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As the environmental temperature prominently influences

diverse biological aspects of the animals, thermosensation and

the subsequent information processing in the nervous system

has attracted much attention in biology. Thermotaxis in the

nematode Caenorhabditis elegans is an ideal behavioral

paradigm by which to address the molecular mechanism

underlying thermosensory transduction. Molecular genetic

analysis in combination with other physiological and behavioral

studies revealed that sensation of ambient temperature is

mediated mainly by cyclic guanosine monophosphate (cGMP)

signaling in thermosensory neurons. The information of the

previously perceived temperature is also stored within the

thermosensory neurons, and the consequence of the

comparison between the past and the present temperature is

conveyed to the downstream interneurons to further regulate

the motor-circuits that encode the locomotion.
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Introduction
Using a compact nervous system consisting of only

302 neurons, Caenorhabditis elegans exhibits a large reper-

toire of behavioral outputs in response to external stimuli

[1]. The complete knowledge of connectivity of the

neural circuits and the accessibility to powerful genetic

techniques make C. elegans the sole model animal in

which to understand how the nervous system regulates

the behaviors in a single-cell resolution.

C. elegans senses ambient temperature, associates it with

the existence of food, and migrates toward the previous

cultivation temperature when placed on a thermal gradi-

ent without food [2]. Laser ablation studies identified
www.sciencedirect.com 
neurons and the neural circuit required for this behavioral

response called thermotaxis (Figure 1a) [3], and molecu-

lar genetic analysis revealed neurons and molecules that

are particularly important for thermosensation to induce

thermotactic behavior (Figure 1a).

Thermotransduction in the major
thermosensory neuron AFD
Only limited numbers of neurons are known to have

ability to sense temperature in C. elegans. Through the

analysis of thermotaxis, the AFD neuron is considered to

be the major thermosensory neuron. It was later shown by

calcium imaging [4–10] and electrophysiology [11,12] that

AFD responds to temperature increment only when the

temperature stimulus is above a threshold temperature

that is around 28 lower than the previous cultivation

temperature (Figure 2).

The sensory ending of AFD per se appears to sense

temperature, since it can still respond to temperature

change even after separated from the cell body by the

femtosecond laser surgery, although the cell body no

longer responds to temperature after the surgery [6].

Further, the structure of the sensory ending of AFD is

important for thermosensation, since ttx-1 mutants that

have abnormal structure in AFD sensory ending show

aberrant cryophilic phenotype, in which the mutant ani-

mals migrate to colder temperature than the cultivation

temperature on a temperature gradient [13]. In addition,

the ablation of amphid sheath glia cells resulted in the

abnormal structure of sensory ending, which made the

animals thermophilic, in which the animals migrate to-

ward warmer temperature than the cultivation tempera-

ture [14,15].

What is the molecular mechanism underlying thermo-

sensation? The experimental evidence indicates that the

transient receptor potential (TRP) channels themselves

are direct temperature sensors in mammals [16]. Howev-

er, the involvement of the TRP channels has not yet been

clearly shown in thermosensation in the AFD neuron, and

instead previous studies showed that cGMP signaling

plays an essential role in the AFD thermosensation

(Figure 3a) as in phototransduction in vertebrate rods

[17,18].

Cyclic nucleotide-gated (CNG) channels, which are per-

meable for cations such as calcium, sodium and potassi-

um, are crucial for thermosensation. Animals lacking

either TAX-4 [19], TAX-2 [20] or CNG-3 [21] channels
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Figure 1
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(a) A model of neural circuit underlying thermotaxis. Solid and dashed arrows indicate synaptic connections and secretory communications,

respectively. Temperature is sensed and thermal information is stored and processed in AFD (and probably in AWC). Stored and processed

information is primarily transmitted to AIY interneuron. The model presented here is modified from a previous report [3]. (b) Neurons involved in

sensation of noxious temperature and cold tolerance. FLP, PHC, and AFD are involved in heat avoidance, PVD in cold avoidance, and ASJ in cold

tolerance.
showed athermotactic phenotype, in which the animals

move almost randomly on a temperature gradient.

Electrophysiological analysis using heterologous cultured

cells revealed that TAX-4 homotetramer and TAX-2/4

heterotetramer are far more sensitive to cGMP than to

cAMP [19,22], suggesting that TAX-2/4 channel acts as a

cGMP-gated cation channel in vivo.

cGMP is synthesized from GTP by guanylate cyclases.

