↪→ Lp(C+,μ) is well-defined and bounded for one, or equivalently for

all, 1 � p < ∞.
2. For one, or equivalently for all, 1 � p < ∞, and some sufficiently large N ∈ N, there exists

a constant Cp > 0 such that

∫
C+

∣∣(kλ(z)
)N ∣∣p dμ(z) � Cp

∫
C+

∣∣(kλ(z)
)N ∣∣p dν(z) for each λ ∈ C+. (2)

3. There exists a constant C > 0 such that

μ(QI ) � Cν(QI ) for each Carleson square QI . (3)

Proof. The implication (1) ⇒ (2) for fixed p is immediate.
For the implication (2) ⇒ (3), we use a standard argument using the decay of reproducing

kernels. Given an interval I in iR, and let λ denote the centre of the Carleson square QI . Note
that

∣∣(kλ(z)
)N ∣∣ � 1

N N
for z ∈ QI .
(2π) (4 Reλ)
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Hence

∫
C+

∣∣(kλ(z)
)N ∣∣p dμ(z) � 1

(8π)pN(Reλ)pN
μ(QI ).

It only remains to estimate
∫
C+ |(kλ(z))

N |p dν(z) in terms of ν(QI ). Let R be the constant from
the (
2)-condition.

For k ∈N, let 2kI denote the interval with the same centre as I and the 2k fold length. By the
(
2)-condition, ν(Q2kI )� Rk2kν(QI ). Note that

∣∣(kλ(z)
)N ∣∣� 1

(2π)N

1

(2k−1 Reλ)N
for z ∈ Q2kI\Q2k−1I .

Hence

∥∥kN
λ

∥∥p

A
p
ν
�

∞∑
k=0

ν(Q2kI )

(
1

(2π)N

1

(2k−1 Reλ)N

)p

� ν(QI )
1

(2π)pN

1

(Reλ)Np

∞∑
k=0

2kRk

2(k−1)Np
.

Choosing N sufficiently large, depending on R, we find that the sum on the right converges to a
constant KN,p depending on N and p. Hence

1

(8π)pN(Reλ)pN
μ(QI ) �

∫
C+

∣∣(kλ(z)
)N ∣∣p dμ(z) � Cp

∫
C+

∣∣(kλ(z)
)N ∣∣p dν(z)

= CpKN,p

1

(2π)pN

1

(Reλ)Np
ν(QI ), (4)

and we obtain μ(QI ) � CN,pν(QI ), with a constant CN,p depending only on N and p (and
hence on the (
2)-condition constant R).

(3) ⇒ (1) Our strategy is to deduce the boundedness of the embedding from the classical
Carleson embedding theorem via a suitable decomposition.

Let a > 0. In the following we denote by Hp(Ca) the Hardy space of the shifted half-
plane Ca . We write ‖ · ‖H

p
a

for the norm Hp(Ca). Suppose for the moment that ν̃({0}) = 0
and that there exists a strictly increasing sequence (an)n∈Z in R+ such that:

1. There exists 1 > c > 0 with

an+1 − an

an+1
� c for all n ∈ Z; (5)

2. (2R)3ν̃
([an−1, an)

)
� ν̃

([an, an+1)
)
� 2Rν̃

([an−1, an)
)
. (6)

Write βn = ν̃([an, an+1)). Notice that by (6),
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∑
n∈Z

βn‖f ‖p

H
p
an+1

�
∫
C+

∣∣f (z)
∣∣p dν =

∑
n∈Z

∞∫
−∞

∫
[an,an+1)

∣∣f (t + iω)
∣∣p dν̃(t) dω

�
∑
n∈Z

βn‖f ‖p

H
p
an

� (2R)3
∑
n∈Z

βn‖f ‖p

H
p
an+1

.

Thus both (
∑

n∈Z βn‖f ‖p

H
p
an+1

)1/p and (
∑

n∈Z βn‖f ‖p

H
p
an

)1/p give us equivalent expressions for

the A
p
ν -norm. In addition, notice that if μ, ν satisfy the Carleson-type condition (3), then also μ,∑

n∈Z βnδan ⊗ λ, satisfy the condition with the same constant C. Therefore, we assume without
loss of generality that

ν̃ =
∑
n∈Z

βnδan,

where δan denotes the Dirac measure at an. For simplicity of notation we will also assume that
the constant C in the condition (3) equals 1.

Our next step is a decomposition of μ into
∑

n∈Z μn, where each μn satisfies the Carleson-
type condition (3) with respect to νn = βnδan ⊗ λ.

Lemma 2.2. Let N ∈ Z and suppose that μ is supported on the closed half-plane CaN
. Then

there exist positive regular Borel measures μn, n�N , such that

1.
μ =

∞∑
n=N

μn; (7)

2. μn is supported on the closed half-plane Can; (8)

3. There exists a constant C′ > 0 such that for all intervals I ⊂ iR,

μn(QI ) � C′νn(QI ) (n > N), μN(QI )� C′
N∑

k=−∞
νk(QI ). (9)

Moreover, μn is a Carleson measure for the shifted half-plane Can−1 , with Carleson constant

Can−1(μn) �
C′

c
βn (n > N), CaN−1(μN)� C′

c

N∑
k=−∞

βk,

where c is the constant appearing in the definition of the sequence (an) above.

Proof. First, we prove that μn, n� N , exist, satisfying the conditions (7), (8) and (9). By replac-
ing νN with (

∑N
n=−∞ βn)δaN

⊗ λ, we can assume without loss of generality that ν is supported
on CaN

.
We begin by constructing a family of Carleson rectangles, on which (9) can be checked. Fix

a dyadic grid DN of half-open intervals in iR with minimal intervals of length aN , and denote
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these intervals on length aN as intervals of generation 0. The remaining intervals in the family
DN will be parents, grandparents, etc. of the minimal intervals.

We can assume without loss that

c � 1 − 1√
2
. (10)

By (5),

aN+k+1 �
aN+k

1 − c

for any k � 0. If

aN+k+1 �
aN+k

(1 − c)2
,

we choose an integer l � 2 such that

1

1 − c
� γ =

(
aN+k+1

aN+k

)1/l

<
1

(1 − c)2

and add l − 1 intermediate points

γ aN+k, . . . , γ
l−1aN+k

between aN+k and aN+k+1. In this way, we create a strictly increasing sequence (bj )j�0 such
that b0 = aN , all terms of the sequence (an)n�N appear as terms of the sequence (bj )j�0, and

1

1 − c
bj � bj+1 <

1

(1 − c)2
bj for all j. (11)

The family F of Carleson squares we want to consider is formed by rectangles of the form
(0, bj+1) × I , where I ∈ DN , j � 0, for which the eccentricity is bounded above and below by

1√
2

<
bj+1

|I | �
√

2. (12)

Such a rectangle is denoted by QI,j . Note that by (11) and (10), for each I ∈DN there exits j � 0
with (12), and for each j � 0 there exists exactly one size of intervals I in DN such that (12)
holds. Note that different Carleson squares in this family F can have the same base I ∈ DN . It
is easy to see that any Carleson square Q over an interval in iR can be covered by a bounded
number of elements in F , with comparable base length. Therefore, up to a possible change
of constant, it is sufficient to check the Carleson-type conditions (3) and (9) on the elements
of F .

