
http://www.elsevier.com/locate/jcss

Journal of Computer and System Sciences 67 (2003) 183–197

Preemptive scheduling in overloaded systems

Marek Chrobak,a,1,2 Leah Epstein,b,3 John Noga,c Jiřı́ Sgall,d,�,2,4 Rob van Stee,e,5

Tomáš Tichý,d,2,4 and Nodari Vakhaniaf,6

aDepartment of Computer Science, University of California, Riverside, CA 92521, USA
bSchool of Computer Science, The Interdisciplinary Center, P.O.B. 167, 46150 Herzliya, Israel
cDepartment of Computer Science, California State University, Northridge, CA 91330, USA

dMathematical Institute, AS CR, Žitná 25, CZ-11567 Praha 1, Czech Republic
e Institut für Informatik, Albert-Ludwigs-Universität, Georges-Köhler-Allee, 79110, Freiburg, Germany

fFacultad de Ciencias, Universidad Autonoma del Estado de Morelos, 62251 Cuernavaca, Morelos, Mexico

Received 25 July 2002; revised 7 February 2003

Abstract

The following scheduling problem is studied: We are given a set of tasks with release times, deadlines,
and profit rates. The objective is to determine a 1-processor preemptive schedule of the given tasks that
maximizes the overall profit. In the standard model, each completed task brings profit, while non-
completed tasks do not. In the metered model, a task brings profit proportional to the execution time even
if not completed. For the metered task model, we present an efficient offline algorithm and improve both
the lower and upper bounds on the competitive ratio of online algorithms. Furthermore, we prove three
lower bound results concerning resource augmentation in both models.
r 2003 Elsevier Science (USA). All rights reserved.

Keywords: Scheduling; Online algorithms; Deadline; Resource augmentation

ARTICLE IN PRESS

�Corresponding author.

E-mail addresses: marek@cs.ucr.edu (M. Chrobak), lea@idc.ac.il (L. Epstein), jnoga@ecs.csun.edu (J. Noga),

sgall@math.cas.cz (J. Sgall), Rob.van.Stee@cwi.nl (R. van Stee), tichy@math.cas.cz (T. Tich!y), nodari@servm.

fc.uaem.mx (N. Vakhania).
1Supported by NSF Grant CCR-9988360.
2Supported by cooperative Grant KONTAKT-ME476/CCR-9988360-001 from MŠMT ČR and NSF.
3Supported by the Israel Science Foundation, Grant 250/01-1.
4Supported by Institute for Theoretical Computer Science, Prague (project LN00A056 of MŠMT ČR), Grant

201/01/1195 of GA ČR, and Grant A1019901 of GA AV ČR.
5Supported by the Deutsche Forschungsgemeinschaft, Project AL 464/3-1, and by the European Community,

Projects APPOL and APPOL II. Author’s current affiliation: Centre for Mathematics and Computer Science (CWI),

Kruislaan 413, NL-1098 SJ Amsterdam, The Netherlands.
6Supported by NSF-CONACyT Grant E120.1914.

0022-0000/03/$ - see front matter r 2003 Elsevier Science (USA). All rights reserved.

doi:10.1016/S0022-0000(03)00070-9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82026136?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction

In most task-scheduling problems, the objective is to minimize some function related to the
completion time. This approach is not useful in overloaded systems, where the number of tasks
and their processing times exceed the capacity of the processor and not all tasks can be completed.
In such systems, the goal is usually to maximize the number of executed tasks or, more generally,
to maximize their value or profit.
The problem can be formalized as follows: we have a set of n tasks, each task j is specified by its

release time rj; deadline dj; processing time pj; and weight wj representing its profit rate.

Preemption is allowed, i.e., each task can be divided into any number of intervals, with arbitrary
granularity. The objective is to determine a 1-processor preemptive schedule that maximizes the
overall profit. The profit gained from processing task j can be defined in two ways. In the
standard model, each completed task j brings profit wjpj; but non-completed tasks do not bring

any profit. In the metered model, a task wj executed for time tppj brings profit wjt even if it is not

completed.
In many real-world applications, algorithms for task scheduling are required to be online.

This means that, at any given time, the scheduling algorithm needs to choose the task to
process based only on the specification of the tasks that have already been released. In general,
due to the incomplete information about the input data, online algorithms cannot
compute an optimal solution. It turns out, however, that for some scheduling problems it is
possible to compute in an online fashion a solution that is within a constant factor of the
optimum.
An online algorithm that approximates the optimal solution within a factor R is

called R-competitive. Online algorithms are also studied in the framework called
resource augmentation. The idea is to allow an online algorithm to use more resources
(a faster processor or more processors) and then to compare its performance to the optimum
solution (with no additional resources). For the scheduling problems, we then ask what
competitive ratio can be achieved for a given speed-up factor s; or what speed-up is necessary to
achieve 1-competitiveness. See [2,13] for more information on competitive analysis in scheduling
and other areas.

1.1. The standard model

This problem has been extensively studied. Koren and Shasha [9] give a ð
ffiffiffi
x

p
þ 1Þ2-competitive

algorithm, where x ¼ maxj wj=minj wj is called the importance factor. This ratio is in fact optimal

[1,9]. Since no constant-competitive algorithms are possible in this model, it is natural to study
this problem under the resource augmentation framework. Kalyanasundaram and Pruhs [6]
present an online algorithm that uses a processor with speed 32 and achieves a constant
competitive ratio. Lam and To [11] show an online algorithm with speed-up Oðlog xÞ and
competitive ratio 1. One natural special case of this problem is when the tasks are tight, that is, for
each j we have dj ¼ rj þ pj: For this case, Koo et al. [8] give a 1-competitive algorithm with speed-

up Oð1Þ; and Lam et al. [10] show that in order to achieve 1-competitiveness the speed-up must be
at least fE1:618:

ARTICLE IN PRESS

M. Chrobak et al. / Journal of Computer and System Sciences 67 (2003) 183–197184



1.2. The metered model

This version was introduced (in a different terminology) by Chang and Yap [3] in the context of
thinwire visualization. In their application, a user viewing a low-resolution image moves the
cursor across the screen, generating requests for higher resolution data at the cursor positions.
Due to limited bandwidth not all requests can be fully satisfied. However, even partial
improvements of resolution may be beneficial to the viewer. Thus, the profit represents overall
quality of service. Metered preemptive tasks also provide a natural model for various decision-
making processes where an entity with limited resources needs to choose between engaging in
several profitable activities. Chang and Yap proved that two online algorithms called FirstFit
and EndFit have competitive ratio 2. They also proved that no online algorithm can achieve a

competitive ratio better than 2ð2�
ffiffiffi
2

p
ÞE1:17:

1.3. Our results

We first focus on the metered profit model. In Section 3, we consider offline algorithms. We
characterize the structure of optimal solutions and provide a polynomial time algorithm based on
bipartite matchings and maximal flows. This addresses a problem stated in [3].
The online metered case is studied in Sections 4–6. In Section 4, we present an algorithm with

competitive ratio e=ðe � 1ÞE1:5820: In Section 5, we prove a lower bound of
ffiffiffi
5

p
� 1E1:236 on

the competitive ratio of algorithms for this problem. These results improve both the lower and
upper bounds from [3]. (The algorithm FirstEndFit, conjectured in [3] to be 1.5-competitive, is
only 2-competitive, as we have shown in the conference version of this paper [5].)
In Section 6, we study the resource augmentation version of this problem, and prove that no

online algorithm with constant speed-up can be 1-competitive, neither in the metered profit
model, nor in the standard model. In fact, we prove that the minimal speed-up needed to achieve
1-competitiveness is Oðlog log xÞ: Thus, we disprove a conjecture from [8] by showing that the
problem with general deadlines is provably harder than the special case of tight deadlines, and the
constant speed-up 1-competitive algorithm for tight tasks from [8] cannot be extended to general
tasks.
Furthermore, we prove some lower bounds for the restricted case of tight tasks in the standard

model. We improve the lower bound from [10], by proving that, in order to achieve 1-
competitiveness, an online algorithm needs speed-up at least 2. Our last result concerns the model
where an online algorithm is allowed to use m processors of speed 1, rather than a single faster

processor. For this case, we prove that the competitive ratio is Oð
ffiffiffi
xm

p
=mÞ; even if all tasks are

restricted to be tight. For tight tasks, constant speed-up is sufficient for 1-competitiveness, so the
lower bound shows that increasing the speed of a single processor is more powerful than
increasing the number of processors of speed 1.
This paper extends the conference version [5]. The conference version contains a 1.8-

competitive algorithm for metered tasks which always schedules at most two tasks. Our new
e=ðe � 1Þ-competitive algorithm is a natural extension allowing to schedule more tasks
concurrently. The same algorithm was also recently discovered by Chin and Fung [4] (independent
of our work). Chin and Fung [4] also give a new lower bound of 1.25 for metered tasks.

ARTICLE IN PRESS

M. Chrobak et al. / Journal of Computer and System Sciences 67 (2003) 183–197 185



2. Preliminaries

Let J ¼ f1; 2;y; ng be the given set of tasks, with task j specified by the values ðrj; dj; pj;wjÞ;
where rj is its release time, dj is the deadline, pj is the processing time, and wj is the weight of task j

representing its profit rate. (In the literature, wj is sometimes called the value density, and the

product wjpj is called the value of task j:) We assume minj rj ¼ 0 and we denote by D ¼ maxj dj the

latest deadline. If rjptodj; then we say that task j is feasible at time t:

2.1. Schedules

We define a schedule for J to be a measurable function S : R-J,f>g such that, for each j and

t; jS�1ð jÞjppj and SðtÞaj for te½rj; djÞ: In this definition, SðtÞ denotes the task that is scheduled

at time t; and SðtÞ ¼ > if no task is scheduled. For a set XDR; jX j denotes the size (measure)
of X :
The profit of a schedule S depends on the model: In the standard model, the profit is the sum of

the profits of the completed tasks, that is profitSðJÞ ¼
P

j wjpj; where the sum is taken over all j

for which jS�1ð jÞj ¼ pj: In the metered model, even partially executed tasks count, that is, the

profit of the schedule S is profitSðJÞ ¼
P

j wjjS�1ð jÞj: The optimal profit is profitOPTðJÞ ¼
supS profitSðJÞ: It is easy to see that this supremum is achieved. Moreover, each schedule can be
transformed into a piece-wise constant schedule without changing the total profit (see [3]). The
profit of a schedule generated by an algorithm A on the instance J is denoted by profitAðJÞ:
For the metered model, it is important to keep in mind that the optimum profit is not changed if

any task is divided into several tasks with the same release times, deadlines, and weights, and
whose total processing time is equal to the processing time of the original task. (For this reason it
is more natural to define the weight as the profit rate instead of the total profit.)

For a schedule S; let doneS; jðtÞ ¼ jS�1ð jÞ-½0; tÞj be the amount of task j that has been

processed in S by time t: We define a task j to be active in S at time t if rjptodj and

doneS; jðtÞopj: In other words, the active tasks are those that are feasible at time t and have not

been completely processed before time t:
We say that a schedule S is canonical if for any two times t1ot2; if j2 ¼ Sðt2Þa>; then either

rj24t1; or j1 ¼ Sðt1Þa> and dj1pdj2 : One way to think about canonical schedules is this: at each

time t; if j is the earliest-deadline task among the active tasks at time t; then we either process j at
time t; or discard j irrevocably so that it will never be processed in the future. Any schedule S;
including an optimal one, can be converted into a canonical schedule as follows. Consider the
instance J 0 consisting of the portions of tasks that are processed in S: Reschedule the tasks in J 0 so
that at each time we schedule the active task with the earliest deadline. Using a standard exchange
argument, it is easy to verify that all tasks are fully processed.

