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Abstract

In a previous investigation we formally de�ned procedures for analyzing hierarchical state-
based requirements speci�cations for two properties: (1) completeness with respect to a set of
criteria related to robustness (a response is speci�ed for every possible input and input sequence)
and (2) consistency (the speci�cation is free from conicting requirements and undesired non-
determinism). Informally, the analysis involves determining if large Boolean expressions are
tautologies. We implemented the analysis procedures in a prototype tool and evaluated their
e�ectiveness and e�ciency on a large real world requirements speci�cation expressed in an
hierarchical state-based language called Requirements State Machine Language. Although our
initial approach was largely successful, there were some drawbacks with the original tools. In
our initial implementation we abstracted all formulas to propositional logic. Unfortunately, since
we are manipulating the formulas without interpreting any of the functions in the individual
predicates, the abstraction can lead to large numbers of spurious (or false) error reports. To
increase the accuracy of our analysis we have continually re�ned our tool with decision proce-
dures and, �nally, come to the conclusion that theorem proving is often needed to avoid large
numbers of spurious error reports. This paper discusses the problems with spurious error reports
and describes our experiences analyzing a large commercial avionics system for completeness
and consistency. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Languages based on �nite state machines, for example, Statecharts [14–16], Soft-
ware Cost Reduction (SCR) [19, 21], and the Requirements State Machine Language
(RSML) [23], are powerful modeling languages suitable for speci�cation of embedded
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software [17]. Embedded software is software that is part of a larger system and usu-
ally provides at least partial control over the system in which it is embedded. This type
of software is often reactive in that it must react or respond to environmental condi-
tions as reected in the inputs arriving at the software boundary [17]. A robust system
will detect and respond appropriately to violations of assumptions about the system
environment (such as unexpected inputs). Therefore, in a robust system the software
behavior must be completely speci�ed with respect to its input domain. Furthermore,
a system must be consistent; there should be no conicting behaviors speci�ed.
Several research groups have extensively studied analysis for these two properties.

Heimdahl et al. refers to the properties as completeness (a response is speci�ed for
every possible input) and consistency (at the most, one response is speci�ed for each
input) [18]. Heitmeyer et al. refer to the same properties as coverage and disjointness.
The problems involved when analyzing large speci�cations for these properties are the
topic of this paper.
In state-based languages such as Statecharts, SCR, and RSML, the transitions be-

tween states are guarded by conditions; the guarding condition must be true before the
transition can be taken. Completeness and consistency in a state-based model implies
the following [18]:
(1) Every state must have a deterministic behavior (transition) de�ned for every

possible input event.
(2) The logical OR of the guarding conditions on every transition out of any state

must form a tautology; for any condition, there is always at least one transition that
can be taken.
(3) The logical AND between the guarding conditions on two transitions out of a state

must form a contradiction; for each possible condition, there is at most one feasible
transition out of every state.
Thus, verifying consistency and completeness in state-based requirements primarily

involves calculating the AND and OR of the guarding conditions on the transitions to
see if they form contradictions and tautologies.
Manually verifying that a speci�cation is complete and consistent is a time-consuming

and error-prone process. Therefore, we formalized and implemented the analysis proce-
dures in a prototype tool [18]. A detailed description of the tool is given in Section 4.
To demonstrate that our automated approach was feasible and that it was relevant to
realistic systems, we applied the analysis to the requirements for a large commercial
avionics system called TCAS II (Tra�c alert and Collision Avoidance System II) [24].
TCAS II is an airborne collision-avoidance system required on all commercial aircraft
carrying more than 30 passengers through US airspace. TCAS II has been described
by the head of the TCAS program at the FAA as one of the most complex systems to
be incorporated into the avionics of commercial aircraft. Therefore, TCAS II provides
a challenging testbed for experimental application of formal methods and automated
analysis to a real system.
The initial results from the analysis e�ort were encouraging [18] and scaled well to

a large requirements speci�cation. Nevertheless, as our analysis e�orts progressed some
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limitations with our original approach surfaced. Most importantly, the accuracy of the
algorithms we used to conjoin and disjoin large Boolean formulas needed improve-
ment. In our �rst prototype tool, we abstracted all formulas to propositional logic and
used binary decision diagrams (BDDs) [7] to manipulate the formulas. The approach
provided excellent performance in terms of execution time and space requirements.
Unfortunately, with this rather coarse abstraction technique the accuracy of the BDD
approach was, in some cases, inadequate. When analyzing the most complex parts of
the TCAS requirements, the number of spurious (false) error reports turned out to be
a hindrance.
The problem with spurious error reports is not unique to our analysis approach.

Other approaches to static analysis of software requirements, such as the approach
used to analyze SCR style requirements for consistency [20], have similar problems. To
overcome these problems, most approaches to static analysis of software speci�cations
enforce restrictions on the modeling language to facilitate accurate analysis, such as
restricting variables to Boolean [8, 9, 20].
In our work we want to avoid enforcing con�ning restrictions on our modeling lan-

guage. RSML was successfully used to model a complex avionics system [23], and
our experience from that e�ort convinced us that enforcing restrictions, such as re-
stricting the variables to Boolean and Enumerated types, will limit the usability of the
modeling language to a point where it will not be widely used by practitioners. Fur-
thermore, since we intend this type of analysis to be used by practitioners in industrial
projects, the analysis approach must be (1) automated, so that performing analysis of a
requirements speci�cation will not require elaborate manual abstractions and expensive
training, (2) e�cient, so that the analysis will be used on a regular basis, and (3) ac-
curate, so that the real problems are not obscured by spurious error reports. Our initial
approach using binary decision diagrams was fully automated and highly e�cient, but
for the most complex parts of our case study the abstraction to propositional logic led
to large numbers of spurious error reports.
To overcome this problem we began investigating what classes of decision proce-

dures we would need to incorporate to achieve adequate accuracy while at the same
time maintain a high degree of automation. As we re�ned our tools we quickly realized
that to reduce the number of spurious error reports to an acceptable level, we would
have to extend our tool with decision procedures for at least Presburger arithmetic.
We came to the conclusion that to complete our task we would eventually need the
full power of a general purpose theorem prover. To avoid the huge investment in time
required to build such an analysis tool we simply decided to adopt an existing tool for
our analysis. We chose to work with PVS (Prototype Veri�cation System) [11, 27, 28].
In this paper, we discuss the problems with spurious error reports and describe our ex-
periences using the Prototype Veri�cation System to reduce the number of abstractions
and, thus, increase the accuracy of the analysis results.
The remainder of the paper is organized as follows. Sections 2 and 3 contain a

short description of the RSML modeling language and an overview of our testbed –
TCAS II. Section 4 describes our early tool, discusses the reasons behind our problems
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with spurious error reports, and outlines alternative solutions to the problem. Section 5
discusses our experiences with using PVS for completeness and consistency analysis.
Related work is discussed in Section 6, and Section 7 summarizes our experiences
and provides some suggestions for future directions in static analysis of software
speci�cations.