The family F gives rise to a family T of right halves of the Carleson rectangles in F , which
we will call tiles, and which will form a decomposition of the closed half-plane CaN

into disjoint
sets. These are rectangles of the form TI,j = [bj , bj+1) × I , where QI,j ∈F , see Fig. 1.

We say that an interval I ∈ DN belongs to generation j , if it is the base for a Carleson
square QI,j ∈ F . Thus each I ∈ DN belongs to at least one, and possibly more than one, gener-
ation.
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Fig. 1. The tiles TI,j .

The idea of the construction below is to define μN as the “largest possible part” of μ which
can be dominated by νN , in terms of condition (9). Recall that by the Carleson-type condition (3)
we are given, we have in particular

μ(TI,0) = μ(QI,0) � ν(QI,0) = νN(QI,0)

for all intervals I of generation 0 in DN . For such intervals, we define the remaining part of νN

by

ν0
N

∣∣{aN }×I
= νN(QI,0) − μ(TI,0)

νN(QI,0)
νN |{aN }×I .

This defines a measure ν0
N on {aN } × iR.

In the second step, we define a measure ν1
N on {aN } × iR by letting

ν1
N

∣∣{aN }×I ′ =
⎧⎨
⎩

ν0
N(QI ′,1)−μ(TI ′,1)

ν0
N(QI ′,1)

νN |{aN }×I ′ if ν0
N(QI ′,1) > μ(TI ′,1),

0 if ν0 (Q ′ )� μ(T ′ ),
N I ,1 I ,1
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for intervals I ′ ∈DN of generation 1. In the next and all following steps, having already defined
the measure ν

j
N on {aN } × iR for some j � 0, we let

ν
j+1
N

∣∣{aN }×J

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν
j
N (QJ,j+1)−μ(TJ,j+1)

ν
j
N (QJ,j+1)

νN |{aN }×J if ν
j
N(QJ,j+1) > μ(TJ,j+1),

0 if ν
j
N(QJ,j+1)� μ(TJ,j+1), ν

j
N(QJ,j+1) > 0,

0 if ν
j
N |{aN }×J = 0,

(13)

for intervals of generation j + 1 in DN , thereby defining the measure ν
j+1
N on {aN } × iR. De-

pending on which case in (13) appears, we say that (J, j + 1) is of type 1, 2 or 3, respectively.
We are finally ready to define the measure μN . We start by letting

μN |TI,0 = μ|TI,0

for intervals I ∈DN of generation 0. For TI,j+1 ∈ T , j � 0, let

μN |TI,j+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ|TI,j+1 if ν
j
N(QI,j+1) > μ(TI,j+1),

ν
j
N (QI,j+1)

μ(TI,j+1)
μ|TI,j+1 if ν

j
N(QI,j+1) � μ(TI,j+1), ν

j
N(QI,j+1) > 0,

0 if ν
j
N |TI,j+1 = 0.

Since the tiles in T form a decomposition of CaN
, this defines a measure μN on CaN

.
By construction, we have for each QI,j ∈F , (I, j) of type 2 or type 3:

μN(QI,j ) = νN

({aN } × I
)
.

If (I, j) is of type 1, then

μN(QI,j ) < νN

({aN } × I
)
.

Hence μN satisfies Condition 3 in Theorem 2.1 with respect to νN . Let us now look at the
Carleson condition for μ − μN .

If (I, j) is of type 1, then μN(TI,j ) = μ(TI,j ) by construction, and (μ − μN)(TI,j ) = 0.
Therefore, by decomposing the Carleson square QI,j into

QI,j = TI,j ∪
( ⋃

I ′⊂I,QI ′,j−1∈F
QI ′,j−1

)

and iterating if necessary, we see that we have to check Condition 3 only for Carleson squares
QI,j with (I, j) of type 2 or type 3. But in this case,
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μN(QI,j ) = νN

({aN } × I
)

and thus by the original Condition 3 in Theorem 2.1 for μ and ν, μ − μN satisfies Condition 3
with respect to ν − νN , again with constant 1 on Carleson squares in F .

Finally, again by condition (3) in Theorem 2.1 for μ and ν, we see that for all tiles TI,j con-
tained in the strip {z ∈ C: aN � Re z < aN+1}, μN |TI,j

= μ|TI,j
. Therefore, μ−μN is supported

on the closed half-plane CaN+1 . We can now make an induction step by applying the same pro-
cedure to the measures μ − μN , ν − νN with respect to the half-plane CaN+1 to construct μN+1,
etc. We thus obtain a decomposition

μ =
∞∑

n=N

μn

satisfying the conditions (7), (8) and (9) in the lemma.
It remains to be shown that for each n > N , μn is a Carleson measure with respect to the

shifted half-plane Can−1 , with the appropriate estimate of the Carleson constant. Let Q be a
Carleson square in Can−1 over the interval I . Recall that by (9), there exists C′ > 0 with μn(Q̃)�
C′νn(Q̃) for each Carleson square Q̃ in C+ and that (an − an−1) � can.

If the sidelength |I | of Q is less than an − an−1, then Q has empty intersection with the
support of μn, and μn(Q) = 0. If |I | � an − an−1, then Q can be covered by a Carleson square
Q̃ in C+ with sidelength at most 1

c
|I |. Thus

μn(Q) � μn(Q̃)� C′νn(Q̃)� C′ 1

c
βn|I |,

and we obtain the desired result. The result for μN is shown in the same way. �
Now let f ∈ A

p
ν . Note that by the (
2)-condition, each of the norms ‖f ‖H

p
an

, denoting the
norms on the Hardy spaces Hp(Can) of the shifted half-planes Can , is finite. Restricting μ to
some closed half-plane CaN

, and using the decomposition in Lemma 2.2, we obtain

∫
CaN

∣∣f (z)
∣∣p dμ(z) =

∞∑
n=N

∫
C+

∣∣f (z)
∣∣p dμn(z)

� Cp

C′

c

∞∑
n=N

βn‖f ‖p

H
p
an−1

� (2R)3Cp

C′

c

∞∑
n=N

βn−1‖f ‖p

H
p
an−1

= (2R)3Cp

C′

c

∞∑
n=N

ν̃
([an−1, an)

)‖f ‖p

H
p
an−1

� (2R)3Cp

C′ ∥∥f (z)
∥∥p

p .

c Aν
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Here, we use that for any f ∈ A
p
ν , the map

r �→
∞∫

−∞

∣∣f (r + it)
∣∣p dt

is non-increasing. Using that

∫
C+

∣∣f (z)
∣∣p dμ(z) = sup

N∈Z

∫
CaN

∣∣f (z)
∣∣p dμ(z),

we obtain the desired estimate.
Now we can finish the proof of the theorem by showing that a sequence of positive numbers

(an)n∈Z with the required properties (5), (6) exists, and that we can also treat the case ν({0}) > 0.
Let R be the (
2) constant of the measure ν̃, and let F be the function given by

F : [0,∞) → R, F (r) = ν̃
([0, r)

)
.