2.2. Online algorithms

A scheduling algorithm A is online if, at any time t; its schedule depends only on the tasks that
have been released before or at time t: An online algorithm A is called R-competitive if

ARTICLE IN PRESS

M. Chrobak et al. / Journal of Computer and System Sciences 67 (2003) 183–197186



profitAðJÞXprofitOPTðJÞ=R for every instance J: The competitive ratio of A is the smallest R for
which A is R-competitive.

2.3. Time-sharing and randomization

The online algorithms are easier to formulate if we allow time-sharing of tasks. This
means that several tasks may be processed simultaneously at appropriately reduced
speeds. As explained below, this does not change the power of the model of metered
tasks.
Formally, a generalized schedule is a function V that, for each task j and time tA½0;DÞ; specifies

the speed Vð j; tÞ at which we perform task j at time t: We impose the following restrictions
on Vð j; tÞ:

X
j

Vð j; tÞp1;

Z
N

0

Vð j; tÞ dtppj; and Vð j; tÞ ¼ 0 for te½rj; djÞ:

The first condition states that the sum of the processing speeds assigned to different tasks cannot
exceed the processor speed, and the second condition states that the total time spent on executing
task j does not exceed pj:
The profit of a generalized schedule V is

profitVðJÞ ¼
X

j

wj

Z
N

0

Vð j; tÞ dt ¼
Z

N

0

X
j

wjVð j; tÞ dt:

Clearly, this definition generalizes the previous one. Both definitions are equivalent in the offline
case.
In the online case, any generalized schedule V can be transformed into a schedule S which

simulates the time-sharing in V by alternating the tasks. It is easy to see that if the tasks are
alternated with sufficiently high frequency (compared to the processing times), this transforma-
tion increases the competitive ratio only by an arbitrarily small e40: So both definitions are
equivalent in the online case as well, in the sense that the infima of achievable competitive ratios
are the same. Throughout, the paper we slightly abuse terminology and refer to the function V

simply as a schedule.
It is also easy to see that randomized (online) algorithms are no more powerful than

deterministic ones for metered tasks. Any randomized algorithm can be transformed into a
deterministic one by generating a generalized schedule in which at a given time, each task is
processed with speed equal to the probability that the randomized algorithm schedules it. It is easy
to see that any scheduled task is active, since when the randomized algorithm schedules it with a
non-zero probability, it is not completed and feasible at the given time. Moreover, the profit of the
deterministic algorithm is exactly equal to the expected profit of the randomized algorithm. (Note
that this fails in the standard model: The randomized algorithm may complete a task with

ARTICLE IN PRESS

M. Chrobak et al. / Journal of Computer and System Sciences 67 (2003) 183–197 187



probability 1
2
; achieving one-half of its profit on average, in which case the deterministic algorithm

schedules only a part of the task and achieves no profit.)

2.4. Resource augmentation

As mentioned in the introduction, we also study two variants of the problem where the online
algorithms are given more resources than the optimal schedule used as the basis of comparison. In
the first variant, with speed-up s; the online algorithm uses a single machine of speed sX1: A

schedule for J is a measurable function S : R-J,f>g such that, for each j and t; jS�1ð jÞjppj=s

and SðtÞaj for te½rj; djÞ: A profit of a job is wjsjS�1ð jÞj: In the standard model, a job is

completed if sjS�1ð jÞj ¼ pj and the profit of the schedule is the sum of the profits of all completed

jobs. In the metered model, the profit is the sum of profits of all jobs, even those only partially
completed.
In the second variant, the online algorithm uses m processors of speed 1. A schedule for J is

then given by an m-tuple of measurable functions Si : R-J,f>g; i ¼ 1;y;m; such thatPm
i¼1 jS�1

i ð jÞjppj for each j and t; SiðtÞaj for each i and te½rj; djÞ; and, if SiðtÞ ¼ Si0 ðtÞ for some j

and t; then SiðtÞ ¼ Si0 ðtÞ ¼ > (i.e., no job is scheduled on two machines at the same time). We

consider only the standard model for this variant. A job is completed if
Pm

i¼1 jS�1
i ð jÞj ¼ pj: If j is

completed, its profit is wjpj; and otherwise it is 0: The total profit is the sum of the profits of all

completed jobs.
In both variants, we compare a schedule generated by the online algorithm that uses additional

resources to the optimal schedule with no speed-up and no additional machines. We are mainly
interested in 1-competitive algorithms, that is, in algorithms that always achieve at least the
optimal profit. (Due to the additional resources such an algorithm can achieve a larger profit on
some instances.)

3. An offline algorithm for metered tasks

In this section, we give an efficient algorithm for computing the optimal solution for
metered tasks, addressing a problem posed in [3]. First, we observe that the problem can be
cast as a linear programming problem, and thus it can be solved in polynomial time. The
main goal of this section is to present a more efficient algorithm based on bipartite matchings
and flows.
The release times and deadlines partition the range ½0;DÞ into 2n � 1 intervals that we call

stages. We number the stages 1; 2;y; 2n � 1: If stage s is ½a; bÞ; we say that task j is feasible in

stage s if it is feasible at any time tA½a; bÞ:

3.1. Linear programming

By cs we denote the length of stage s: Let dj;s ¼ pj if j is feasible in s and 0 otherwise. With each

stage s and each task j we associate the variable xj;s whose value is the amount of task j processed

in stage s: Any schedule can be described by the values of the xj;s; since the ordering of the tasks

ARTICLE IN PRESS

M. Chrobak et al. / Journal of Computer and System Sciences 67 (2003) 183–197188



scheduled within a stage is arbitrary. Then the linear program is

maximize
P
j;s

wjxj;s

s:t:
P

s

xj;sppj 8j;

P
j

xj;spcs 8s;

xj;spdj;s 8j; s;

xj;sX0 8j; s:

ð1Þ

Thus, we can compute an optimal schedule using linear programming, see, e.g., [7,12]. This is
not fully satisfactory, since the running time of polynomial-time algorithms for linear
programming depends on the size of the numbers on input.

