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a b s t r a c t

In this paper, we propose a simple modification over Chun’s method for constructing
iterative methods with at least cubic convergence [5]. Using iteration formulas of order
two, we now obtain several new interesting families of cubically or quartically convergent
iterative methods. The fourth-order family of Ostrowski’s method is the main finding of
the present work. Per iteration, this family of Ostrowski’s method requires two evaluations
of the function and one evaluation of its first-order derivative. Therefore, the efficiency
index of this Ostrowski’s family is E =

3√4 ≈ 1.587, which is better than those of most
third-order iterative methods E =

3√3 ≈ 1.442 and Newton’s method E =
√
2 ≈

1.414. The performance of Ostrowski’s family is compared with its closest competitors,
namely Ostrowski’s method, Jarratt’s method and King’s family in a series of numerical
experiments.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Various problems arising in the diverse disciplines of science, engineering and nature can be described by nonlinear
equations of the form

f (x) = 0. (1.1)

The best known and most widely used algorithm for solving such problems is the classical Newton’s method [1–4], which
is given by

xn+1 = xn −
f (xn)
f ′(xn)

, n = 0, 1, 2, 3, . . . . (1.2)

Many researchers have developed modifications of Newton’s method or Newton-like methods [5–12] in a number of ways
to improve the local order of convergence of Newton’s method at the expense of additional evaluations of the functions
and/or derivatives, mostly at the point iterated by the method. All these modifications are targeted at increasing the local
order of convergence with the view of increasing their efficiency index [2].

Kung and Traub [6] have conjectured thatmultipoint iterationmethodswithoutmemory based on n function evaluations
have optimal order of convergence 2n−1. The famous Ostrowski’s method [1–8] and Jarratt’s method [7] are examples of
fourth-order multipoint methods without memory. These methods are the most efficient fourth-order multipoint iterative
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methods known to date. Another well-known example of a fourth-order multipoint method with the same number of
function evaluations is King’s family [8]. This family is defined as:

xn+1 = wn −
f (wn)

f ′(xn)
f (xn) + γ f (wn)

f (xn) + (γ − 2)f (wn)
, (1.3)

where wn = xn −
f (xn)
f ′(xn)

and γ εR.
The research of finding iterative methods with optimal fourth-order convergence, not requiring the computation of a

second-order derivative, is important and interesting from the practical point of view. In this work, we contribute further
to the development of the theory of iteration processes and derive many families of new third- and fourth-order multipoint
iterativemethods. Ostrowski’s family ofmethods requires two evaluations of the function f (x) and one of its derivatives f ′(x)
per iteration and the efficiency index is the same as that of Ostrowski’s method. These methods are obtained by introducing
quadratically convergent methods, a secant line and a parabola while moving along the curve to solve nonlinear equations
numerically, and the approach for deriving the formula is a different one.

2. Basic definitions

Definition 1. Let f (x) be a real valued function with a simple root r and let {xn}nϵN be a sequence of real numbers that
converges to r . Then, we say that the order of convergence of the sequence is p, if there exists a pϵR+ such that

lim
n→∞

r − xn+1

(r − xn)p
= C ≠ 0, (2.1)

where C is known as the asymptotic error constant. If p = 1, 2 or 3, the sequence {xn} is said to have linear, quadratic or
cubic convergence, respectively.

Definition 2. Let en = xn − r be the error in the nth iteration. We call the relation

en+1 = Cepn + O(ep+1
n ), (2.2)

the error equation. Ifwe can obtain the error equation for any iterativemethod, then the value of p is its order of convergence.

Definition 3. Let d be the number of new pieces of information (function or its derivatives) required by an iterative method
per step. Then the efficiency of the method may be measured by the efficiency index introduced by Ostrowski [2] and
defined as:

E = p
1
d . (2.3)

3. Development of the methods

Consider a nonlinear equation
f (x) = 0, (3.1)

whose one or more roots are to be found. Let x = r be a simple root of the nonlinear equation (3.1) and x = x0 be the initial
guess to the required root.