F is left continuous, and also right continuous up to countably many jumps. By the (
2)-
condition,

F(2t) � RF(t),

so in particular, a jump of F at t may be no more than (R − 1)F (t).
If ν̃({0}) = 0, then let for n ∈ Z

an = sup
{
r � 0: F(r) � (2R)2n

}
,

provided that the supremum is finite. If the supremum is infinite, we stop the sequence at the
corresponding n.

By the right continuity of F , an > 0 for all n ∈ Z, and by the condition on jumps of F ,

(2R)2n � F(an) �
1

R
(2R)2n

and therefore

ν̃([0, an+1))

ν̃([0, an))
� (2R)2n+2

R(2R)2n
� 4R.

Hence an+1 � 2an and

an+1 − an

an+1
� 1

2
.

Furthermore,
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(2R)2n(4R − 1)� ν̃
([an, an+1)

) = F(an+1) − F(an) � (2R)2n+2,

hence

2R � ν̃([an, an+1))

ν̃([an−1, an))
� (2R)3.

If ν̃({0}) �= 0, then let a0 = 0, β0 = ν̃({0}), and let

an = sup
{
r � 0: F(r) � (2R)2(n+1)ν̃

({0})} for n ∈ N.

We see in the same way as before that properties (5), (6) hold, if we replace ν̃([a0, a1)) by
ν̃((a0, a1)). We write β1 = ν̃((a0, a1)) and βn = ν̃([an−1, an)) for n� 2. Then

β0‖f ‖p

H
p
a0

+
∞∑

n=1

βn‖f ‖p

H
p
an+1

�
∫
C+

∣∣f (z)
∣∣p dν(z) � β0‖f ‖p

H
p
a0

+
∞∑

n=1

βn‖f ‖p

H
p
an

,

and the same construction as before applies. If the sequence (an) is finite to the right, an analo-
gous argument can be made. �

The following proposition is elementary and appears for special cases in [10,11]. Partial re-
sults are also given in [2,5].

Proposition 2.3. Let A2
ν be a Zen space, and let w : (0,∞) → R+ be given by

w(t) = 2π

∞∫
0

e−2rt dν̃(r) (t > 0).

Then the Laplace transform defines an isometric map L : L2
w(0,∞) → A2

ν .

Note that the existence of the integral is guaranteed by the (
2)-condition.

Proof. Let f ∈ L2
w(0,∞). Then

sup
ε>0

∫
C+

∣∣Lf (z + ε)
∣∣2

dν(z) = sup
ε>0

∞∫
0

∥∥(Lf )(ε + r + ·)∥∥2
L2(iR)

dν̃(r)

= sup
ε>0

∞∫
0

∥∥F(
e−(r+ε)·f

)∥∥2
L2(R)

dν̃(r)

= sup
ε>0

∞∫
2π

∥∥e−(r+ε)·f
∥∥2

L2(0,∞)
dν̃(r)
0
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= sup
ε>0

∞∫
0

∣∣f (t)
∣∣22π

∞∫
0

e−2(r+ε)t dν̃(r) dt

=
∞∫

0

∣∣f (t)
∣∣2

w(t) dt

by isometry of the Fourier transform and the dominated convergence theorem. �
Here is a Laplace–Carleson embedding theorem, which is an immediate consequence.

Theorem 2.4. Let A2
ν be a Zen space, ν = ν̃ ⊗ dλ, and let w : (0,∞) → R+ be given by

w(t) = 2π

∞∫
0

e−2rt dν̃(r) (t > 0). (14)

Then the following are equivalent:

1. The Laplace transform L given by Lf (z) = ∫ ∞
0 e−tzf (t) dt defines a bounded linear map

L : L2
w(0,∞) → L2(C+,μ).

2. For a sufficiently large N ∈ N, there exists a constant C > 0 such that

∫
C+

∣∣(LtN−1e−λt
)
(z)

∣∣2
dμ(z) � C

∞∫
0

∣∣tN−1e−λt
∣∣2

w(t) dt for each λ ∈ C+.

3. There exists a constant C > 0 such that

μ(QI )� Cν(QI ) for each Carleson square QI .

Proof. Noticing that L(tN−1e−λt ) is a scalar multiple of (kλ)
N , this follows immediately from

Theorem 2.1. �
2.2. Hankel operators on Zen spaces

The boundedness of little Hankel operators on weighted Bergman spaces has been studied
in various settings, see e.g. [2,30,15,29], though mostly for standard weights. Generally, bound-
edness results for Hankel operators are often connected to Carleson embedding results, at least
concerning sufficient conditions for boundedness.

We will show in this subsection that the boundedness of Hankel operators on Zen spaces can
be deduced from a Carleson measure condition on the symbol. In the case of the Hardy space or
the standard weighted Bergman spaces, this condition is also necessary.
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Theorem 2.5. Let A2
ν be a Zen space, dν = dν̃ ⊗ dλ. Let b : C+ → C be analytic, b ∈ H 2(C+).

If the measure

∣∣b′(z)
∣∣2 Re zν̃

([0,Re z)
)
dA(z) (15)

is a ν-Carleson measure on C+, then the little Hankel operator

A2
ν → A2

ν, f �→ Qνb̄f

is bounded. Here, Qν denotes the orthogonal projection Qν : L2(C+, dν) → A2
ν .

Proof. For the proof, we follow the lines of the proof of the Fefferman–Stein duality theorem
in [7]. Suppose that |b′(z)|2 Re zν̃([0,Re z)) dA(z) is a ν-Carleson measure and let f,g ∈ A2

ν .
Then

〈Qνb̄f, ḡ〉A2
ν
=

∞∫
0

∫
iR

b̄(r + t)f (r + t)g(r + t) dt dν̃(r)

=
∞∫

0

∫
C+

b̄′(z + r)
(
f (r + ·)g(r + ·))′

(z)Re z dA(z) dν̃(r),

where we use the Littlewood–Paley identity

∞∫
0

∫
iR

∣∣f (r + t)
∣∣2

dt dν̃(r) =
∞∫

0

∫
C+

∣∣f ′(z + r)
∣∣2 Re z dA(z) dν̃(r)

and its polarization. Now

∣∣∣∣∣
∞∫

0

∫
C+

b̄′(z + r)f (r + z)g′(r + z)Re z dA(z) dν̃(r)

∣∣∣∣∣

�
( ∞∫

0

∫
C+

∣∣b̄′(z + r)
∣∣2∣∣f (r + z)