2. Requirements State Machine Language (RSML)

RSML was developed as a requirements speci�cation language for embedded systems
[23]. The language is based on hierarchical �nite state machines and is similar to David
Harel’s Statecharts [14, 17]. For example, RSML supports parallelism, hierarchies, and
guarded transitions.
One of the main design goals of RSML was readability and understandability by non-

computer professionals such as users, engineers in the application domain, managers,
and representatives from regulatory agencies. An RSML speci�cation consists of a
collection of states; transitions; variables; interfaces; functions; macros, and constants
which will be discussed in the remainder of this section.
States are organized in a hierarchical fashion as in Statecharts. RSML includes three

di�erent types of states – compound states, parallel states, and atomic states. Atomic
states are analogous to those in traditional �nite state machines. Parallel states are used
to represent the inherently parallel or concurrent parts of the system being modeled.
Finally, compound states are used both to hide the detail of certain parts of the state
machine so as to make the resulting model easier to comprehend, and to encapsulate
certain behaviors in the machine.
For example, consider the simple system of a railroad crossing pictured in

Fig. 1. The state hierarchy modeling this system could be represented as in Fig. 2. This
representation includes all three types of states. Train Crossing is a parallel state with
�ve direct children; namely, North Lights; South Lights; North Gate; South Gate,
and Intersection. All of these are compound states, most of which happen to contain
only atomic states (Up; O�, etc.). Naturally, the state machine in a real system speci-
�cation is never as simple as in Fig. 2. As an example of a realistic model, a part of
the state machine modeling an intruding aircraft in TCAS II is shown in Fig. 8.
Transitions in RSML control the way in which the state machine can move from

one state to another. The general form of any transition in RSML is shown in Fig. 3.
As the �gure shows, a transition consists of a source state, a destination state, a trigger
event, a guarding condition, and a set of events that is produced when the transition
is taken. In order to take an RSML transition, the following must be true: (1) the
source state must be currently active, (2) the trigger event must occur while the source
state is active, and (3) when the trigger event occurs, the guarding condition must
evaluate to true. If all of these conditions are satis�ed then the destination state will
become active, the source state will become inactive, and the set of events E will be
produced.



M.P.E. Heimdahl, B.J. Czerny / Science of Computer Programming 36 (2000) 65–96 69

Fig. 1. Train crossing system.

Fig. 2. Train crossing state machine.

The guarding condition is simply a predicate logic statement over the various states
and variables in the speci�cation; however, during the TCAS project, the team that de-
veloped the speci�cation (the Irvine Safety Research Group led by Dr. Nancy Leveson)
discovered that the guarding conditions required to accurately capture the requirements
were often complex. The propositional logic notation traditionally used to de�ne these
conditions did not scale well to complex expressions and quickly became unreadable.
To overcome this problem, they decided to use a tabular representation of disjunctive
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Fig. 3. General RSML transition.

Fig. 4. A transition for the train crossing system.

normal form (DNF) that they called AND/OR tables (see Fig. 4 for a transition in the
train crossing state machine and Fig. 5 for an example from the TCAS II require-
ments). The far left column of the AND/OR table lists the logical phrases. Each of the
other columns is a conjunction of those phrases and contains the logical values of the
expressions. If one of the columns is true, then the table evaluates to true. A column
evaluates to true if all of its elements match the truth values of the associated columns.
A dot denotes “don’t care”.
Variables in the speci�cation allow the analyst to record the values reported by

various external sensors (in the case of input variables) and provide a place to capture
the values of the outputs of the system prior to sending them out in a message (in the
case of output variables).
To further increase the readability of the speci�cation, the Irvine Group introduced

many other syntactic conventions in RSML. For example, they allow expressions used
in the predicates to be de�ned as functions (e.g., Other-Tracked-Alt f-243), and familiar
and frequently used conditions to be de�ned as macros (e.g., Threat-Conditionm-224). 1

Functions in RSML are mathematical functions that are used to abstract complex

1 The subscript is used to indicate the type of an identi�er (f for functions, m for macros, and v for
variables) and gives the page in the TCAS II requirements document where the identi�er is de�ned.
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Fig. 5. A transition de�nition from TCAS II with the guarding condition expressed as an AND=OR table.

calculations. A macro is simply a named AND=OR table that is used for frequently
repeated conditions and is de�ned in a separate section of the document.

2.1. Formal semantics and analysis criteria

To facilitate automated analysis, the formal semantics of RSML has been de�ned
as a composition of simple mathematical functions [18]. The behavior of a �nite-state
machine can be de�ned using a next-state relation. In RSML, this relation is modeled
by the transitions between states and the sequencing of events.
In short, an RSML speci�cation is a mapping from a set of states (called the set of

all con�gurations – Con�g) representing the states in the graphical model and a set of
variables (V) representing the input and output variables in the model, to new states and
variables. Thus, the next state relation F is a mapping C7→C, where C⊆(Config×V ).
For a rigorous treatment of the formal foundation of RSML the interested reader is
referred to [18]. A detailed description of the graphical notation and an account of the
experiences from the TCAS II e�ort can be found in [23].
The individual transitions in the state machine are viewed as functions mapping one