Among more than 30 guanylate cyclases in C. elegans,
three members GCY-8, GCY-18 and GCY-23 are specifi-

cally expressed in AFD and are redundantly involved in

thermotaxis [23]. Like tax-2 or tax-4 mutants, gcy-8 gcy-18
gcy-23 triple mutants show athermotactic phenotype. Ad-

ditionally, the whole-cell patch-clamp analysis revealed

that AFD response to temperature is completely lost in

gcy-8 gcy-18 gcy-23 triple mutant or tax-4 mutant animals

[11].

The activity of guanylate cyclases and the consequent

cGMP level are suggested to gate the dynamic range of

AFD responses [5]. Consistently, animals lacking phos-

phodiesterase PDE-2, which hydrolyses cGMP, showed

abnormal AFD responses to temperature stimulus [12].

Expression of GCYs is positively regulated by CMK-1,

one of the C. elegans homologues of calcium/calmodulin

kinase (CaMK) [8�,24]. It was recently reported that up-

shift of cultivation temperature gradually increases the

expression levels of GCYs in a manner that was correlated

with nuclear localization of CMK-1 [8�]. Although CREB

transcription factor CRH-1 is necessary in AFD for
Current Opinion in Neurobiology 2015, 34:117–124 
thermotaxis [25] and CREB works downstream of

CaMKs in many biological processes [26], the expression

level of GCY-8 was unaltered in crh-1 mutant [24],

suggesting that the regulation of GCY expressions by

CMK-1 is CREB-independent.

What is the downstream signaling of calcium influx

through CNG channels? One candidate is calcium/cal-

modulin-dependent serine/threonine protein phospha-

tase, calcineurin. Indeed, calcineurin TAX-6 is also

involved in thermosensory transduction in the AFD neu-

ron. Loss and gain of TAX-6 activity caused thermophilic

and cryophilic phenotypes, respectively [27]. tax-6 loss-

of-function mutants showed diminished calcium influx to

AFD in response to thermal stimuli [15]. Thus, TAX-6

might be necessary for amplifying or maintaining calcium

influx. Identification of the downstream signaling of

TAX-6 will be informative to further reveal the molecular

mechanism of thermosensation.

It should be noted that themosensation in C. elegans could

be influenced by sensations from other environmental

stimuli, and an experimentally observable behavior could

possibly be a final consequence of the information pro-

cessing in the neural circuits upon sensation of multiple

stimuli. For example, sensation of humidity in C. elegans
was recently reported to be dependent on both thermo-

sensation in AFD and mechanosensation in multi-den-

dritic head neuron FLP [28�], suggesting that humidity

influences thermosensation in AFD and thermotaxis be-

havior.
www.sciencedirect.com
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Figure 2
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The AFD neuron responds to warming above a threshold temperature

dependent on past cultivation temperature. (a) Calcium imaging of

AFD thermosensory neuron. Relative increase or decrease in the

intracellular calcium concentration are measured as increase or

decrease in the YFP/CFP fluorescence ratio of yellow chameleon

YC2.12, a genetically encoded calcium indicator, respectively. This

panel is modified from a previous report [4]. (b) Calcium influx to AFD

occurs when the present temperature (T) is higher than the threshold

that is 28 lower than the past cultivation temperature (Tc) and the time

derivative of the temperature is positive.
The thermoreceptor in AFD is still unknown. However, it

is tempting to hypothesize that any of guanylate cyclases

GCY-8, GCY-18 or GCY-23 act as thermoreceptors based

on the following results: GCY-4 and GCY-22 collaborate

to sense iodide in ASER chemosensory neuron [21], and

GCY-14 is a receptor for alkaline pH in ASEL neuron

[29]. Alternatively, one or several of TRP channels may

be involved in thermosensing in C. elegans as in the case of

mammals. Likewise, GPCR could be a thermoreceptor as

shown in Drosophila [30].
www.sciencedirect.com 
Other neurons sensitive to temperature
change
Although AFD seems to be a major thermosensory neu-

ron, additional thermosensory neurons were predicted to

exist, since AFD-ablated animals can still migrate to cold

region in thermotaxis [3]. AWC neurons also respond to

temperature changes [31,32]. Through the analysis of

cryophilic eat-16 mutants, in which G protein signaling

is up-regulated due to the loss of regulator of G protein

signaling (RGS), activation of the AWC neuron by en-

hanced G protein signaling was shown to consequently

down-regulate the post-synaptic interneuron AIY

(Figure 3b) [31]. An urgent question is whether AWC

neurons primarily sense temperature even when commu-

nication with other neurons is shut down.