∣∣2 Re z dA(z) dν̃(r)

)1/2

×
( ∞∫

0

∫
C+

∣∣g′(z + r)
∣∣2 Re z dA(z) dν̃(r)

)1/2

=
( ∫ ∣∣b̄′(z)

∣∣2∣∣f (z)
∣∣2

[ Re z∫
Re(z − r) dν̃(r)

]
dA(z)

)1/2
C+ 0
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×
( ∞∫

0

∫
C+

∣∣g′(z + r)
∣∣2 Re z dA(z) dν̃(r)

)1/2

� ‖f ‖A2
ν
‖g‖A2

ν
,

since

∣∣b′(z)
∣∣2

Re z∫
0

Re(z − r) dν̃(r) dA(z) �
∣∣b′(z)

∣∣2 Re zν̃
([0,Re z)

)
dA(z)

and the latter is a ν-Carleson measure. The second term
∫ ∞

0

∫
C+ b̄′(z + r)f ′(r + z) ×

g(r + z)Re z dA(z) dν̃(r) is estimated accordingly. Hence the Hankel operator is bounded. �
In the case of the Hardy space H 2(C+), that is, if ν̃ is the Dirac measure in 0, the Carleson

condition on the measure (15) is a well-known characterization of the boundedness of the Hankel
operator, see e.g. [7].

For further applications of the theorem above, recall the Bloch space B(C+) on C+,

B(C+) =
{
f ∈ Hol(C+): ‖f ‖B = sup

z∈C+

∣∣f ′(z)
∣∣Re z < ∞

}
.

Let us consider the following inverse (
2)-condition on ν̃:

sup
M>1

inf
r>0

ν̃([0,Mr))

ν̃([0, r))
> 1. (16)

Corollary 2.6. Let A2
ν(C+) be a Zen space with ν̃ satisfying the inverse (
2)-condition (16) and

let b ∈ B(C+). Then the little Hankel operator

A2
ν → A2

ν, f �→ Qνb̄f

is bounded.

Proof. Let b ∈ B(C+) and let QI be a Carleson square. We write F(r) = ν̃([0, r)) for r � 0.
Then

∫
QI

∣∣b′(z)
∣∣2 Re zν̃

([0,Re z)
)
dA(z) � ‖b‖2

B

∫
QI

1

Re z

Re z∫
0

dν̃(r) dA(z)

� |I |
|I |∫

1

s
F (s) ds.
0
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To finish the proof, it remains only to be shown that there exists C > 0 with

x∫
0

1

s
F (s) ds � CF(x) for all x ∈ [0,∞).

Choosing M,γ > 1 with

inf
r>0

ν̃([0,Mr))

ν̃([0, r))
� γ,

we find that

x∫
0

1

s
F (s) ds �

∞∑
n=0

M−nx∫
M−(n+1)x

1

s
F (s) ds

�
∞∑

n=0

1

x

(
M−n − M−(n+1)

)
xMn+1F

(
M−nx

)

� (M − 1)

∞∑
n=0

γ −nF (x) = γ (M − 1)

γ − 1
F(x).

Hence the ν-Carleson condition for the measure (15) in Theorem 2.5 applies, and the little Hankel
operator is bounded. �
Remark. In the case of the standard weighted Bergman spaces A2

α(C+) with α > −1, we have
dν̃(r) = rα dr , and the inverse (
2)-condition (16) holds. It is well-known that the little Hankel
operator with symbol b is bounded on A2

α , if and only if b ∈ B(C+) (see e.g. [31]). Therefore,
the ν-Carleson condition for the measure (15) in Theorem 2.5, respectively the Bloch condition
on the symbol in Corollary 2.6, are also necessary in this case.

3. Lp − Lq embeddings

As mentioned above, there is no known full characterization of boundedness of Laplace–
Carleson embeddings

Lp(0,∞) → Lq(C+,μ), f �→ Lf =
∞∫

0

e−t ·f (t) dt.

However, characterizations are possible in case p � 2, if the conjugate index p′ satisfies p′ < q ,
and in some cases with additional information on the support on the measure. We list some
results for natural spectral inclusion conditions which appear naturally in the theory of operator
semigroups. In the cases we consider here, the oscillatory part of the Laplace transform can be
discounted, and a full characterization of boundedness can be achieved.

First, let us make the following simple observation.
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Proposition 3.1. Let μ be a positive regular Borel measure on C+, let 1 � p,q < ∞ and suppose
that the Laplace–Carleson embedding

L : Lp(0,∞) → Lq(C+,μ), f �→ Lf,

is well-defined and bounded. Then there exists a constant Cp,q > 0 such that for all intervals
I ⊂ iR,

μ(QI ) � Cp,q |I |q/p′
if p > 1, μ(QI ) � Cp,q if p = 1. (17)

Proof. Let QI be a Carleson square with centre λI . Note that

∥∥(
Le−·λ̄I

)∥∥q

Lq(C+,μ)
�

∫
QI

∣∣(Le−·λ̄I
)∣∣q dμ � 1

(4 ReλI )q
μ(QI ) = 1

2q |I |q μ(QI ),

and

∥∥e−·λI
∥∥p

p
= 1

p ReλI

= 2

p|I |
for 1 � p,q < ∞. Hence there exists a constant Cp,q > 0 such that

μ(QI ) � Cp,q |I |q/p′
if p > 1 and μ(QI ) � Cp,q if p = 1.

This concludes the proof. �
The proposition immediately yields the following theorem:

Theorem 3.2. Let μ be a positive regular Borel measure supported in the right half-plane C+,
and let 1 < p′ � q < ∞, p � 2. Then the following are equivalent:

1. The Laplace–Carleson embedding

L : Lp(0,∞) → Lq(C+,μ), f �→ Lf,

is well-defined and bounded.
2. There exists a constant C > 0 such that

μ(QI )� C|I |q/p′
for all intervals I ⊂ iR. (18)

3. There exists a constant C > 0 such that ‖Le−·z‖L
q
μ
� C‖e−·z‖Lp for all z ∈C+.

Proof. Obviously (1) ⇒ (3), and (3) ⇒ (2) by the proposition.
This leaves (2) ⇒ (1), which is also easy: By the Hausdorff–Young inequality, the map

L : Lp(0,∞) → Lp′
(iR) is bounded. By Duren’s theorem, the Poisson extension Lp′

(iR) →
L

q
μ(C+) is bounded, given the Carleson condition (17). The composition of both gives the bound-

edness of the Laplace transform L : Lp(0,∞) → Lq(C+,μ). This concludes the proof. �
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The case p > 2 is much more subtle: in particular the Laplace transform no longer maps
Lp(0,∞) into Hp′

(C+). We give two special cases here, that of the measure μ being supported
in a strip and that of μ being supported in a sector.