Here we also intend to construct new families of iteration functions from available iteration functions of order two based
on a geometric observation. In the sequel, whenever we mention that an iteration function φ is of order p, it means that the
corresponding iterativemethod defined by xn+1 = φ(xn) is of convergence order p, that is, the error |r−xn+1| is proportional
to |r − xn|p as n → ∞. We will indicate here that φ is an iteration function whose order is p by writing φεIp.

Our proposed scheme (similar to Chun) to develop new families of iteration functions is constructed geometrically as
follows:

Let β be a fixed parameter with 0 ≤ β ≤ 1 and let φ(x0)εI2 be an iteration function of order two.
Let

y = f (x), (3.2)

represents the graph of the function f (x). Assume that two points, namely


x0+φ(x0)
2 ,

f (x0)
2


and (φ(x0), βf (φ(x0))), lie on the

same graph of the function y = f (x). Then the approximated line of the function f (x) passing through the above mentioned
points is given by

y − βf (φ(x0)) =
2βf (φ(x0)) − f (x0)

φ(x0) − x0
(x − φ(x0)). (3.3)

Draw a parabola with vertex at (φ(x0), 0) and axis parallel to the y-axis on the graph of the same function (3.2). The equation
of this parabola is given by

y = α(x − φ(x0))2, (3.4)
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where α is the scaling parameter. The parabola (3.4) widens as α approaches zero and narrows as |α| becomes large. The
intersection of a line (3.3) with the parabola (3.4) is obtained by setting them equal to each other since each equals y.
Therefore, we end up with a quadratic equation given by

α(x − φ(x0))2 −
2βf (φ(x0)) − f (x0)

φ(x0) − x0
(x − φ(x0)) − βf (φ(x0)) = 0. (3.5)

Solving this quadratic equation for (x−φ(x0)), and after some simplification, we get the first approximation to the required
root as

x = φ(x0) +


2βf (φ(x0))−f (x0)

φ(x0)−x0


±


2βf (φ(x0))−f (x0)

φ(x0)−x0

2
+ 4αβf (φ(x0))

2α
. (3.6)

This can further be rewritten in the equivalent form (by rationalizing the numerator) as

x = φ(x0) −
2βf (φ(x0))

2βf (φ(x0))−f (x0)
φ(x0)−x0


∓


2βf (φ(x0))−f (x0)

φ(x0)−x0

2
+ 4αβf (φ(x0))

, (3.7)

in which the sign should be chosen so as to make the denominator largest in magnitude.
Now consider the factor

4αβf (φ(x0))
2βf (φ(x0))−f (x0)

φ(x0)−x0

2 , 0 ≤ β ≤ 1. (3.8)

Since the scaling parameter α appears in the numerator of (3.8), it is clear that there exists some real values of α such that
4αβf (φ(x0))
2βf (φ(x0))−f (x0)

φ(x0)−x0

2

 < 1, (3.9)

holds.
With this assumption, the binomial theorem is applicable in Eq. (3.7) and one can get the following formula free from

the square root term as

x = φ(x0) −
βf (φ(x0))(x0 − φ(x0))(f (x0) − 2βf (φ(x0)))

(f (x0) − 2βf (φ(x0)))2 + αβf (φ(x0))(x0 − φ(x0))2
. (3.10)

Now repeating this process until the parabola becomes x-axis, the general formula for successive approximation is given by

ϕ(xn+1) ≡ xn+1 = φ(xn) −
βf (φ(xn))(xn − φ(xn))(f (xn) − 2βf (φ(xn)))

(f (xn) − 2βf (φ(xn)))2 + αβf (φ(xn))(xn − φ(xn))2
. (3.11)

The family of iteration functions ϕ(xn+1) constructed in this manner again has order of convergence equal to at least three
when β = 1. This is proved by the next theorem. A similar approach for deriving the family of Secant-like methods has been
used previously by Kanwar et al. [13].