ASI chemosensory neurons are also involved in thermo-

taxis under some specific conditions [33]. Response of

ASI to temperature change is dependent on AFD

(Figure 1a).

Signal transmission from sensory neurons to
AIY interneurons
The temperature sensation and information processing in

sensory neurons is transmitted to the downstream inter-

neurons. AFD and AWC sensory neurons both project

onto AIY interneurons via chemical synapses (Figure 1a)

[1]. AIY interneurons are required for promoting thermo-

philic drive or inhibiting cryophilic drive, since ablation of

AIY [3] and ttx-3 mutation [34] that causes defect in AIY

differentiation both results in cryophilic phenotype.

The excitatory transmission pathway from AFD to AIY

was implicated by a study in which optogenetic stimula-

tion of AFD with channelrhodopsin-2 caused depolariza-

tion of AIY membrane potential [35]. By contrast,

optogenetic inhibition of AFD with halorhodopsin caused

the increase of calcium influx into AIY, suggesting that

inhibitory transmission also occurs from AFD to AIY

(Figure 3c) [15]. These reports suggest that both excit-

atory and inhibitory transmission exist from AFD to AIY.

Excitatory transmission from AFD to AIY may be medi-

ated by peptides, since this AFD–AIY transmission is

reduced in animals lacking UNC-31 (calcium-dependent

activator protein for secretion, CAPS) [35] that is necess-

sary for the exocytosis of dense-core vesicles (DCVs) [36].

The AFD–AIY inhibitory transmission pathway is medi-

ated by glutamate release from AFD and subsequent

reception of glutamate by AIY via GLC-3, a ionotropic

glutamate receptor permeable to chloride ion, probably

leading to polarization of AIY membrane potential

(Figure 3c) [37]. Given that thermophilic mutant tax-6
[27] shows diminished calcium influx into AFD [15],

TAX-6-dependent calcium influx into AFD may well

be necessary for migration toward cold temperature,

possibly by increasing the exocytosis of synaptic vesicles
Current Opinion in Neurobiology 2015, 34:117–124
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Figure 3
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Possible mechanisms of thermosensory signal transduction. (a) In AFD, thermal stimuli are received directly by GCYs at the sensory ending or by

unidentified receptors and then unidentified G proteins activate guanylate cyclases, GCY-8, GCY-18 and GCY-23. Activated GCYs then increase

intracellular cGMP concentration, which opens the putative TAX-2/TAX-4/CNG-3 cyclic nucleotide-gated channels, leading to the calcium influx

and thereby the depolarization of AFD. In order to maintain the calcium concentration, TAX-6 calcineurin, a calcium/calmodulin-dependent serine/

Current Opinion in Neurobiology 2015, 34:117–124 www.sciencedirect.com
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containing glutamate from AFD, thereby leading to the

negative regulation of AIY through GLC-3 (Figure 3a).

It is reasonable to hypothesize that PKC-1, a C. elegans
ortholog of nPKC-epsilon/eta, also positively regulates

glutamate release in pre-synapses of AFD, thereby nega-

tively regulating the AIY activity. The activity of PKC-1

is dependent on diacylglycerol, and similar to tax-6
mutants, pkc-1 loss-of-function mutants are thermophilic

(Figure 3a) [38]. Consistently, animals lacking diacylgly-

cerol kinase DGK-1, in which PKC-1 should be activated,

are cryophilic [38]. Interestingly, although the expression

of PKC-1 solely in AFD rescued the thermophilic phe-

notype of pkc-1 mutant, the AFD calcium response in pkc-
1 mutants was indistinguishable from that of wild type

animals [9]. This result suggests that PKC-1 regulates

thermotaxis by acting downstream of calcium influx in

AFD. Further, PKCs are reported to enhance exocytosis

in many biological contexts [39]. For instance, PKC-1

positively regulates DCV exocytosis in motorneurons in

C. elegans [40]. PKC-2, another member of protein kinase

C family, may regulate AFD function by phosphorylating

UNC-18, a chaperone for syntaxin, a SNARE protein

[41].