3.1. Sectorial measures

If the measure μ is supported on a sector S(θ) = {z ∈ C+: |arg z| < θ} for some 0 < θ < π
2 ,

then the oscillatory part of the Laplace transform can be discounted, and a full characterization
of boundedness can be achieved (see also [9, Theorem 3.2] for an alternative characterization by
means of a different measure).

Theorem 3.3. Let μ be a positive regular Borel measure supported in a sector S(θ) ⊂ C+,
0 < θ < π

2 , and let q � p > 1. Then the following are equivalent:

1. The Laplace–Carleson embedding

L : Lp(0,∞) → Lq(C+,μ), f �→ Lf,

is well-defined and bounded.
2. There exists a constant C > 0 such that μ(QI ) � C|I |q/p′

for all intervals in I ⊂ iR which
are symmetric about 0.

3. There exists a constant C > 0 such that ‖Le−·z‖L
q
μ
� C‖e−·z‖Lp for all z ∈ R+.

4. There exists a constant C > 0 such that ‖Le−·2n‖L
q
μ
� C‖e−·2n‖Lp for all n ∈ N.

Proof. (2) ⇒ (1) For n ∈ Z, let

Tn = {
x + iy ∈ C+: 2n−1 < x � 2n, −2n−1 < y � 2n−1}.

That is, Tn is the right half of the Carleson square QIn over the interval In = {y ∈ R, |y| � 2n−1}.
The Tn are obviously pairwise disjoint.

Without loss of generality we assume 0 < θ < arctan( 1
2 ), in which case S(θ) ⊆ ⋃∞

n=−∞ Tn.
Now let z ∈ Tn for some n ∈ Z. Then we obtain, for f ∈ Lp(0,∞),

∣∣Lf (z)
∣∣ �

∞∫
0

∣∣e−zt
∣∣∣∣f (t)

∣∣dt �
∞∫

0

∣∣e−2n−1t
∣∣∣∣f (t)

∣∣dt � CΘ2−n+1Mf
(
2−n+1),

where CΘ > 0 is a constant dependent only on the integration kernel Θ(t) = χ[0,∞)(t + 1)e−t−1

and Mf is the Hardy–Littlewood maximal function. We refer to e.g. [22, p. 57, Eq. (16)] for a
pointwise estimate between the maximal function induced by the kernel Θ and M . We can easily
dominate Θ by a positive, radial, decreasing L1 function here. Consequently,

∫ ∣∣Lf (z)
∣∣q dμ(z) �

∞∑
n=−∞

2q(−n+1)
(
Mf

(
2−n+1))q

μ(Tn)
S(θ)
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� C
q
Θ

∞∑
n=−∞

2q(−n+1)2nq/p′(
Mf

(
2−n+1))q

= C
q
Θ

∞∑
n=−∞

2q/p′(
2(−n+1)

(
Mf

(
2−n+1)p))q/p

� C
q
Θ2q/p′

( ∞∑
n=−∞

2(−n+1)
(
Mf

(
2−n+1))p

)q/p

� ‖f ‖q
Lp .

Note that in the case 1 < p � 2 (but not for p > 2) this result can also easily be deduced from
the Hausdorff–Young inequality and Duren’s theorem [4].

(4) ⇒ (2) Let I ⊂ iR be an interval which is symmetric about 0. We can assume without loss
that |I | = 2n. It is easy to see that

∣∣(Le−2n−1·)(z)∣∣ =
∣∣∣∣ 1

2n−1 + z

∣∣∣∣� 1

2n+1
for z ∈ QI .

Thus

μ(QI ) �
(
2n+1)q

∫
C+

∣∣(Le−2n−1)(z)·∣∣q dμ(z)

� C
(
2n+1)q∥∥e−2n−1·∥∥q

p
≈ 2nq2−nq/p = 2nq/p′

.

(1) ⇒ (3) and (3) ⇒ (4) are obvious. �
Remark 3.4. Let μ, θ , p and q be as in Theorem 3.3. In [9, Theorem 3.2], essentially the
equivalence of the following statements is shown for discrete measures:

1. The Laplace–Carleson embedding

L : Lp(R+) → Lq(C+,μ), f �→ Lf,

is well-defined and bounded.
2. There exists a constant C > 0 such that μ̃(QI ) � C|I |q/p for all intervals in I ⊂ iR which

are symmetric about 0, where dμ̃(z) = |z|q dμ( 1
z
).

The proof also uses the method of the maximal function.

Now let us consider the case p > q for sectorial measures μ. We will, among others, obtain
a condition in terms of the balayage Sμ of μ (compare this with the characterization of bounded
Hp(C+) → Lq(C+,μ) embeddings for p > q in [17]). Recall that the balayage Sμ of a positive
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Borel measure μ on C+ is given by Sμ(t) = ∫
C+ pz(t) dμ(z), where pz is the Poisson kernel,

defined in the introduction as

pz(t) = 1

π

y

x2 + (y − t)2
(z = x + iy ∈ C+, t ∈ R).

To look at a dyadic version, let

Tn = {
x + iy ∈C+: 2n−1 < x � 2n, −2n−1 < y � 2n−1}

as in the previous proof, and for k ∈ Z, let Tn,k = Tn + ik2n, so the Tn,k are the translates
of Tn parallel to the imaginary axis. Similarly, let In,k = In + k2n be the translates of In :=
{y ∈ R: |y| � 2n−1}. The {Tn,k: n, k ∈ Z} then form a dyadic tiling of the right half-plane. Let

Sd
μ(t) =

∑
n,k∈Z

χIn,k
(t)

μ(Tn,k)

2n
.

Sd
μ is called the dyadic balayage of μ. Note that Sd

μ � 2πSμ pointwise, since

Sμ(t) =
∫
C+

pz(t) dμ(z) �
∞∑

n=−∞

∞∑
k=−∞

χIn,k
(t)

∫
Tn,k

pz(t) dμ(z)

�
∞∑

n=−∞

∞∑
k=−∞

χIn,k
(t) inf

z∈Tn,k

{
pz(t)

}
μ(Tn,k) �

1

2π

∑
n,k∈Z

χIn,k
(t)

μ(Tn,k)

2n
. (19)

In the special case that μ is sectorial with opening angle θ < π/2, the measure μ is supported
on

⋃
n∈Z Tn, and we get a particularly simple form of the dyadic balayage Sd

μ, namely

Sd
μ(t) =

∞∑
n=−∞

χIn(t)
μ(Tn)

2n
=

∞∑
k=0

∞∑
n=−∞

χIn\In−1(t)
μ(Tn+k)

2n+k
=

∞∑
k=0

Sd
μ,k(t),

where

Sd
μ,k(t) =

∞∑
n=−∞

χIn\In−1(t)
μ(Tn+k)

2n+k
= Sd

μ,0

(
2kt

)
.

Let us now look at an estimate from above for Sμ in terms of the Sd
μ,k . Let t ∈ In\In−1. Then

max
z∈Tk

pz(t) �
{

2k

π22n if n > k,

1
π2k if n � k.