3.2. Matchings and flows

Now we present a more efficient algorithm, whose running time is a polynomial function of n
alone (assuming unit time for arithmetic operations and comparisons of the real numbers
representing times).
Before giving the algorithm, we prove the following property: any optimal schedule, restricted

to a subset of jobs with weights larger than some threshold, is an optimal schedule for this subset
of jobs. Thus, perhaps surprisingly, the set of optimal schedules depends only on the ordering of
the weights but not on their values, and every optimal schedule contains an optimal schedule for
any instance restricted to heavy tasks. In particular, all the optimal schedules include the same
portion of the tasks of any given weight.
We prove this property first for the discrete version and then discretize and take a limit for the

general case.
Order the tasks in an instance J so that w1Xw2X?Xwn: Without loss of generality, wn40:

For convenience, write wnþ1 ¼ 0: Let Jk denote the sub-instance consisting of tasks 1;y; k: Given

a schedule S for J; let Sk be the restriction of S to Jk: In particular, Sn ¼ S: Let busyðSÞ ¼
jS�1ðJÞj be the total time when any task is scheduled in S:
Assume now that all the release times and deadlines are integers and that we only have unit

tasks (with pj ¼ 1). Recall that the first release time is 0 and the latest deadline is D: In this

scenario, preemptions are not necessary in the offline case. Construct a bipartite graph G with
vertices X ¼ fx1;y; xng corresponding to tasks and Y ¼ fy1;y; yDg corresponding to the unit
time slots. If task j is feasible in time unit t then connect xj and yt with an edge of weight wj: Let
Gk denote the subgraph of G induced by fx1;y;xkg,Y : Any schedule defines a matching in G

and any matching is a schedule. So computing an optimal schedule is equivalent to computing a
maximum-weight matching.

Lemma 3.1. (a) There exists a maximum-weight matching M in G such that, for each k ¼ 1;y; n;
M contains a maximum-cardinality matching of Gk:
(b) If M is any maximum-weight matching in G then, for each k ¼ 1;y; n such that wk4wkþ1; M

contains a maximum-cardinality matching of Gk:

ARTICLE IN PRESS

M. Chrobak et al. / Journal of Computer and System Sciences 67 (2003) 183–197 189



Proof. Let M be a maximum-weight matching in G: Denote by Mk the sub-matching of M

restricted to Gk; and suppose that M̂ is a matching in Gk with cardinality larger than Mk: Consider

the symmetric difference of Mk and M̂: It consists of disjoint alternating cycles and paths.

Moreover, it contains at least one odd-length alternating path P with more edges from M̂ than
from Mk: Let y be the endpoint of P in Y : Since the weights of the edges depend only on the
endpoints in X ; the consecutive pairs of adjacent edges on P have equal weights (1st and 2nd, 3rd

and 4th, etc., numbering from y), and the last edge is from M̂ and has weight wpXwk: If y were not

matched in M; we could swap the edges on P in M (i.e., remove from M the edges in M-P ¼
Mk-P and add the edges in M̂-P), creating a matching with weight wðMÞ þ wp; contradicting
the maximality of M: Thus, y has to be matched in M: Then the matching edge containing y has
weight wl ; for some l4k; and thus wp4wl: Let M 0 be the matching obtained from M by

unmatching y and swapping the edges on P: We have wðM 0Þ ¼ wðMÞ þ wp � wlXwðMÞ:
This implies (b): if wk4wkþ1 then wlowp and wðM 0Þ4wðMÞ; which contradicts the

maximality of M: To obtain (a), modify all the weights to w0
i ¼ wi � ie; for e40: For a

sufficiently small e; the maximality of any matching is preserved and all the weights are distinct.
Using (b) with the new weights, it follows that any maximum-weight matching satisfies (a) with
the original weights. &

For a general instance, round each processing time, release time, and deadline to
the nearest multiple of e40: Taking a limit for e-0; Lemma 3.1 implies the following
theorem.

Theorem 3.2. (a) There exists an optimal schedule S for J such that, for each k ¼ 1;y; n; Sk is

optimal for Jk and busyðSkÞ is maximized.
(b) If S is any optimal schedule then, for each k ¼ 1;y; n such that wk4wkþ1; Sk is optimal for Jk

and busyðSkÞ is maximized.

Proof. Discretize the range ½0;DÞ into small intervals of length e40; rounding the release times
and deadlines to the nearest multiple of e: Replace each processing time pj is replaced by the

nearest multiple of e: Let Je be the resulting discrete instance. Each schedule can be replaced by a

canonical schedule without changing busyðSkÞ: A canonical schedule S for J consists of Oðn2Þ
intervals, it is easy to see that there are optimal schedules Se for each Je; that converge to S with
e-0: By Lemma 3.1 and taking the limit, the theorem follows. &

Algorithm Opt.

(i) Construct a flow network H with source s; sink t; and vertices xj for each task j and zi for each

stage i: The edges are: ðs; xjÞ for each task j; ðxj; ziÞ for each stage i and each task j feasible in

stage i; and ðzi; tÞ for each stage i: The capacity of each edge ðxj; ziÞ is pj and the capacity of

each edge ðzi; tÞ is ci; the length of stage i: The capacities of edges ðs;xjÞ are initialized to 0:
Initialize f 0

0 to be the zero flow.