system state to the next. The structure of the state machine and the event propagation
mechanism are then used to compose these functions into a statement about the behavior
of the complete state machine. If a set of simple restrictions on the compositions are
satis�ed, it is guaranteed that the machine behaves as a function, and, by de�nition, is
complete (a behavior has been de�ned for all possible inputs and input sequences) and
consistent (no conicting requirements exist). The interested reader is referred to [18]
for a formal description of the compositional rules. In this paper it su�ces to state the
compositional rules informally as simple restrictions on the state machine:
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(1) Every event generated as an action on a transition must trigger a transition
somewhere else in the model; no events are lost or unaccounted for.
(2) There must be no information sharing between state machines executing in par-

allel; the execution of the machines is deterministic.
(3) Every pair of transitions out of the same state must have mutually exclusive

guarding conditions; at most one transition can be taken at any time.
(4) The logical OR of the guarding conditions must form a tautology; if an event is

generated there is at least one transition to take.
Analysis procedures assuring that the above criteria are satis�ed are straightforward

to automate: states are annotated with the events that trigger transitions out of the state
so that all events can be accounted for, potential parallelism is detected through easily
generated uses relations, a pairwise AND of the guarding conditions on transitions (trig-
gered by the same event) out of a state must form a contradiction, and the disjunction
of the guarding conditions on the transitions (triggered by the same event) out of a
state must form a tautology. Clearly, the most costly part of the analysis is to AND

and OR large guarding conditions together to check for contradictions and tautologies.
The problems involved in manipulating these guarding conditions are the focus of this
paper.

3. The case problem – TCAS II

TCAS is a family of airborne devices that function independently of the ground-based
air tra�c control (ATC) system to provide collision avoidance protection. TCAS II
provides tra�c advisories and recommended escape maneuvers (resolution advisories)
in a vertical direction to avoid conicting aircraft. In 1981, the FAA decided to develop
and implement TCAS II, and a Minimal Operational Performance Standard (MOPS)
document was produced that contained a mix of English description and psuedocode.
This document was found to be lacking in several areas. It was not a requirements
document but rather included much information that could be considered design or
implementation detail. Due to the di�culties of FAA certi�cation without a real system
or system requirements, an e�ort started in 1990 to develop a requirements speci�cation
for the TCAS system. The formal RSML speci�cation was developed in parallel with
another, more traditional requirements e�ort that was later abandoned.
Since 1995, TCAS II has been included in all commercial aircraft carrying more

than 30 passengers. TCAS II has been described by FAA o�cials as the most complex
system ever to be incorporated into the avionics of commercial aircraft. The RSML
speci�cation of the TCAS system is the o�cial requirements document and is used
for FAA certi�cation of manufacturers’ TCAS implementations. Therefore, the TCAS
speci�cation provides a large, complex, and realistic testbed for our techniques.
In this paper we will use examples from the part of the collision avoidance system

(CAS) in TCAS II that classi�es intruding aircraft as Other-Tra�c, Proximate-Tra�c,
Potential-Threats, or Threats.
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Fig. 6. Collision avoidance system highest level.

The highest level CAS state machine is shown in Fig. 6. At this level, CAS is either
on or o�; if it is on, it may be either fully operational or in standby mode. In the
CAS logic, the states of �ve components are modeled: our own aircraft, other aircraft,
mode-S ground radar stations, and a vertical tracker.
Fig. 7 shows the expanded Own-Aircraft portion of the CAS model. E�ective-SL

(sensitivity level) controls the dimensions of the protected airspace around own aircraft.
There are two primary means that CAS uses to determine E�ective-SL: ground-based

selection and pilot selection. When the pilot selects an automatic sensitivity selection
mode, CAS selects sensitivity level based on the current altitude of own aircraft (de�ned
in the Auto-SL state machine).
Alt-Layer e�ectively divides vertical airspace into layers (e.g., Layer-3 is approxi-

mately equal to the range 20 000–30 000 ft). Alt-Layer and E�ective-SL are used in
the determination of individual other aircraft threat classi�cation (Fig. 8).
The state machine de�ning how an intruding aircraft is modeled in TCAS II is

shown in Fig. 8. In short, the top-level state machine reects whether a particular
Other-Aircraft is currently being tracked or not.
The Intruder-Status state within Tracked reects the current classi�cation of Other-

Aircraft (Other-Tra�c, Proximate-Tra�c, Potential-Threat, or Threat). When an in-
truder is classi�ed as a threat, a two-step process is used to select a Resolution
Advisory (RA). The �rst step is to select a sense (Climb or Descend). Based on
the range and altitude tracks of the intruder, the CAS logic models the intruder’s path
until Closest Point of Approach (CPA). The CAS logic computes the predicted vertical
separation for both climb and descend maneuvers, and selects the sense that provides
the greater vertical separation.
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Fig. 7. Model of Own-Aircraft.

The second step in selecting an RA is to select the strength of the advisory. The
least disruptive vertical rate maneuver that will still achieve safe separation is selected.
For a more complete description of TCAS II and how it was modeled using RSML
the reader is referred to [23].
The Vertical-Tracker models the details of the tracking algorithms used to track

Other-Aircraft. The Mode-S-Ground Station models ground radar stations. Although
theoretically the CAS logic uses input from the ground stations, these are not opera-
tional at this time. The Vertical-Tracker and Mode-S-Ground Station models are not
needed to understand the basic function of TCAS II and are not explained further
here.

4. Analyzing for completeness and consistency

As mentioned in the previous section, analyzing state-based speci�cations for com-
pleteness and consistency involves conjoining guarding conditions together to see if
they are contradictory, and disjoining conditions to see if they form tautologies.
During our work analyzing TCAS II we developed several generations of analysis

tools for completeness and consistency analysis. In this section we provide an overview
of the evolution of our tools, point out where the various approaches have fallen short,
and discuss some observations on the analytical power needed in a successful static
analysis tool for the analysis of software speci�cations.
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Fig. 8. The model of the behavior of an intruding aircraft.