This easily implies that for t ∈ In\In−1,
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Sμ(t) � 1

π

( −1∑
j=−∞

2n+j

π22n
μ(Tn+j ) +

∞∑
j=0

1

2n+j
μ(Tn+j )

)

= 1

π

( −1∑
j=−∞

22j μ(Tn+j )

2n+j
+

∞∑
j=0

μ(Tn+j )

2n+j

)

= 1

π

( −1∑
j=−∞

22j Sd
μ,0

(
2j t

) +
∞∑

j=0

Sd
μ,0

(
2j t

))
.

Hence, for t ∈R

Sμ(t) � 1

π

( −1∑
j=−∞

22j Sd
μ,0

(
2j t

) +
∞∑

j=0

Sd
μ,0

(
2j t

))

= 1

π

( −1∑
j=−∞

22j Sd
μ,0

(
2j t

) + Sd
μ(t)

)
. (20)

Theorem 3.5. Let μ be a positive regular Borel measure supported in a sector S(θ) ⊂ C+,
0 < θ < π

2 and let 1 � q < p < ∞. Then the following are equivalent:

1. The embedding

L : Lp(R+) → Lq(C+,μ), f �→ Lf,

is well-defined and bounded.
2. The sequence (2−nq/p′

μ(Sn)) is in �p/(p−q)(Z). Here Sn = ⋃
k∈Z Tn,k = {z ∈ C: 2n−1 <

Re z � 2n}.
3. The sequence (2n/p‖Lk2n‖L

q
μ
) is in �qp/(p−q)(Z).

If p′ < q , then the above is also equivalent to

4. tq(2−p)/pSμ ∈ Lp/(p−q)(R).

Remark. If p′ � q , then the sweep Sμ may be infinite everywhere, so we cannot expect a char-
acterization in terms of Sμ.

Proof of Theorem 3.5. We will start by showing (2) ⇒ (1). Recall that S(θ) is contained in⋃∞
n,k∈Z, |k|�N Tn,k for some N ∈ N. Suppose that (2) holds. Now as in the proof of Theorem 3.3,

we obtain for z ∈ Sn

∣∣Lf (z)
∣∣ �

∞∫
0

∣∣e−zt
∣∣∣∣f (t)

∣∣dt �
∞∫

0

∣∣e−2n−1t
∣∣∣∣f (t)

∣∣dt � CΘ2−n+1Mf
(
2−n+1).

Note that χI−nMf (2−n+1) � χI−nMf . Consequently
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∫
C+

∣∣Lf (z)
∣∣q dμ(z)

�
∞∑

n=−∞
2q(−n+1)Mf

(
2−n+1)q

μ(Sn)

∞∑
n=−∞

2q(−n+1)Mf
(
2−n+1)q

μ(Sn)

�
( ∞∑

n=−∞
2(−n+1)Mf

(
2−n+1)p

)q/p( ∞∑
n=−∞

2(q/p′)(−n+1)(p/q)′μ(Sn)
(p/q)′

)1/(p/q)′

� ‖f ‖q
Lp

∥∥(
2−nq/p′

μ(Sn)
)∥∥

(p/q)′

by the boundedness of the Hardy–Littlewood maximal function on Lp(0,∞).
(1) ⇒ (2) For λ > 0 we write k̃λ for the Lp(0,∞) function given by

k̃λ(t) = λ1/pe−λt (t � 0),

noting that ‖k̃λ‖Lp � 1.
From a result of Gurariı̆ and Macaev in [8], it can be deduced that

∥∥∥∥∑
n∈Z

αnk̃2n

∥∥∥∥
p

≈
( ∑

n∈Z
|αn|p

)1/p

(21)

for any �p sequence (αn).
More precisely, we claim that there are constants A,B > 0 such that for all scalars (αk) we

have

A
∑
n

|αn|p �
∥∥∥∥∑

n

αnk̃2n

∥∥∥∥
p

p

� B
∑
n

|αn|p.

By the change of variable x = e−t we have

∥∥∥∥∑
n

αnk̃2n

∥∥∥∥
p

p

=
1∫

0

∣∣∣∣∑
n

αn2n/px2n−1/p

∣∣∣∣
p

dx.

Recall that a sequence (mj ) is a lacunary sequence if infmj+1/mj = r > 1. Now, the result
of Gurariı̆ and Macaev in [8] asserts the following: If (nj + 1/p) is lacunary, then the sequence
of functions (t �→ (nj + 1/p)1/ptnj ) in Lp(0,1) is equivalent to the standard basis of �p .

Writing nj = 2j − 1/p for j ∈ Z, we have the conditions of the Gurariı̆–Macaev theorem,
and the claim follows.

Now, denoting by (Ω,dΩ) the probability space of sequences (εn) taking values in −1, 1
with equal probability, equipped with the standard product σ -algebra and probability measure,
we obtain
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( ∑
n

|αn|p
)q/p

�
∫
Ω

∥∥∥∥L
( ∑

n

εnαnk̃n

)∥∥∥∥
q

L
q
μ

dΩ(ε)

=
∫
C+

∫
Ω

∣∣∣∣∑
n

εnαn2n/p 1

2n + z

∣∣∣∣
q

dμ(z) dΩ(ε)

≈
∫
C+

( ∑
n

|αn|222n/p 1

|2n + z|2
)q/2

dμ(z)

=
∑

k

∫
Sk

( ∑
n

|αn|222n/p 1

|2n + z|q
)q/2

dμ(z)

�
∑
n

∫
Sn

|αn|q2nq/p 1

2qn
dμ(z)

=
∑
n

|αn|q2−nq/p′
μ(Sn).

Here, we have used the fact that μ is supported in a sector S(θ) in the last inequality. Thus
(2−nq/p′

μ(Sn)) is an �(p/q)′ sequence, and we have proved the desired implication.
A simple argument, again using sectoriality, shows that

‖Lk2n‖q
q � 1

2nq
μ(Sn).

Hence (3) ⇒ (2).
For (1) ⇒ (3), note that for any n,

ReLk2n �
∣∣Lk2n(z)

∣∣ for z ∈ S(θ).