4. Order of convergence

Theorem 4.1. Let r be a simple zero of f (x) and φ(x) be an iteration function with φεI2, such that φ′′′(r) is continuous in a
neighborhood of r. Let

ϕ(xn+1) = φ(xn) −
βf (φ(xn))(xn − φ(xn))(f (xn) − 2βf (φ(xn)))

(f (xn) − 2βf (φ(xn)))2 + αβf (φ(xn))(xn − φ(xn))2
. (4.1)

Then ϕεIp for some p with p ≥ 3 when β = 1. Furthermore, if φ′′(r) = 0 or φ′′(r) =
f ′′(r)
f ′(r) , then ϕεIp for some p with p ≥ 4.

Proof. Let r be a simple zero of f (x). Since φ(x) is an iteration function of order two, then we have φ(r) = r and φ′(r) = 0.
Expanding f (xn) and φ(xn) about r by a Taylor series expansion, we have

f (xn) = f ′(r)

en + c2e2n + c3e3n + O(e4n)


, (4.2)
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and

φ(xn) = r +
1
2
φ′′(r)e2n +

1
6
φ′′′(r)e3n + O(e4n), (4.3)

respectively, where en = xn − r and ck =
1
k!

f (k)(r)
f ′(r) , k = 2, 3, . . . .

Furthermore

xn − φ(xn) = en −
1
2
φ′′(r)e2n −

1
6
φ′′′(r)e3n + O(e4n), (4.4)

and in combination with the Taylor series expansion of f (φ(xn)) about r , we have

f (φ(xn)) = f ′(r)

1
2
φ′′(r)e2n +

1
6
φ′′′(r)e3n


+ O(e4n), (4.5)

and

f (xn) − 2βf (φ(xn)) = f ′(r)

en + (c2 − βφ′′(r))e2n +


c3 −

β

3
φ′′′(r)


e3n


+ O(e4n). (4.6)

Using (4.3)–(4.6), we get

βf (φ(xn))(xn − φ(xn))(f (xn) − 2βf (φ(xn)))
(f (xn) − 2βf (φ(xn)))2 + βαf (φ(xn))(xn − φ(xn))2

=
βφ′′(r)

2
e2n + β


{6β − 3}φ′′

2
(r) + 2φ′′′(r) − 6φ′′(r)c2

12


e3n

+
1

12f ′(r)
{βφ′′(r)(3αβφ′′(r) − (2β − 1)f ′(r)(3βφ′′

2
(r) + 2φ′′′(r)))

+ f ′(r)c2(3(4β − 1)φ′′
2
(r) + 2φ′′′(r) − 6φ′′(r)c2) + 6f ′(r)φ′′(r)c3}e4n + O(e5n). (4.7)

Thus, using (4.3) and (4.7) in (4.1), we have

ϕ(xn+1) ≡ xn+1 = r +
(1 − β)φ′′(r)

2
e2n +


2φ′′′(r) − β{(6β − 3)φ′′

2
(r) + 2φ′′′(r) − 6φ′′(r)c2}
12


e3n

+
1

12f ′(r)
{βφ′′(r)(3αβφ′′(r) − (2β − 1)f ′(r)(3βφ′′

2
(r) + 2φ′′′(r)))

+ f ′(r)c2(3(4β − 1)φ′′
2
(r) + 2φ′′′(r) − 6φ′′(r)c2) + 6f ′(r)φ′′(r)c3}e4n + O(e5n), (4.8)

which further implies that

en+1 =
1 − β

2
φ′′(r)e2n +

1
12

[2φ′′′(r) − β{(6β − 3)φ′′
2
(r) + 2φ′′′(r) − 6φ′′(r)c2}]e3n

+
1

12f ′(r)
{βφ′′(r)(3αβφ′′(r) − (2β − 1)f ′(r)(3βφ′′

2
(r) + 2φ′′′(r)))

+ f ′(r)c2(3(4β − 1)φ′′
2
(r) + 2φ′′′(r) − 6φ′′(r)c2) + 6f ′(r)φ′′(r)c3}e4n + O(e5n). (4.9)

Therefore, when β = 1, we have the following error equation:

en+1 =
1
4
φ′′(r)(2c2 − φ′′(r))e3n +

1
12f ′(r)

{βφ′′(r)(3αβφ′′(r) − (2β − 1)f ′(r)(3βφ′′
2
(r) + 2φ′′′(r)))