4.1. The “Early” approach

Our �rst prototype tool parsed a textual version of RSML, built an internal represen-
tation of the state machine appropriate for execution as well as analysis, and performed
completeness and consistency analysis [18]. The tool also generated other information,
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Fig. 9. The transition downgrading an intruder from being in the proximity to being considered other tra�c.

such as uses hierarchies, event propagation information, and circular dependencies in
macros and functions, and allowed execution and animation of the state machines.
Initially, our main concern was the performance of the AND and OR operations needed

to check for mutual exclusion and complete coverage. The tables representing the
guarding conditions are often large (10–15 rows; Fig. 9) and reference macros through
several levels of indirection. By indirection we mean that one table references one or
more macros that in their turn reference other macros. Three to six levels of indirection
in the guarding conditions are common. An example of indirection is shown in Fig. 9,
where the guarding condition refers to the macro Potential-Threat-Range-Test shown in
Fig. 10. Consequently, a large table typically uses 50–70 predicates spread over 10–15
macros.
As previously mentioned, in our initial tool, we abstracted all formulas to proposi-

tional logic and used binary decision diagrams (BDDs) [7] to represent and manipulate
the guarding conditions. BDDs are directed acyclic graphs that represent Boolean func-
tions in a canonical form. Algorithms for manipulating BDDs, for example, conjoining
and disjoining formulas, are e�cient and provide good average performance [7].
We used structural equivalence to determine if two predicates were the same. Thus,

we did not interpret any of the relationships between the predicates in the model. Given
this encoding, the tables are then translated to BDDs and all analysis is performed in
the BDD domain. If an error is detected, for instance, an AND operation (checking if the
guarding conditions on two transitions are mutually exclusive) does not reduce to the
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Fig. 10. The macro de�ning the potential threat range test.

constant FALSE, the analysis result is translated back to an AND=OR table and presented
to the analyst as an error report.
For example, consider Fig. 11. In TCAS, the concept of sensitivity level is used to

determine how close an intruder is allowed to get before an advisory is presented to
the pilot. A higher sensitivity level indicates a more sensitive setting of TCAS II; a
more sensitive setting means an advisory will be generated earlier (while the planes are
farther apart). The bar on the side of the states in the �gure is a transition bus. Many
state machines in the model were found to be fully interconnected, that is, there were
transitions between all the states in the machine; the transition bus was introduced to
make the graphical representation cleaner.
An inconsistency can be detected between the transitions ESL-4→ESL-2 (Fig. 5)

and ESL-4→ESL-5 (Fig. 12). The inconsistency (as reported from the initial analysis
tool) is shown in Fig. 13: Column 3 in Fig. 5 and column 3 in Fig. 12 are both
satis�ed by the condition in the error report. Since sensitivity level ESL-5 represents a
sensitive setting and ESL-2 represents that advisories are turned o� (no warnings are
given to the pilot), a potentially hazardous inconsistency is present. After an evaluation
of the inconsistency, it was determined that the guarding condition on the transition
to ESL-2 was too weak and needed strengthening. The strengthened condition can be
seen in Fig. 14. With this strengthening of the guarding condition on the transition to
ESL-2 the transitions are consistent.
The BDD approach has provided excellent performance (in terms of execution time

and memory requirements) for all examples from TCAS we analyzed in this initial
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Fig. 11. E�ective sensitivity level.

Fig. 12. The transition from E�ective-SL state ESL-4 to ESL-5.

case study [18]. However, since we abstracted all conditions to propositional logic and,
thus, failed to take their possible interrelationships into account; the analysis may report
spurious errors. A spurious error report is a report that, for example, two transitions
are inconsistent when the conditions a and b are both true; a and b, however, may
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Fig. 13. Consistency analysis results for E�ective-SL state ESL-4.

Fig. 14. The modi�ed transition from E�ective-SL ESL-4 to ESL-2.

be mutually exclusive so the inconsistency is never satis�able and should not have
been reported. But, since the functions in a and b are abstracted to propositions, the
contradiction is not detected and the condition is reported as an error.

4.2. The problem with spurious errors

During additional case studies with our �rst prototype tool, spurious error reports
were not a serious problem [18]. All spurious errors could be traced either to (1) a
lack of a type system in RSML or 2 the inability of the tool to adequately include
information about the structure of the state machine in the analysis. For example,
consider the conditions

Auto-SLs-30 in state ASL-5 and Auto-SLs-30 in state ASL-2

(appearing in Figs. 5 and 12). Without the information that Auto-Sensitivity-Level can
only be in one state at a time, the tool would generate spurious error reports and
indicate that additional conicts between the two transitions existed when they, in fact,
did not. For example, the error report below would be generated by the tool (indicating
a conict exists between column 1 in Fig. 5 and column 2 in Fig. 12).
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ESL_4 --> ESL_2 conflicts with ESL_4 --> ESL_5 if

Auto_SL In State ASL_2 : T

Auto_SL In State ASL_5 : T

Mode_Selector == TA_Only : T

This is clearly an erroneous report because the state machine Auto-Sensitivity-Level
can be in at most one state at a time; we do not need to consider any conicts under
the unsatis�able condition shown above. Similar problems relating to enumerated data
types also led to spurious error reports. These drawbacks were trivial to address by
augmenting the tool with decision procedures to handle the type system and formulas
related to the hierarchical structure of the state machine. The decision procedures were
invoked in the translation from a BDD to an AND=OR table. An updated version of the
tool eliminated all these problems with spurious errors.
Unfortunately, decision procedures for enumerated types and the state hierarchy do

not eliminate all spurious error reports we encountered in our work. To make RSML us-
able on large real-life projects, we allow input and output variables of types Boolean,
enumerated, integer, and real, and we allow arbitrary arithmetic expressions to ap-
pear in the predicates used in the AND=OR tables (see, for example, rows 6 and 7 in
Fig. 10). These features complicate the analysis and in some cases make the analysis
undecidable. These complications could be eliminated by limiting the expressive power
of the language, for example, by prohibiting the use of quanti�cation, multiplication,
and division, but this would, in our opinion, make the language too restricted to be
useful for the modeling of realistic software applications. Instead, we are attempting
to �nd e�ective, accurate, and automated analysis procedures, while at the same time
maintaining a language suitable for the speci�cation of complex real world software
systems.