Hence for any sequence (αn) ∈ �p/q(Z), αn � 0 for all n,

∑
n

αn

∥∥2n/pLk2n

∥∥q

Lq(μ)
�

∫
C+

( ∑
n

α
1/q
n 2n/p

∣∣Lk2n(z)
∣∣)q

dμ(z)

�
∫
C+

(
Re

∑
n

α
1/q
n 2n/pLk2n(z)

)q

dμ(z)

�
∫
C+

∣∣∣∣L
( ∑

n

α
1/q
n 2n/pk2n

)
(z)

∣∣∣∣
q

dμ(z)

�
∥∥∥∥∑

n

α
1/q
n 2n/pk2n

∥∥∥∥
q

p

�
∥∥α

1/q
n

∥∥q

p
= ‖αn‖p/q

by (21). This proves the equivalence of the first three statements.
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(2) ⇒ (4) Again, we can assume without loss that 0 < θ < π/2, in which case S(θ) ⊆⋃∞
n=−∞ Tn. If tq(2−p)/pSμ ∈ Lp/p−q(R), then by (19) tq(2−p)/pSd

μ,0 ∈ Lp/(p−q)(R), and

∞∑
n=−∞

2−nqp/(p′(p−q))μ(Sn)
p/(p−q) =

∞∑
n=−∞

2n2−n(p−2)q/(p−q) μ(Sn)
p/(p−q)

2np/(p−q)

≈
∞∑

n=−∞

∫
In+1\In

∣∣t−(p−2)q/pSd
μ,0

∣∣p/(p−q)
dt

= ∥∥t−(p−2)q/pSd
μ,0

∥∥p/(p−q)

p/(p−q)
< ∞.

Thus (2) holds.
Conversely, if (2−nq/p′

μ(Sn)) ∈ �p/(p−q), then t−(p−2)q/pSd
μ,0 ∈ Lp/p−q(R) by the above

calculation. By (20),

∥∥t−(p−2)q/pSμ

∥∥
p/(p−q)

� 1

π

(∥∥t−(p−2)q/pSd
μ(t)

∥∥
p/(p−q)

+
−1∑

k=−∞
22k

∥∥t−(p−2)q/pSd
μ,0

(
2kt

)∥∥
p/(p−q)

)
.

One sees easily that

22k
∥∥t−(p−2)q/pSd

μ,0

(
2kt

)∥∥
p/(p−q)

= 22k2−k(p−q)/p2k(p−2)q/p
∥∥t−(p−2)q/pSd

μ,0

∥∥
p/(p−q)

= 2k(q+1−q/p)
∥∥t−(p−2)q/pSd

μ,0

∥∥
p/(p−q)

,

thus the second term in the sum converges and is controlled by the expression

∥∥t−(p−2)q/(p−q)Sd
μ,0

∥∥
p/(p−q)

.

For the first term, write

Sd
μ(t) =

∑
n

χIn(t)
μ(Tn)

2n
=

∞∑
k=0

∑
n

χIn\In−1(t)
μ(Tn+k)

2n+k

as before. For each k � 0, it follows that

∫ (
tq(2−p)/p

∑
n

χIn\In−1(t)
μ(Tn+k)

2n+k

)p/(p−q)

dt

�
∑
n

2n2nq(2−p)/(p−q)2−(n+k)p/(p−q)μ(Tn+k)
p/(p−q)

=
∑

2n(q/p−q+1)p/(p−q)2−(n+k)p/(p−q)μ(Tn+k)
p/(p−q)
n
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=
∑
n

2n(−q/p′+1)p/(p−q)2−(n+k)p/(p−q)μ(Tn+k)
p/(p−q)

= 2−k(1−q/p′)p/(p−q)
∑
n

2(n+k)(−q/p′)p/(p−q)μ(Tn+k)
p/(p−q)

� 2−k(1−q/p′)p/(p−q).

Hence t−(p−2)q/pSμ ∈ Lp/(p−q)(R). This concludes the proof. �
3.2. A counterexample

Let μ denote the measure on the interval [1,∞) defined by dμ(x) = dx/
√

x. Clearly, μ is
sectorial and contained in a shifted half-plane. Moreover μ satisfies the estimate that for a Car-
leson square Q of size h one has μ(Q) � 2h1/2.

Nonetheless, the Laplace–Carleson embedding L : L2(0,∞) → L1(μ) is unbounded (or
equivalently, in this case, the Carleson embedding H 2(C+) → L1(μ) is unbounded). This can
be seen by noting that μ does not satisfy the condition of [18, Theorem C], since the function
t �→ ∫

Γ (t)
x−1 dμ(x) behaves as x−1/2 and thus does not lie in L2. (Here Γ (t) may be taken to

be the interval [t,∞).)
It is constructive to give an explicit counterexample, following the reasoning of the proof of

[18, Theorem C]. (Note that counterexamples in the case of the disc are simpler, and can be found
in [24].)

Define φ : R→R by

φ(t) =
{

1 if |t | � 1,

t−1/2(1 + log |t |)−1 if |t | � 1.

Thus φ ∈ L2(R) and there is a function F ∈ H 2 with ReF(it) = φ(t). Now, if F ∈ L1(μ) we
would have ∫

ReF dμ�
∫

|F |dμ < ∞,

from which, as in [18] we could conclude (by writing ReF(x,0) in terms of the Poisson kernel)
that

A :=
∞∫

−∞
φ(t)

∞∫
1

x

x2 + t2

dx√
x

dt < ∞,

and hence

∞∫
−∞

φ(t)|t |−1/2 dt =
∞∫

−∞
φ(t)

∞∫
|t |

x

2x2

dx√
x

dt �A < ∞,

which is a contradiction.
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3.3. Measures supported in a strip

Theorem 3.6. Let μ be a positive regular Borel measure supported in a strip Cα1,α2 =
{z ∈ C: α2 � Re z � α1} for some α2 � α1 > 0, and let 1 < p′ � q < ∞, q � 2. Then the
following are equivalent:

1. The embedding

L : Lp(0,∞) → Lq(C+,μ), f �→ Lf,

is well-defined and bounded, with a bound only depending on the Carleson–Duren con-
stant C and the ratio α2

α1
.

2. There exists a constant C > 0 such that

μ(QI ) � C|I |q/p′
for all intervals I ⊂ iR. (22)

3. There exists a constant C > 0 such that ‖Le−·z‖L
q
μ
� C‖e−·z‖Lp for all z ∈ Cα1,α2 .

Proof. Again, obviously (1) ⇒ (3). To show (3) ⇒ (2), we have to remember that the argument
in Proposition 3.1 only works for Carleson squares QI with centre λI ∈ Cα1,α2 . Any Carleson
square with centre λI ∈Cα1/3,α2 can be covered by a Carleson square of at most triple sidelength
with centre in Cα1,α2 , any Carleson square with centre in λI ∈ C0,α1/3 has nonempty intersection
with the support of μ. If QI is a Carleson square with centre λI ∈Cα2 , then its intersection with
the support of μ can be covered by at most [ 2 ReλI

α2
] + 1 Carleson squares with centre in Cα1,α2 .

Hence

μ(QI ) �
|I |
α2

α
q/p′
2 � |I |p/q ′

.

This leaves (2) ⇒ (1).
Consider the line parallel to the imaginary axis iR+ α1/2. Note that

L : Lp(R+) → L2
(

iR+ α1

2

)

is bounded, since

‖Lf ‖L2(iR+ α1
2 ) = ∥∥L(

e−α1/2t f
)∥∥

L2(iR)
= ∥∥e−α/2t f

∥∥
2

�
∥∥e−α1t

∥∥1/2
p/(p−2)

‖f ‖p � α

2−p
2p

1 ‖f ‖p.