(ii) For j ¼ 1;y; n; do the following:
Set the capacity of ðs;xjÞ to pj:

ARTICLE IN PRESS

M. Chrobak et al. / Journal of Computer and System Sciences 67 (2003) 183–197190



Compute the maximal flow, denote it fj: Let dj ¼ j fjj � j fj�1j be the increase in the flow

value.
Set the capacity of ðs;xjÞ to dj: Recompute the maximal flow, denote it f 0

j :

The resulting maximum flow f 0
n defines a schedule: we take fnðxj; ziÞ to be the amount of task j

scheduled during stage i: Theorem 3.2 implies that jfjj ¼ jf 0
j j and after iteration j; the flow on

ðs;xjÞ will remain dj until the end. Thus, Algorithm Opt computes step by step busyðSjÞ ¼ jfjj;
j ¼ 1;y; n; for an optimal schedule S: Therefore, f 0

n defines an optimal schedule. The running

time of Algorithm Opt is no worse than OðnÞ times the complexity of the maximum flow, which is

not worse than Oðn4Þ:

4. A competitive online algorithm for metered tasks

We now present our e=ðe � 1Þ-competitive online algorithm. Chang and Yap introduced a
greedy algorithm FirstFit that always processes the heaviest task. The drawback of FirstFit is
that it may schedule a task with a distant deadline, discarding an only slightly less profitable task
with a tight deadline. To avoid this, our algorithm Mixed schedules concurrently several tasks:
the heaviest task, the heaviest task among those with an earlier deadline, and so on, up to a task
with earliest deadline among those with weight at least 1=e of the largest weight.

Algorithm Mixed. Construct a sequence of jobs h1;y; hk as follows. Let h1 be an active task j

with maximum wj (break ties arbitrarily). Given h1;y; hi; choose the next job hiþ1 as the heaviest

active job j with deadline djodhi
(breaking ties arbitrarily); if there is no such job or the job has

weight wjpwh1=e; set k ¼ i and finish the construction. Denote the weights of the chosen jobs

vi ¼ whi
and set vkþ1 ¼ v1=e: Schedule all jobs hi; i ¼ 1;y; k; with speed Vðhi; tÞ ¼ ln vi � ln viþ1:

For jefh1;y; hkg set Vð j; tÞ ¼ 0:
At any given time, v1Xv2X?XvkXvkþ1; thus Vðhi; tÞX0; and the sum of speeds of all

scheduled jobs is
Pk

i¼1 ðln vi � ln viþ1Þ ¼ ln v1 � ln vkþ1 ¼ ln v1 � lnðv1=eÞ ¼ 1: Thus, the

schedule is well-defined. Note also that Mixed keeps processing the same tasks at the
same speeds in-between any of following at most 2n events: task arrivals, deadlines or task
completions.

Theorem 4.1. Algorithm Mixed has competitive ratio e=ðe � 1ÞE1:5820:

Proof. Let V be the schedule generated by Mixed and let S be some canonical optimal schedule.
We devise an appropriate charging scheme, described by a function C : R-R which maps each

time in S to a time in V : The intention is that any profit achieved at time t in S is ‘‘charged’’ to the
time CðtÞ in V :We then argue that each time u in V is charged at most e=ðe � 1Þ times the profit in
V at time u: Further, all profit from S is charged. These two facts imply e=ðe � 1Þ-competitiveness.
Since the ‘‘profit at time t’’ is infinitesimally small, in the formal proof we need to express our
argument in terms of ‘‘charged profit rates’’. We define another function F : R-½0; 1� with the
intended meaning that FðtÞ is the fraction of profit at time t in S charged to time CðtÞ in V :

ARTICLE IN PRESS

M. Chrobak et al. / Journal of Computer and System Sciences 67 (2003) 183–197 191



Consider a time t; and let j ¼ SðtÞ: If doneV ; jðtÞpdoneS; jðtÞ; define CðtÞ ¼ t and FðtÞ ¼ 1; i.e.,
the charged profit rate of j at time t is vj: Otherwise, let CðtÞ ¼ uot; where u is the maximum time

such that doneV ; jðuÞ ¼ doneS; jðtÞ; and FðtÞ ¼ Vð j; uÞ; i.e., the charged profit rate of j at time u is

vjVð j; uÞ: Choosing u as maximal such time implies that Vð j; uÞ40: It is easy to check that the

total charged profit (i.e., the charged profit rate integrated over the whole schedule V ) equals the
total profit of S:
Let j be the task scheduled in S at time t: Let h1; y, hk be the tasks scheduled in V at time t; as

chosen by Mixed. Denote their weights vi ¼ whi
and set vkþ1 ¼ v1=e: The set C�1ðtÞ consists of at

most k þ 1 points, t and the maximal times t1;y; tk such that doneV ;hi
ðtÞ ¼ doneS;hi

ðtiÞ; if such ti

exists and satisfies ti4t: If CðtÞ ¼ t then the charged profit rate of j at t is wj: If ti is present in

C�1ðtÞ then the charged profit rate of hi at t is Vðhi; tÞvi: The combined charged profit rate

at t is the sum of these contributions over all points in C�1ðtÞ: We show that it is at most
e=ðe � 1Þ times the profit rate of V at time t: The theorem then follows by integrating over all
times t:

Case 1: CðtÞot: Then the combined charged profit rate at t is at most the profit rate of V at t (it

is equal if all ti are present in C�1ðtÞ).
Case 2: CðtÞ ¼ t: Consider any i such that the point ti is present in C�1ðtÞ; we show that

wjpviþ1: Both tasks j and hi are active at time t both in V and S: both are released before t; as one
of V and S schedules them at t; both are scheduled at t or later in S; so they are not completed in
S at time t; hi is scheduled in V ; so it is not completed; finally, j is not completed in V by
definition of C and CðtÞ ¼ t: Since S is a canonical schedule, we have djpdhi