4.3. Improving the tool

Clearly, predicates involving, for example, inequalities and arithmetic expressions,
cannot be handled with the simple decision procedures discussed thus far. For instance,
consider the state machine Descend-Inhibit in Fig. 15. The guarding conditions on the
two transitions out of the state Inhibited (Fig. 16) contain simple arithmetic expressions,
and our simple decision procedures will fail to detect that the transitions out of Inhibited
are both complete and consistent. Instead, our tool will generate the spurious error
reports shown in Fig. 17. For simple transition predicates (such as the ones in the
example) this is not a problem. An analyst can simply eliminate the spurious error
reports manually. However, when analyzing the most complex parts of TCAS II, the
number of spurious error reports can be large, and manual inspection of the results
becomes infeasible.
Consider the transition in Fig. 9 and a condition of similar size from another transi-

tion (not shown in this paper). When analyzing transitions from this part of TCAS II
the BDDs representing the analysis results typically contained more than 1000 nodes
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Fig. 15. The state machine for Descend-Inhibit.

Fig. 16. The transitions out of Inhibited.

and the resulting error report presented as an AND=OR table contained thousands (in
many cases hundreds of thousands) of columns. Error reports of this size are clearly
too large for any form of manual inspection and improvements in analysis accuracy
are needed.
To overcome this problem we began implementing decision procedures for equiva-

lence and inequivalence for expressions with structurally equivalent left- and right-hand
sides. Unfortunately, as shown in Fig. 16, many expressions may not be structurally
equivalent. In a large speci�cation, such as the TCAS II speci�cation, an expression
may be captured as a + b in one part of the document and as b + a in another part.
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Fig. 17. Spurious error reports generated for the state Inhibited.

Attempting to enforce consistency in a team of tens of analysts working on an evolving
document several hundred pages long is extremely di�cult at best. Thus, relying on
structurally equivalent expressions is unrealistic.
Naturally, limiting the input and output variables to enumerated types and disallow-

ing arithmetic expressions in the predicates would eliminate all of our problems with
spurious errors. Unfortunately, it would also make RSML unsuitable as a modeling
language for embedded control systems, the domain for which the language was origi-
nally developed [23]. In this domain we often want to use simple arithmetic expressions
when de�ning the guarding conditions, for instance, we may want to change state if
the average of three sensor readings is below a setpoint or if the di�erence between
two consecutive reports from a sensor is within a certain hysteresis factor. In short,
since we do not �nd it feasible to limit the expressive power of the language we must
attempt to �nd more powerful analysis methods.
At this point, it became clear that to provide the analytical power needed to work

with TCAS II we would have to extend our tool with decision procedures for at least
Presburger arithmetic. To avoid the huge investment in time required to build such a
tool, we simply decided to adopt a powerful existing tool for our analysis. We chose
to work with the theorem prover Prototype Veri�cation System (PVS) [11, 27, 28] and
simply output proof obligations for our completeness and consistency criteria.
Naturally, there are other approaches to addressing the problems with arithmetic ex-

pressions. One way is to use our BDD tool to produce simple arithmetic veri�cation
conditions and use decision procedures for Presburger arithmetic that can be decided
without a general purpose theorem prover [31, 38, 40]. This is the approach we initially
pursued.
A second approach is to re�ne our abstraction mechanism. In this case, the abstrac-

tion function is applied before the translation to a BDD. For example, the arithmetic
expressions may be used to divide their domain to a �nite number of subsets and the
abstraction function can be de�ned to generate no spurious errors. This approach has
been successfully used in model checking [10, 41].
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There were two main reasons why we chose a theorem prover such as PVS instead
of using some simpler tools or implementing our own solution. First, as we will show
in the next section, some parts of the TCAS II analysis require the ability to reason
about universal and existential quanti�cation. Second, the various tools developed in
the veri�cation community are often targeted towards a speci�c problem and seemed
to be quite di�cult to integrate to a tool suited for the veri�cation of the properties in
which we were interested with respect to TCAS II.

5. Using PVS for completeness and consistency analysis

The PVS is a veri�cation system that provides an interactive environment for the
development and analysis of formal speci�cations. PVS consists of a speci�cation lan-
guage, a parser, a type-checker, an interactive theorem prover, and various browsing
tools. PVS has been used to model and reason about many di�erent systems, for
example, clock synchronization [34, 36] and the AAMP5 Microprocessor [26].
PVS contains a large library (called a prelude �le) that contains many built-in theo-

ries that can be used during the proof process. Some of the built-in theories included in
the prelude �le are Boolean properties, quanti�er properties, equality properties, func-
tions, sets, reals and real properties, and rationals and rational properties. In addition,
PVS contains decision procedures for equality and linear inequality that are complete
for linear arithmetic (multiplication by literal constants) on the reals [32, 37]. Finally,
PVS is freely available and the tool is well supported. These factors made PVS an
ideal candidate to solve our problems with the spurious errors outlined in the previous
section.

5.1. Incorporating PVS

To incorporate PVS into our analysis environment, we augmented our existing tool
with the capability to generate theories and proof obligations in the PVS speci�cation
language.
Our tool generates a PVS theory for each transition in an RSML speci�cation. We

do this in a two stage process. First, we de�ne each predicate in the AND=OR table as a
predicate in the PVS speci�cation language. 2 Second, a predicate representing the full
guarding condition is built from the individual predicates de�ned in the �rst stage.
For example, consider the transition from the state Inhibited to the state Not-Inhibited

de�ned in Fig. 16. In PVS, this transition would be de�ned by the theory shown in
Fig. 18. The constants in the system are de�ned as a separate theory and imported to
the theory de�ning the transition. The functions Own-Tracked-Alt and Ground-Level
used in the RSML speci�cation are mapped to variables of type real in PVS. RSML

2 A predicate in PVS is a function with return type Boolean.
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Fig. 18. A PVS theory for the transition from Inhibited to Not-Inhibited.

does not make any assumptions about the range of values a function can return, so all
functions can be mapped to variables as long as the type is maintained.
The actual proof obligations are generated based on the criteria described in

Section 2. In this evaluation, we use PVS to perform the AND and OR operations re-
quired for our analysis. To illustrate our approach, consider the two simple transitions
out of the state Inhibited in Fig. 16. Given these transitions, the tool will generate the
two proof obligations shown in Fig. 19. Naturally, the full power of PVS is not needed
in these cases. A simpler tool based on decision procedures for Presburger arithmetic
would have been ideal. In fact, after this investigation was completed David Park
investigated how a tool called the Stanford Validity Checker (SVC) [4] could be used
to analyze these parts of TCAS II [30].
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Fig. 19. Proof obligations generated for the state Inhibited.