Since the measure μ is supported in Cα1,α2 , by the Carleson condition (17) we have for each
Carleson square in QI = {z ∈C: i Im z ∈ I, α1/2 < Re z < α1/2 + |I |} in C+,α1/2:

μ(QI ) � C|I |q/p′ � C|I |q(1/p′−1/2)|I |q/2 � Cα
q(1/p′−1/2)

2 |I |q/2.

Thus the Poisson embedding
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L2
(

iR+ α1

2

)
→ Lq(C+,μ)

is bounded by Duren’s theorem, with constant Cα
1/p′−1/2
2 . Again, composing both maps yields

the Laplace transform

L : Lp(R+) → Lq(C+,μα)

with norm bound Cα

2−p
2p

1 α
1/2−1/p

2 = C(α2
α1

)1/2−1/p . �
3.4. Sobolev spaces

In this subsection, we will be interested in embeddings

L : Hp
β(0,∞) → Lp(C+,μ),

where for β > 0 the space Hp
β(0,∞) is given by

Hp
β (0,∞) =

{
f ∈ Lp(R+):

∞∫
0

∣∣∣∣
(

d

dx

)β

f (t)

∣∣∣∣
p

dt < ∞
}

,

‖f ‖p

Hp
β

= ‖f ‖p
p +

∥∥∥∥
(

d

dx

)β

f

∥∥∥∥
p

p

.

Here ( d
dx

)βf is defined as a fractional derivative via the Fourier transform.
It is now easy to find versions of Theorems 3.3 and 3.5 for Sobolev spaces.

Corollary 3.7. Let μ be a positive Borel measure supported in a sector S(θ) ⊂ C+, 0 < θ < π
2 ,

and let q � p > 1. Then the following are equivalent:

1. The embedding

L : Hp
β(0,∞) → Lq(C+,μ), f �→ Lf,

is well-defined and bounded.
2. There exists a constant C > 0 such that μq,β(QI ) � C|I |q/p′

for all intervals in I ⊂ iR

which are symmetric about 0. Here, dμq,β(z) = (1 + 1
|z|qβ ) dμ(z).

3. There exists a constant C > 0 such that ‖Le−·z‖L
q
μ
� C‖e−·z‖Hp

β
for all z ∈ R+.

Proof. Follows immediately from Theorem 3.3 and basic properties of the Laplace trans-
form. �
Corollary 3.8. Let μ be a positive regular Borel measure supported in a sector S(θ) ⊂ C+,
0 < θ < π and let 1 � q < p, β � 0. Suppose that Sμ̃ ∈ Lp/(p−q). Then the embedding
2 β,q
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L :Hp
β(0,∞) → Lq(C+,μ), f �→ Lf,

is well-defined and bounded.

Proof. Follows immediately from Theorem 3.5. �
Laplace–Carleson embeddings of Sobolev spaces H2

β are easily understood by means of The-
orem 1.1:

Theorem 3.9. Let μ be a positive Borel measure on the right half-plane C+ and let β > 0. Then
the following are equivalent:

1. The Laplace–Carleson embedding

H2
β(0,∞) → L2(C+,μ)

is bounded.
2. The measure |1 + z|−2β dμ(z) is a Carleson measure on C+.

Proof. The proof is a simple reduction to the Carleson embedding theorem. Note that the map

H2
β(R+) → H 2(C+), f �→ (1 + z)βLf,

is an isomorphism. The remainder follows from the holomorphy of (1 + z)β and Lf on C+, and
a density argument. �
4. An application

Suppose that we are given a C0-semigroup (T (t))t�0 defined on a Hilbert space H , with
infinitesimal generator A, and consider the system

dx(t)

dt
= Ax(t) + Bu(t), x(0) = x0, t � 0. (23)

Here u(t) ∈C is the input at time t , and B :C→ D(A∗)′, the control operator. We write D(A∗)′
for the completion of H with respect to the norm

‖x‖D(A∗)′ = ∥∥(β − A)−1x
∥∥

H
,

for any β ∈ ρ(A). To guarantee that the state x(t) lies in H one asks that B ∈ L(C,D(A∗)′) and

∥∥∥∥∥
∞∫

0

T (t)Bu(t) dt

∥∥∥∥∥
H

� m0‖u‖L2(0,∞)

for some m0 > 0 (the admissibility condition for B). The C0-semigroup (T (t))t�0 has an exten-
sion to D(A∗)′.
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We refer to the survey [13] and the book [25] for the basic background to admissibility in the
context of well-posed systems. For diagonal semigroups, it is linked with the theory of Carleson
measures as in [12,26]: if A has a Riesz basis of eigenvectors, with eigenvalues (λk), then a scalar
control operator corresponding to a sequence (bk) is admissible if and only if the measure

μ :=
∑

k

|bk|2δ−λk

is a Carleson measure for H 2(C+). An extension to normal semigroups has also been
made [27].

Generalizations to α-admissibility, in which u lies in L2(0,∞; tα dt) for −1 < α < 0, were
studied by Wynn [28]. He used the fact that the Laplace transform maps L2(0,∞; tα dt) to a
weighted Bergman space, for which a Carleson measure theorem is known. The results above
enable us to take this generalization further, considering admissibility in the sense of the input
lying in much more general spaces L2(0,∞;w(t) dt).

Assume that 1 � q < ∞ and the semigroup (T (t))t�0 acts on a Banach space X with a
q-Riesz basis of eigenvectors (φk); that is, T (t)φk = eλktφk for each k, and (φk) is a Schauder
basis of X such that for some C1,C2 > 0 we have

C1

∑
|ak|q �

∥∥∥∑
akφk

∥∥∥q

� C2

∑
|ak|q

for all sequences (ak) in �q . Without loss of generality X = �q and the eigenvectors of the genera-
tor of (T (t))t�0, denoted by A, are the canonical basis of �q . Suppose also that we have a Banach
space Z of functions on (0,∞), either an Lp space or a weighted space L2(0,∞;w(t) dt),
whose dual space Z∗ can be regarded, respectively, as either Lp′

(0,∞) or L2(0,∞;w(t)−1 dt)

in a natural way.
The following general result appears in [14].

Theorem 4.1. Let B be a linear bounded map from C to D(A∗)′ corresponding to the se-
quence (bk). The control operator B is Z-admissible for (T (t))t�0, that is, there is a constant
m0 > 0 such that

∥∥∥∥∥
∞∫

0

T (t)Bu(t) dt

∥∥∥∥∥
X

� m0‖u‖Z, u ∈ Z,

if and only if the Laplace transform induces a continuous mapping from Z into Lq(C+, dμ),
where μ is the measure

∑ |bk|qδ−λk
.

This gives a direct application of our results on Laplace–Carleson embeddings: full details are
given in [14].
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