: If wj4viþ1; Mixed

would choose j (or a job with even larger weight) as hiþ1 (note that this holds even for i ¼ k). It
follows that wjpviþ1:
Let z be the largest index (in f1;y; k þ 1g) such that wjpvz: Since j is active at t in V ; it also

follows that wjpv1; and thus such a z exists. By the previous paragraph, only j and h1;y; hz�1

contribute to the charged profit rate at t: Thus, the combined charged profit rate at t is at most

X ¼ vz þ
Pz�1

i¼1 Vðhi; tÞvi; using also wjpvz: The profit rate of V at t is equal to Y ¼Pk
i¼1 Vðhi; tÞvi: We need to show that XpY � e=ðe � 1Þ; or equivalently X � YpY=ðe � 1Þ:
First, we derive an auxiliary inequality for any t ¼ 1;y; k:

Xk

i¼t

Vðhi; tÞvi ¼
Xk

i¼t

Z ln vi

ln viþ1

vi dxX
Xk

i¼t

Z ln vi

ln viþ1

ex dx

¼
Z ln vt

ln vkþ1

ex dx ¼ vt � vkþ1 ¼ vt � v1=e:

As a special case for t ¼ 1 we have YXv1ð1� 1=eÞ ¼ v1ðe � 1Þ=e: Now we have

X � Y ¼ vz �
Xk

i¼z

Vðhi; tÞvipvz � ðvz � v1=eÞ ¼ v1=epY=ðe � 1Þ:

To see that the bound of e=ðe � 1Þ on the competitive ratio of Mixed is tight, consider a small

e40 and an instance with jobs ð0; 1� ie2; 1; 1� ieÞ; for i ¼ 0; 1;y;I1=em: The deadlines are all

ARTICLE IN PRESS

M. Chrobak et al. / Journal of Computer and System Sciences 67 (2003) 183–197192



very close to 1 (they serve only to break ties in the algorithm in the desired way), and the weights
cover with high density the interval ½0; 1�: Thus, it is easy to check that, as the e tends to 0, the
profit of Mixed converges to 1� 1=e; while the optimum is e: &

5. A lower bound for metered tasks

The idea of the lower bound we prove now is as follows. At each integral time, the algorithm
has a choice of a job with unit processing time and tight deadline and another unit job with higher
weight and longer deadline. If the algorithm schedules at most one-half of the tight job, the
sequence ends, and the weights are set so that in this case the competitive ratio is too large.
Otherwise, the sequence continues for a sufficiently long time. During this time, the weights
increase exponentially and in the limit the competitive ratio is large, too. This lower bound was
recently improved by Chin and Fung [4] to 1.25, using an analysis based on a random distribution
of similar input instances.

Theorem 5.1. The competitive ratio of any online algorithm for scheduling metered tasks is at leastffiffiffi
5

p
� 1E1:236:

Proof. Fix an online algorithm A and e40 arbitrarily small. We show that the competitive ratio

of A is at least
ffiffiffi
5

p
� 1� e; which proves the theorem.

Let s ¼
ffiffiffi
5

p
� 2 and let f ¼ ð

ffiffiffi
5

p
þ 1Þ=2 be the golden ratio. Define the sequence fvigNi¼0 by

v0 ¼ 1; v1 ¼ fþ e; and viþ1 ¼ ðvi � vi�1Þ=s for i41: We solve the recurrence: fþ 1 and f are the

roots of the characteristic equation sx2 � x þ 1 ¼ 0; and we have vi ¼ ð1� eÞfi þ eðfþ 1Þi:
The adversary strategy is this: Pick some large integer n: For each time i ¼ 0; 1; 2;y the

following two tasks arrive:

task i : ði; i þ 1; 1; viÞ; task i0 : ði; i þ 2; 1; viþ1Þ:

If there is an integer time 1pjon when A has completed at most half of task j � 1; the
adversary terminates the sequence (prior to releasing tasks j and j0). If this case occurs, A

earns at most profitAðJÞp1
2

v0 þ v1 þ v2 þ?þ vj�1 þ vj; and the optimal profit is profitOPTðJÞ ¼
ðv1 þ v2 þ?þ vj�1 þ vjÞ þ vj�1: Using the recurrence and vj�1X1 (in the last inequality)

we obtain

profitOPT

profitAðJÞX
ð1þ 2

Pj
i¼1 viÞ þ 2vj�1 � 1

1þ 2
Pj

i¼1 vi

¼ 1þ 2vj�1 � 1

1þ 2v1 þ 2
Pj

i¼2
vi�1�vi�2

s

¼ 1þ sð2vj�1 � 1Þ
sþ 2sv1 þ 2vj�1 � 2

¼ 1þ sð2vj�1 � 1Þ
2esþ ð2vj�1 � 1Þ41þ s� e:

ARTICLE IN PRESS

M. Chrobak et al. / Journal of Computer and System Sciences 67 (2003) 183–197 193



Otherwise, the adversary issues all tasks up to time n � 1; and at time n he releases task n only.