5.2. Quanti�cation

Statecharts as well as RSML allows identical state machines to be parameterized
into state arrays. For instance, the Other-Aircraft state machine in Fig. 8 is a state
array. In TCAS II we are required to be able to track up to 30 intruders. In e�ect,
the Other-Aircraft state machine is 30 identical state machines existing in parallel. The
array notation is simply a syntactic convenience allowing us to produce more compact
models. Given the array construct it becomes necessary to use quanti�cation over the
state array when expressing guarding conditions. For example, we may want to take
some action if one or more of the intruding aircraft are in the sate Threat or take some
other action if all intruders are in the state Other-Tra�c.
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To illustrate the need for quanti�cation and the full power of PVS we use an ex-
ample from the speci�cation of how TCAS II communicates with the pilot’s display.
The example involves the interface de�nition between the TCAS II box and the com-
munications medium connected to the display. In this case the quanti�cation is over
a �nite interval. In some situations, however, it may be necessary to quantify over
an unbounded domain, for example, when modeling interaction with an unbounded
number of input devices.
Interface de�nitions in RSML consist of two parts: (1) a physical interface de�nition

that captures properties related to the physical aspects of the communication, for exam-
ple, the channel name and simple timing assumptions, and (2) a collection of handlers
that determine under which conditions we can send=receive messages over this channel.
The physical interface de�nition is used to assure that components connected together
have compatible properties, for example, that the expected arrival rate at the RECEIVE
side is greater than or equal to the expected send rate at the SEND side.
The output interface in Fig. 20 is interpreted as follows. When a state machine in

the RSML speci�cation generates the interface’s trigger event and one of the handler
guarding conditions is satis�ed, the output action in that handler is performed. In
this example taken from TCAS II, the state machine model was required to model
30 intruding aircraft (modeled with state machines named Other-Aircraft). The model
of each Other-Aircraft contains a state machine called Tra�c-Display-Status. When
TCAS has detected an intruder and has determined that the pilot needs to be noti�ed,
the state machine Tra�c-Display-Status associated with that intruder will enter the state
Waiting-To-Send. This indicates that TCAS is ready to send an advisory regarding this
particular intruder to the pilot’s display. 3 If TCAS tracks several intruders and needs
to notify the pilot about more than one intruder (more than one Other-Aircraft model is
in state Waiting-To-Send), the intruder model with the highest priority (Tra�c-Score)
takes precedence. The advisory relating to an intruder is contained in the variable
Advisory-Code. The communication handler in Fig. 20 is parameterized. Any Other-
Aircraft model can generate a trigger event for this handler. The handler will simply
be instantiated with the index of that intruder (the index is indicated with the i in
the de�nition). Thus, the interface in Fig. 20 tells us that Other-Aircraft[i] can only
send an advisory to the pilot if there are no Other-Aircraft models ready to send
(columns 1 and 2) or there are no Other-Aircraft models with a higher tra�c score
(columns 3 and 4). In addition, if we are to send an advisory and we are in state Threat,
the advisory must be a Resolution-Advisory (rows 5 and 6). The second handler in
Fig. 20 de�nes the case when TCAS will not send any advisory to the pilot’s display.
The notion of completeness and consistency discussed earlier in this paper extends

to the RSML interface de�nitions.

3 An advisory is a noti�cation to the pilot. For example, if the intruder is very close, a resolution advisory
will be displayed. A resolution advisory is an advisory telling the pilot what action to take to avoid the
potential collision, for example Climb! or Descend!
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Fig. 20. De�nition of the communication with the TCAS display.

(1) Within an interface de�nition, every pair of handlers must have mutually exclu-
sive guarding conditions; at most one handler can be used at any time.
(2) The logical OR of the guarding conditions on all handlers within an interface

de�nition must form a tautology; if an action is requested on a channel, it is always
de�ned how this action will be handled.
The veri�cation of completeness and consistency in the interfaces is identical to the

veri�cation for the rest of the state machines. In this situation, however, we are required
to include the quanti�ers in the PVS theories generated by our tool. The PVS theory
for Handler-1 can be seen in Fig. 21. The proof obligation for consistency is shown
in Fig. 22. Note that the indices for the arrays (i and j) have been included in this
theory. Thus, to analyze certain parts of the TCAS II requirements, it was necessary
and convenient to use universal and existential quanti�cation.
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Fig. 21. The PVS theory describing Handler-1 in Fig. 20.

5.3. Summary observations

For PVS to be considered as an alternative to our previous approach it must reduce
the problem with spurious error reports and at the same time maintain acceptable
performance in terms of execution time.
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Fig. 22. The PVS theory describing the consistency proof obligation for the interface in Fig. 20.

The guarding conditions in the TCAS II speci�cation generally fall into two cate-
gories: (1) relatively simple tables with 1–10 predicates and few predicates involving
mathematical expressions, such as the tables in Figs. 5 and 12, and (2) very complex
tables with 20 or more predicates and many predicates involving arithmetic expressions,
such as the table in Fig. 9 which includes the macro in Fig. 10.
For smaller problems – small tables with no arithmetic expressions – PVS has pro-

vided satisfactory performance. For example, PVS found the inconsistency in E�ective-
SL described in Fig. 13 in approximately 10 s. 4 As a comparison, our approach using
BDDs needed only a fraction of a second for the same problem.
For more complex problems – small tables with arithmetic expressions – PVS elimi-

nates all our problems with spurious errors while providing adequate performance. For
an example involving two transitions with guarding conditions containing 8 predicates
each (12 of which contained arithmetic expressions), it took PVS under 8 s to prove that
the transitions did not conict. On the other hand, abstracting to propositional logic and
using our BDD approach required only a fraction of a second but generated 37 spurious
error reports that had to be eliminated through time-consuming manual inspection.