+ f ′(r)c2(3(4β − 1)φ′′
2
(r) + 2φ′′′(r) − 6φ′′(r)c2) + 6f ′(r)φ′′(r)c3}e4n + O(e5n). (4.10)

This means that the iteration function ϕ defined by (4.1) is of order at least three. Furthermore, when φ′′(r) = 0 or
φ′′(r) =

f ′′(r)
f ′(r) , we can observe from (4.10) that ϕ is of order at least four. This completes the proof. �

It should be noted that the result of Theorem 4.1 is independent of the structure of the iteration function of order two
involved. Therefore, this is a further modification of Chun’s basic tool for deriving the families of higher order iterative
methods. This idea can further be extended for the case of multiple roots if the quadratically convergent methods for the
multiple roots are taken into consideration.
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5. Examples

Example 5.1. Consider the Newton’s scheme defined by φ(xn) = xn −
f (xn)
f ′(xn)

. In this case, ϕ(xn+1) defined by (4.1) becomes

ϕ(xn+1) = xn −
f (xn)
f ′(xn)

1 +

βf ′2(xn)f

xn −

f (xn)
f ′(xn)

 
f (xn) − 2βf


xn −

f (xn)
f ′(xn)


f ′2(xn)


f (xn) − 2βf


xn −

f (xn)
f ′(xn)

2
+ αβf


xn −

f (xn)
f ′(xn)


f 2(xn)

 . (5.1)

This is the new family of Ostrowski’s method and also has order of convergence four [1–5]. This exactly agrees with the
result predicted by Theorem 4.1, since φ′′(r) =

f ′′(r)
f ′(r) and the error equation of the above family when β = 1 is

en+1 =


c22


c2 +

α

f ′(r)


− c2c3


e4n + O(e5n). (5.2)

Example 5.2. Consider the Stirling’s scheme of order two defined by φ(xn) = xn −
f (xn)

f ′(xn−f (xn))
. In this case, ϕ(xn+1) defined

by (4.1) becomes

ϕ(xn+1) = xn −
f (xn)

f ′(xn − f (xn))

×

1 +

βf

xn −

f (xn)
f ′(xn−f (xn))


f ′2(xn − f (xn))


f (xn) − 2βf


xn −

f (xn)
f ′(xn−f (xn))


f ′2(xn − f (xn))


f (xn) − 2βf


xn −

f (xn)
f ′(xn−f (xn))

2
+ αβf 2(xn)f


xn −

f (xn)
f ′(xn−f (xn))


 . (5.3)

By Theorem 4.1, the order of convergence of the iteration function ϕ(xn+1) defined by (5.3) is at least three. From an
elementary computation for the coefficient of e3n in the error equation (4.10), we have the following error equation:

en+1 = c2f ′′(r)(1 − 2f ′(r))e3n + O(e4n). (5.4)

Example 5.3. Consider the second-order scheme defined in [9,10] by φ(xn) = xn −
f (xn)

f (xn)+f ′(xn)
. In this case the iteration

scheme ϕ(xn+1) defined by (4.1) becomes

ϕ(xn+1) = xn −
f (xn)

f (xn) + f ′(xn)

×

1 +

βf

xn −

f (xn)
f (xn)+f ′(xn)


{f (xn) + f ′(xn)}2


f (xn) − 2βf


xn −

f (xn)
f (xn)+f ′(xn)


{f (xn) + f ′(xn)}2


f (xn) − 2βf


xn −

f (xn)
f (xn)+f ′(xn)

2
+ αβf


xn −

f (xn)
f (xn)+f ′(xn)


f 2(xn)

 . (5.5)

The order of convergence of this iteration function ϕ(xn+1) is three and has the following error equation:

en+1 = −(1 + c2)e3n + O(e4n). (5.6)

Example 5.4. Consider the Steffensen’s scheme defined by φ(xn) = xn −
f (xn)
g(xn)

, where g(xn) =
f (xn+f (xn))−f (xn)

f (xn)
, then the

iteration scheme defined by (4.1) becomes

ϕ(xn+1) = xn −
f 2(xn)

f (xn + f (xn)) − f (xn)

×

[
1 +

βf (yn+1){f (xn) − 2βf (yn+1)}{f (xn − f (xn)) − f (x)}2

{f (xn − f (xn)) − f (x)}2{f (xn) − 2βf (yn+1)} + αβf (yn+1)f 4(xn)

]
, (5.7)

where yn+1 = xn −
f 2(xn)

f (xn+f (xn))−f (xn)
.