Now profitAðJÞp1
2

v0 þ v1 þ v2 þ?þ vn�1 þ 3
2

vn and profitOPTðJÞ ¼ v1 þ v2 þ?þ vn�1 þ 2vn:

Using the recurrence and letting n-N

profitOPT

profitAðJÞ ¼
2vn þ 2

Pn

i¼1

vi

1þ vn þ 2
Pn

i¼1

vi

¼ 1þ vn � 1

1þ v1 þ vn þ 2 vn�1�1
s

- 1þ fþ 1

ðfþ 1Þ þ 2
s

¼ 1þ s:

In both cases, the competitive ratio is at least 1þ s� e; as claimed. &

6. Lower bounds for resource augmentation

In this section, we prove several lower bounds on resource augmentation. Recall the definition
of the importance factor x ¼ maxj wj=minj wj: We start with a lower bound showing that there

exists no 1-competitive speed-up Oð1Þ algorithm, both for metered and standard tasks. This
disproves a conjecture of Koo et al. [8]; it is interesting to note in this context that all the tasks
used in the lower bound are tight or have laxity 2, i.e., dj � rj ¼ 2pj:

Theorem 6.1. Both in the metered and standard profit model, any online 1-competitive algorithm has
speed-up at least Oðlog log xÞ; where x is the importance factor. In particular, there is no constant

speed-up 1-competitive algorithm.

Proof. Fix an integer m: We construct an instance such that any online 1-competitive algorithm
needs speed-up m=2: See Fig. 1 for an illustration. All tasks ending at the same deadline t have the

ARTICLE IN PRESS

h(8)

h(8)

h(1)

h(2)

h(3)

h(4)

h(5)

h(6)

h(7)

h(8)

h(8)

h(6)h(2)

h(4)

h(4)

0 41 5 762 3 8

Fig. 1. The instance for m ¼ 3: Solid lines represent feasibility ranges, dotted lines represent processing times, and the

profit rates hðxÞ are shown above these lines.

M. Chrobak et al. / Journal of Computer and System Sciences 67 (2003) 183–197194



same profit rate hðtÞ ¼ ð2mÞt: The tasks are grouped into m þ 1 classes numbered k ¼ 0;y;m:
For k ¼ 0; the tasks in class 0 are

ði; i þ 1; 1; hði þ 1ÞÞ; i ¼ 0;y; 2m � 1:

For k ¼ 1;y;m; the tasks in class k are

ði2k; ði þ 1Þ2k; 2k�1; hðði þ 1Þ2kÞÞ; i ¼ 0;y; 2m�k � 1:

For each time t; consider the sub-instance consisting of the tasks that are released before t: We
claim that the optimal solution of this sub-instance schedules exactly all the tasks with deadline t

or later. To prove this claim, note that in the sub-instance, there is exactly one task in each class
with deadline at least t: All these tasks can be scheduled from time 0 to 2m; completely filling the
capacity of the processor at any time: Schedule each such job j in classes 1 to m in that half of the
interval ½rj; djÞ which does not contain the interval ½t � 1; tÞ; the interval ½t � 1; tÞ is used by the job

in class 0. Since all the other tasks in the sub-instance have smaller profit rate, this gives the
optimal solution (both for metered and standard tasks).
The weights increase so fast that the profit rate hðtÞ is at least the total profit of all the tasks with

deadlines before t: The total processing time of all tasks with deadline equal to t � 1 is at most

2m�1; thus, their total profit is at most 2m�1hðt � 1Þ: By induction, hðt � 1Þ bounds the total profit
of all tasks with deadline before t � 1: Thus, the total profit of all tasks with deadline before t is at

most ð2m�1 þ 1Þhðt � 1Þp2mhðt � 1Þ ¼ hðtÞ:
The previous considerations show that to achieve optimal profit, the online algorithm has to

completely execute all the tasks with deadline t; with the exception of tasks or their parts (in
metered model) with processing time bounded by 1 (since only that much can be replaced by the
hypothetic profit of tasks with earlier deadlines). Since this holds for any time t; all the tasks must
be completed, with a possible exception of tasks with total processing time 2m: The total

processing time of all tasks is ðm þ 2Þ2m�1; so tasks or their parts of total length m2m�1 have to be
executed by time 2m: It follows that A must run at speed at least m=2:

Since the deadlines range from 1 to 2m; the importance ratio is x ¼ ð2mÞ2
m�1 and the lower

bound is m=2 ¼ Oðlog log xÞ: &

Theorem 6.2. In the standard profit model, there is no online 1-competitive algorithm with speed-up
so2 for scheduling tight tasks.

Proof. Let A be an online 1-competitive algorithm. We show an adversary strategy that, for any
given n; forces A to run at speed 2� 1=n: The adversary chooses tasks from among 2n � 1 tasks
defined as follows. Task 0 is ð0; n; n; 1Þ: For i ¼ 1;y; n � 1; task i is ði � 1; i; 1; 1Þ and task i0 is
ði; n; n � i; n=ðn � iÞÞ:
The adversary strategy is this: issue tasks 0; 1; 2;y; as long as tasks 1; 2;y; i are fully processed

by A by time i: If A fails to fully process task i; the adversary issues task i0 and halts. If this
happens, the instance contains tasks 0; 1;y; i; i0 whose optimal profit is n þ i: To gain this profit
A needs to process all tasks other than i: Their total length is 2n � 1; soA’s speed must be at least
2� 1=n:

ARTICLE IN PRESS

M. Chrobak et al. / Journal of Computer and System Sciences 67 (2003) 183–197 195



If A processes all tasks 1;y; n � 1; the instance is 0; 1;y; n � 1 and its maximum profit is n:
To achieve this profit, A must also process task 0: Once again, this means that A’s speed is at
least 2� 1=n: &

Theorem 6.3. In the standard profit model, any online algorithm with m processors for scheduling

tight tasks has a competitive ratio of Oð
ffiffiffi
xm

p
=mÞ (against a 1-processor optimum), where x is the

importance ratio.