4 Seven subgoals were generated which reduced to one subgoal representing the inconsistency.
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For problems in the last class the abstraction to propositional logic starts becoming
unsatisfactory; the number of spurious error reports starts to be unmanageable. Manual
inspection is a time-consuming and error-prone process and the increased accuracy
introduced by PVS is much needed.
For the most complex parts of TCAS II, for example, transitions with guarding con-

ditions the size of the condition in Fig. 9, the propositional logic abstraction approach
is clearly unsatisfactory (as described in Section 4.2). The time needed for this analysis
is acceptable (3.5 s for the example described in Section 4.2), but the shear size of
the error reports (most of which we later showed to be spurious) is too large to report
to the analyst and too large for the analyst to feasibly interpret.
Our early attempts to use PVS on these most complex problems were not completely

successful. We were unable to complete any proof in PVS, and noti�ed SRI Interna-
tional regarding our problem. Sam Owre of SRI International found that the BDD
package PVS uses for �rst reduction of the proof discovers in a second or two that
the particular test case we inquired about is not a tautology [34]. PVS, however, calls
the BDD package a second time to convert the formula to a minimal representation to
produce the fewest, simplest subgoals. The second call was not terminating since there
were several thousand subgoals. An updated release of PVS was modi�ed so the system
would not attempt the minimization when there are large numbers of subgoals. The
proof attempt using the updated release of PVS on the particular guarding conditions
SRI worked with to identify the problem, successfully terminated after approximately
3 h 5 and yielded 1129 unprovable subgoals (each unprovable subgoal represents a
potential inconsistency in the speci�cation of the guarding conditions). Unfortunately,
for other large guarding conditions involving the Threat macro, 6 PVS still ran on
the order of days without generating any results, and eventually we aborted the proof
attempts. We do not know the exact reasons for these failed proof attempts, however,
subsequent research [12] revealed that information related to the structure of the state
machine model of the system was missing from the analysis model. Since our analy-
sis is local, we only investigate the transitions out of a single state. We do not take
into account global invariants that hold in a particular state. In our work we detected
the invariants manually with mechanized decision support [12]. Once this information
was identi�ed and incorporated into the analysis model, the PVS proofs successfully
terminated and showed the guarding conditions consistent.
Automatically extracting invariants from the speci�cation is an active research area

[5]. Integration with an invariant detection tool would have been greatly bene�cial.
Again, the work described in this paper inspired research in the area of invariant
generation, and a prototype tool performing automatic invariant extraction on RSML
speci�cation has been developed [29].

5 The proof was run on a Ross-based SPARC 20 with two 150 MHz CPUs. The time to complete the proof
is dependent on the system load. The time reported was the fastest time; a subsequent run ran for a little
over 9 h.
6 The Threat macro is one of the most complex macros in the TCAS II requirements speci�cation.
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5.4. Comments on PVS

PVS has powerful theorem proving capabilities and largely solves our problems
with spurious error reports. The large prelude �le contains many built-in theories, and
the decision procedures for equality and linear inequality (that are complete for linear
arithmetic on the reals) give PVS a signi�cant advantage over theorem provers without
these two features. In particular, for our purposes, the decision procedures are extremely
useful. Rushby notes that “it is enormously tedious to perform veri�cations involving
even modest quantities of arithmetic in systems such as HOL that lack decision proce-
dures” [33]. Although the decision procedures mainly deal with linear arithmetic, they
can also help with some simple nonlinear reasoning, but the decision procedures are
not complete for this case [32].
The theorem prover in PVS is an interactive theorem prover and so it requires the

user to guide the prover through the proof process. Given that one of our goals is
that the analysis procedure be automated and easy to use for personnel with no formal
training, we perceived the interactive nature of PVS to be a detriment. However, PVS
allows the analyst to de�ne strategies that use a single command to carry out a sequence
of steps in the proof process. The relative simplicity of our proofs makes it easy to
create customized strategies that work well in most cases. The examples cited in this
paper were all proved with a single strategy to check for completeness and a single
strategy to check for consistency. By providing a small set of strategies suitable for
the types of proofs we want to perform, the proof process can be simpli�ed to a point
where little training is needed to use the tool.

6. Related work

The software speci�cation static analysis research related to the work described in
this case study generally falls into two categories: (1) completeness and consistency
analysis and (2) model checking. We will briey discuss this related work in this
section.

6.1. Completeness and consistency analysis

Heitmeyer et al. [19] de�ne consistency checking of an SCR speci�cation to be
a combination of (1) simple syntactic and semantic checks such as type correct-
ness, (2) coverage, and (3) disjointness. Disjointness in SCR means that each table
de�nes a deterministic relation. Coverage means that each condition table completely
de�nes the relation. Taken together, these criteria ensure that the speci�cation is a total
function.
The analysis discussed in this paper addresses two properties, which we call consis-

tency and completeness. Naturally, an RSML speci�cation is expected to be syntacti-
cally correct and satisfy all constraints typically enforced by a strict compiler, such as
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type correctness. A consistent speci�cation is one where for each state there is at most
one transition that can be taken for any speci�c event. In a complete speci�cation
there must be at least one transition out of each state for any speci�c event. Thus,
disjointness in SCR and consistency in RSML refer to the same concept, and coverage
in SCR and completeness in RSML are also similar concepts.
In the SCR analysis tool (called the veri�er) they use structural equivalence to

determine if two predicates are the same. Instead of BDDs (as was done in our initial
tool) they use a tableaux-based decision procedure for propositional logic as de�ned
by Smullyan [35]. Thus, the SCR analysis tool su�ers from the same drawbacks and
problems with spurious errors as our initial BDD implementation.

6.2. Model checking

Model checking has traditionally been applied to hardware veri�cation. Recently,
several groups have investigated applying model checking to software systems.
Atlee and Gannon [3, 2] have applied model checking to the requirements of a cruise

control system and a water-level monitoring system and showed how model checking
could be used to verify safety properties for event-driven systems.
More recently, Sreemani and Atlee [39] presented a case study of model checking

the non-trivial A-7E requirements document for speci�c properties that the system
requirements should satisfy. The case study is intended to demonstrate the scalability
of model checking software requirements. They implemented a program that translates
an SCR requirements speci�cation into an equivalent Symbolic Model Veri�er (SMV)
[25] speci�cation, and use SMV to verify the required properties. The model is an
abstraction of the original speci�cation. The authors state that

the SCR methodology requires the requirements writer to create abstractions of
the (potentially in�nite) environmental state space by determining which predi-
cates on values of environmental variables a�ect mode transitions.