This scheme is again cubically convergent and has the following error equation:

en+1 = −
1
4
f ′′(r)(2c2 + f ′′(r))e3n + O(e4n). (5.8)

Example 5.5. Consider theMamta et al. scheme [10] defined byφ(xn) = xn−
f (xn)f ′(xn)

f 2(xn)+f ′2(xn)
. In this casewe haveφ′′(r) =

f ′′(r)
f ′(r) .

Hence, by Theorem 4.1, the iteration function ϕ(xn+1) defined by (4.1) becomes
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ϕ(xn+1) = xn −
f (xn)f ′(xn)

f 2(xn) + f ′2(xn)

×

[
1 +

βf (yn+1){f (xn) − 2βf (yn+1)}{f 2(xn) + f ′2(xn)}2

{f 2(xn) + f ′2(xn)}2{f (xn) − 2βf (yn+1)}2 + αβf (yn+1)f 2(xn)f ′2(xn)

]
, (5.9)

where yn+1 = xn −
f (xn)f ′(xn)

f 2(xn)+f ′2(xn)
.

Taking a particular value of β = 1, we get the following error equation of the above method as:

en+1 = c2


c22 − c3 +

αc2
f ′(r)

− 1

e4n + O(e5n). (5.10)

It should be pointed out that the obtained family of methods (5.1), (5.3), (5.5), (5.7) and (5.9) converge cubically or
quartically even though per iteration they require two evaluations of f (x) and one of f ′(x) or three evaluations of f (x) and
none of f ′(x). In a similar fashion, we can continuously construct other families of iterative methods with at least cubic
convergence by making use of quadratically convergent iterative methods as long as they are available.

Similarly, if we take two points (φ(x0), f (φ(x0))) and


φ(x0)+x0
2 ,

f (φ(x0))+f (x0)
2


on the graph of the function y = f (x), and

using the same concept as mentioned above, we get

ϕ(xn+1) = φ(xn) −
f (φ(xn))(xn − φ(xn))(f (xn) − f (φ(xn)))

(f (xn) − f (φ(xn)))2 + αf (φ(xn))(xn − φ(xn))2
. (5.11)

This family has the following error equation:

en+1 =
1
2
φ′′(r)c2e3n + O(e4n). (5.12)

If we take φ(xn) = xn −
f (xn)
f ′(xn)

as the Netwon’s iterate, then we get the cubically convergent family of the Newton-Secant
method given by

ϕ(xn+1) = xn −
f (xn)
f ′(xn)

[
1 +

f (φ(xn))(f (xn) − f (φ(xn)))f ′2(xn)
f ′2(xn)(f (xn) − f (φ(xn)))2 + αf (φ(xn))f 2(xn)

]
. (5.13)

The error equation for this family is given by

en+1 = c22e
3
n + O(e4n). (5.14)

It is straightforward to see that per step these methods require three functional evaluations, viz. two evaluations of f (x)
and one of f ′(x) or three evaluations of f (x) and none of f ′(x). In order to obtain an assessment of the efficiency of our
methods, we shall make use of the efficiency index defined by Eq. (2.3). For our proposed iteration schemes, namely (5.3),
(5.5) and (5.7), we find p = 3 and d = 3, yielding E =

3√3 ≈ 1.442, which is better than E =
√
2 ≈ 1.414, the efficiency

index of the Newton’s method. For the family of methods, namely (5.1) and (5.8), we find p = 4 and d = 3, yielding
E =

3√4 ≈ 1.587, which is better than those of most third order methods E ≈ 1.442 and Newton’s method E ≈ 1.414.