Proof. Let M be large constant. Suppose A has m machines. The adversary chooses tasks from
m þ 1 task classes numbered 0; 1;y;m: The tasks in class i have all equal processing time

pj ¼ M2i; profit rate wj ¼ M�i; and profit wjpj ¼ Mi; their release times are aM2i; for

a ¼ 0; 1;y;M2m�2i � 1: The importance ratio is x ¼ Mm:
The adversary strategy is as follows. Since the tasks are tight and we consider the standard

model, we can assume that once A fails to run a task, it never starts it again. If A stops executing
a task j at time t (where t could be dj) then from time t þ 1 until the deadline of j no tasks from

classes 0; 1;y; j � 1 are released. (In other words, a task arrives if at its release time all the active
tasks are running; note that these tasks are only from higher classes.) It follows that at each time
there exists at least one task that was released but is not being executed by A: At time t; let jt be
such a task from the smallest class.
Let P be the total profit of all the dropped tasks, i.e., tasks not finished in A: We prove

that (i) the optimal solution schedules tasks with profit at least P=ðm þ 1Þ; and (ii) the
algorithm A schedules tasks with profit at most 2P=ðM � 1Þ: The bound on the competitive ratio
follows.
The proof of (i) is trivial: The dropped tasks in each class are disjoint, so the dropped tasks in

one of the classes have weight at least P=ðm þ 1Þ:
Now we prove (ii). If a task j running in A at some time t is from a lower-numbered class than

jt; we assign it to jt: A task executed by A can be assigned to none, one or even more dropped
tasks (as jt may change). Any running task not assigned at all is always from a higher class than
the current jt: At each time, the total profit rate of all such tasks is at most 1=ðM � 1Þ fraction
of the profit rate of jt: Thus, the overall profit of all unassigned completed tasks is at most
P=ðM � 1Þ: Now consider all the executed tasks assigned to a particular dropped task j
from class i: From the definition of the sequence it follows that there is at most one such task
from each class i0oi: Thus, their total profit (not profit rate) is at most 1=ðM � 1Þ fraction
of the profit of j: Hence, the overall profit of all assigned completed tasks is at most
P=ðM � 1Þ; and (ii) follows. &

7. Final comments

As we have seen, the model of metered tasks has very nice mathematical properties, which also
makes it very attractive. The main remaining open problem is to determine the best competitive
ratio for the metered profit model. The best current bounds show that this ratio between 1.25 and
e=ðe � 1ÞE1:5820; but the gap between these two bounds is still wide. Similarly, in the standard

ARTICLE IN PRESS

M. Chrobak et al. / Journal of Computer and System Sciences 67 (2003) 183–197196



model, we know that the minimum speed-up needed to obtain a 1-competitive algorithm is
between Oðlog log xÞ and Oðlog xÞ: It would be interesting to determine the optimal speed-up for
this problem.

References

[1] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha, F. Wang, On the

competitiveness of on-line real-time task scheduling, Real-Time Systems 4 (1992) 125–144.

[2] A. Borodin, R. El-Yaniv, Online computation and competitive analysis, Cambridge University Press, Cambridge,

1998.

[3] Ee-Chien Chang, Chee Yap, Competitive online scheduling with level of service, in: J. Wang (Ed.), Proceedings of

the Seventh Annual International Computing and Combinatorics Conference, Lecture Notes in Computer Science,

Vol. 2108, Springer, Berlin, 2001, pp. 453–462. To appear in J. of Scheduling.

[4] F.Y.L. Chin, S.P.Y. Fung, On-line scheduling with partial job values: does timesharing or randomization help?

(2002) Algorithmica [Manuscript], to appear.

[5] M. Chrobak, L. Epstein, J. Noga, J. Sgall, R. van Stee, T. Tichý, N. Vakhania, Preemptive scheduling in

overloaded systems, in: P. Widmayer, F. Trignero, R. Morales, M. Hennessy, S. Eidenbenz, R. Conejo (Eds.),

Proceedings of the 28th International Colloquium on Automata, Languages, and Programming, Lecture Notes in

Computer Science, Vol. 2380, Springer, Berlin, 2002, pp. 800–811.

[6] B. Kalyanasundaram, K. Pruhs, Speed is as powerful as clairvoyance, J. Assoc. Comput. Mach. 47 (4) (2000)

214–221.

[7] H. Karloff, Linear Programming, Birkhäuser, Boston, 1991.

[8] Chiu-Yuen Koo, Tak-Wah Lam, Tsuen-Wan Ngan, Kar-Keung To, On-line scheduling with tight deadlines, J. of

Scheduling 6 (2003) 213–223.

[9] G. Koren, D. Shasha, dover: an optimal on-line scheduling algorithm for overloaded uniprocessor real-time

systems, SIAM J. Comput. 24 (1995) 318–339.

[10] Tak-Wah Lam, Tsuen-Wan Ngan, Ker-Keung To, On the speed requirement for optimal deadline scheduling in

overloaded systems, in: Proceedings of the 15th International Parallel and Distributed Processing Symposium,

IEEE, San Francisco, CA, 2001, p. 202.

[11] Tak-Wah Lam, Ker-Keung To, Trade-offs between speed and processor in hard-deadline scheduling, in:

Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, MD, ACM/SIAM,

1999, pp. 755–764.

[12] C. Roos, T. Terlaky, J.-Ph. Vial, Theory and Algorithms for Linear Optimization: An Interior Point Approach,

Wiley, Chichester, 1997.

[13] J. Sgall, Online scheduling, in: A. Fiat, G.J. Woeginger (Eds.), Online Algorithms: The State of Art, Lecture Notes

in Computer Science, Vol. 1442, Springer, Berlin, 1998, pp. 196–227.

ARTICLE IN PRESS

M. Chrobak et al. / Journal of Computer and System Sciences 67 (2003) 183–197 197


	Preemptive scheduling in overloaded systems
	Introduction
	The standard model
	The metered model
	Our results

	Preliminaries
	Schedules
	Online algorithms
	Time-sharing and randomization
	Resource augmentation

	An offline algorithm for metered tasks
	Linear programming
	Matchings and flows

	A competitive online algorithm for metered tasks
	A lower bound for metered tasks
	Lower bounds for resource augmentation
	Final comments
	References