The authors further state that the SCR methodology requirements that must be satis-
�ed, ultimately provide an easy method for obtaining abstractions; i.e., since the SCR
methodology already requires abstractions, it is easy to determine additional abstrac-
tions for the SMV model. Most of the conditions are represented as Boolean variables,
but if two or more conditions are related such that only one and exactly one condition
can be true at all times, the conditions are represented as enumerated-type variables
[39].
Anderson et al. have investigated the feasibility of model checking large software

speci�cations [1]. They translated a portion of the TCAS II requirements speci�cation
into a form acceptable to a model checker and used the model checker to analyze for
a number of properties of the system.
Most recently, Bharadwaj and Heitmeyer [6] have integrated the Spin model checker

[22] into the SCR toolset so users can establish logical properties of an SCR
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speci�cation. To limit the state explosion, they verify abstractions of the original re-
quirements. They describe two types of reductions (abstractions) that are derived using
the formula to be veri�ed and special attributes of SCR speci�cations. The �rst re-
duction involves eliminating irrelevant entities in the original model; irrelevant entities
are entities that are not needed in the analysis since they do not appear in the formula
being checked. The second reduction involves using more abstract representations of
monitored variables. Essentially, the abstraction involves eliminating certain monitored
variables from the identi�ed entity set that are causing state explosion. The reductions
are applied manually and the abstract model produced is then analyzed automatically
by the SCR toolset using Spin.
Since all of the methods described in this section rely on various abstractions to

generate a system model that can be analyzed in a computationally tractable manner
(i.e., avoid the state explosion problem), spurious errors may be reported that would be
eliminated if certain abstractions were not made. Currently, it is left up to the analyst
to determine which error reports represent true errors and which error reports represent
spurious errors.

7. Conclusion

Our e�ort to analyze the TCAS requirements has achieved two goals. First, we have
demonstrated that static completeness and consistency analysis of a complex software
requirements speci�cation is both feasible and e�ective [18, 23].
Second, the size and complexity of the TCAS II requirements speci�cation helped

us identify some weaknesses in our original approach and made us recognize the need
for increased accuracy in our analysis. In our opinion, it is not feasible to reduce the
number of spurious error reports by limiting the expressive power of the modeling
language; to make our modeling approach accessible to industrial users we want to
maintain the usability and expressive power of the language. There are two main
ways of increasing the accuracy of the analysis; (1) provide more precise abstraction
functions or (2) provide more powerful decision procedures. To increase the accuracy
of our analysis we chose to pursue the latter. We did, however, come to the conclusion
that in the interest of time and e�ort it was more cost e�ective to integrate with an
existing tool providing the analytical power we needed. We chose to work with the
Prototype Veri�cation System (PVS).
We augmented our existing tool to generate proof obligations in the PVS speci�cation

language and evaluated the approach on examples from the TCAS II requirements
speci�cation. The results of the investigation have been largely positive. During the
investigation we made four main observations: (1) the theorem proving component of
PVS is powerful and can solve many of our problems with spurious error reports, (2)
the PVS speci�cation environment and theorem prover are relatively easy to use and
have many features that provide advantages over other stand-alone theorem provers,
(3) for most test cases, PVS performed e�ciently (in terms of execution time) and was
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highly automatable, requiring only one user-de�ned command (strategy) to complete
the proofs, and (4) for the largest test cases, the e�ciency of PVS degraded to a point
where the tool did not terminate.
From our experiences with the development and analysis of the TCAS II require-

ments speci�cation we o�er the following observations.
The ease of use and expressive power of RSML were major factors in the success

of the TCAS II project. The participants could capture the right information in the
way they felt the information should be captured. This exibility and power is, in
our opinion, essential if a speci�cation approach is going to be widely used and ac-
cepted. Unfortunately, the exibility and power of the language complicates the analysis
process.
During our analysis work, we found that the common abstractions used in many

tools, for example, not interpreting certain functions such as inequalities and arithmetic
expressions, in some cases can lead to excessive numbers of spurious errors. To fully
analyze a system such as TCAS II for completeness and consistency one must have
access to the reasoning power of a theorem prover.
These observations help us identify promising avenues for continued work in static

analysis of state-based software requirements models. From our perspective, areas that
would have a signi�cant impact on the state of the art in software speci�cation analysis
are integrative analysis methods and integrated analysis tools.
Integrative analysis methods are approaches to static analysis where a combination

of tools are used to achieve some goal. In our work we have found that one tool
never satis�es the analysis needs, not even in the limited domain of completeness and
consistency analysis. In many instances abstraction to propositional logic and a simple
BDD-based tool worked �ne, in some instances the full power of a theorem prover was
suitable, and, �nally, in a small number of cases extensive human ingenuity was needed
to complete the analysis. Toolsets and analysis approaches integrating various classes
of analysis tools would provide the analytical power as well as the level of automation
necessary to make static analysis of software speci�cations widely accepted in industrial
settings. An extensible framework in which tool fragments such as decision procedures
and abstraction mechanisms can be easily integrated would, in our pragmatic opinion,
be a major contribution.
In addition, de�ned processes and heuristics that can help guide an inexperienced

analyst through a veri�cation e�ort are also needed. We have begun work in this area
[12], where we have developed a process for integrating our existing completeness and
consistency analysis tools and developed a set of heuristics to help guide the analyst
through the veri�cation process [13].
In closing, formal modeling and automated analysis of large commercial software

speci�cations are clearly feasible. Nevertheless, much work remains to be done, par-
ticularly in two areas: (1) integration of tools and methods to take advantage of
their strengths and circumvent their weaknesses and (2) development of processes and
heuristics that can help inexperienced users to easily perform advanced static analysis
of large software speci�cations.
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