6. Numerical experiments

In this section, we shall present the numerical results obtained by employing various methods, namely Newton’s
method (NM), Traub–Ostrowski’s method (also known as Ostrowski’s method) (TOM), Jarratt’s method (JM), modified
Traub–Ostrowski’s method (MTOM) (5.2) for α = −1.0, α = 0.5, α = 1.0, α = 10, and King’s method (KM) (1.3) for
γ = 0.5, γ = 1 respectively to solve the nonlinear equations given in Table 1. We also show the comparison of all methods
mentioned above in Table 2; computations were performed using C++ in double precision arithmetic. We use ε = 10−15 as
the tolerable error. The following stopping criteria are used for the computer programs:

(i) |xn+1 − xn| < ϵ, (ii) |f (xn+1)| < ϵ.

7. Conclusions

In this paper, we have modified Chun’s scheme for constructing iterative methods of order three or higher to solve
nonlinear equations numerically. Now we have obtained a wide class of general methods which are without memory
and include three functional evaluations per iteration. A fourth-order family of Ostrowski’s method is the main finding
of the present contribution in terms of speed and efficiency index. According to the Kung–Traub conjecture, the family of
Ostrowski’s method and the family (5.9) have the maximal efficiency index because only three function values are needed
per step. The numerical results presented in Table 2 overwhelmingly support that the new family of Ostrowski’s method
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Table 1
Test problems.

No. Problem [a, b] Initial guess Root(r)

1. ex − 4x2 = 0 [0.5, 2] 0.5 0.714805901050568
2.0

2. x3 + 4x2 − 10 = 0 [1, 2] 1.0 1.365229964256287
2.0

3. cos x − x = 0 [0, 2] 0.0 0.739085137844086
2.0

4. x2 − ex − 3x + 2 = 0 [0, 1] 0.0 0.257530301809311
1.0

5. xex
2
− sin x2 + 3 cos x + 5 = 0 [−1.5, −0.5] −1.5 −1.201576113700867

−0.5
6. sin2 x − x2 + 1 = 0 [1, 3] 1 1.404491662979126

3
7. ex

2
+7x−30

− 1 = 0 [2.9, 3.5] 2.9 3.000000000000000
3.5

Table 2
Total number of iterations to approximate the zero of a function, total number of function evaluations for various multipoint iterative methods.

Problem Initial
guess

NM TOM JM MTOM
α = −1.0

MTOM
(α = 0.5)

MTOM
(α = 1)

MTOM
(α = 10)

KM
(γ = 0.5)

KM
(γ = 1)

1. 0.5 (4, 8) (2, 6) (2, 6) (3, 9) (2, 6) (2, 6) (2, 6) (2, 6) (3, 9)
2.0 (5, 10) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9)

2. 1.0 (4, 8) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (4, 12) (2, 6)
2.0 (4, 8) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (4, 12) (3, 9)

3. 0.0 (4, 8) (2, 6) (3, 9) (3, 9) (2, 6) (3, 9) (3, 9) (3, 9) (3, 9)
2.0 (3, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6)

4. 0.0 (3, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (3, 9)
1.0 (3, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (4, 12) (2, 6)

5. −1.5 (5, 10) (2, 6) (3, 9) (2, 6) (2, 6) (2, 6) (2, 6) (3, 9) (3, 9)
−0.5 (9, 18) (3, 9) (3, 9) (3, 9) (2, 6) (3, 9) (3, 9) D D

6. 1.0 (5, 10) (2, 6) (3, 9) (3, 9) (2, 6) (2, 6) (5, 15) (3, 9) (3, 9)
3.0 (5, 10) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9)

7. 2.9 (6, 18) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (5, 15) (8, 24)
3.5 (11, 22) (5, 15) (5, 15) (5, 15) (5, 15) (5, 15) (5, 15) (6, 18) (6, 18)

(D above stands for divergent).

is equally competent to Ostrowski’s method, Jarratt’s method and the King’s family. Further, we have also determined that
the family of Ostrowski’s method gives a very good approximation to the required root when |α| (the scaling parameter) is
small. This is because, for small values of α, the parabola widens along the horizontal direction. This means that our next
approximation will move faster towards the desired root. For large values of α (provided that the inequality (3.9) holds),
the formula still works but takes a greater number of iterations as compared to smaller values of α. This idea can be further
extended to the case of multiple roots.
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