As is the case for the transmission from AFD to AIY,

bidirectional excitatory and inhibitory transmission is also

proposed from AWC to AIY. Whereas glutamate release

from AWC to AIY is excitatory [37], inhibitory transmis-

sion from AWC to AIY is also implicated, since in eat-16
mutants showing the enhanced AWC activity, the AIY

activity is down-regulated (Figure 3c).

Non-neuronal thermosensation
Non-neuronal cells are also known to participate in ther-

mosensation. Body wall muscle and intestine transmit

temperature signals in a heat shock transcription factor

HSF-1-dependent manner [42]. HSF-1 regulates the

synthesis of estrogen, which is probably to mediate the

temperature signal to the AFD thermosensory neuron via
nuclear hormone receptor NHR-96 (Figure 3a) [42].

Animals live longer at lower body temperature [43]. Recent

study showed that longer life span of C. elegans at cold

temperature is not only due to the slower rate of chemical

reactions but also regulated by a signaling pathway that

includes TRPA-1, PKC-2 and the transcription factor
threonine protein phosphatase, may be necessary for activating CNG chann

activate calcium/calmodulin kinase CMK-1, which contributes to the transcr

exocytosis. (b) In AWC, SRTX-1/G protein-coupled receptor is reported to s

protein activates ODR-1/guanylate cyclase, leading to change of cGMP con

suppresses the G protein signaling [31]. (c) A model for signal transmission

transmission from AFD inhibits AIY activity via GLC-3 ionotropic glutamate r

cryophilic behavior, while EAT-4-dependent glutamatergic transmission from

[37]. Excitatory peptidergic transmission from AFD is suggested by optogen

enhanced by G protein signaling and down-regulated by SRTX-1 [31,32].

www.sciencedirect.com 
DAF-16/FOXO in intestines [44�]. Surprisingly, intes-

tines respond to temperature decrement with calcium

influx through TRPA-1 channel [44�].

Heat and cold avoidance
Besides the sensation of the ambient temperature,

C. elegans avoids noxious heat [45]. The heat avoidance

behavior triggered by infrared (IR) irradiation to nose

tip was dependent on the functions of AFD and multi-

dendritic head neuron FLP, and the tail avoidance

response was dependent on PHC tail sensory neurons

(Figure 1b) [46��]. GCY-12 in AFD was important in

addition to the functions of GCY-8, GCY-18 and GCY-

23, and TRPV channels OSM-9 and OCR-2 in FLP were

important in the avoidance response [46��]. TRPV

channels were again important in PHC neurons during

tail avoidance. In contrast to the role of AIY interneur-

ons as a downstream of AFD in thermotaxis, AIB inter-

neurons that are connected with AFD via gap junctions

were involved in heat avoidance by head irradiation

[46��].

Heat avoidance was also investigated by scoring animals

that could not cross the heat barrier to reach the attractant

odor with a different assay system. It was shown that

NPR-1 neuropeptide receptor in RMG interneuron con-

tributes to the process whereby animals hesitate to cross

the heat barrier [47]. Further, pre-exposure to high tem-

perature such as 28 8C caused acclimation in the same

assay system. Similarly to the case of thermotaxis [8�],
nuclear localization of CMK-1 in FLP neuron was neces-

sary for this experience-dependent acclimation to heat

[48�].

C. elegans also avoids noxious cold temperature. During

cold avoidance, TRPA-1 channel functions as a cold

sensor in PVD multi-dendritic nociceptor neurons in

the body (Figure 1b) [49].

In addition, C. elegans shows cold tolerance in a past

cultivation temperature-dependent manner [50,51]. Re-

cently, ASJ neurons were found to sense temperature on

their own and mediate the information of temperature to

other tissues such as intestine by means of insulin secre-

tion, resulting in the change of lipid composition in

membranes (Figure 1b) [52�].
els or voltage-gated calcium channels (VGCCs). Then, calcium may

iption of gcy genes. Calcium in addition to PKC-1 may regulate

low down the responding rate to temperature change [32]. ODR-3/Ga

centration and regulating the CNG channel, and EAT-16/RGS

 to AIY from AFD and AWC. EAT-4-dependent glutamatergic

eceptor that is permeable to chloride ion and thereby promotes

 AWC excites AIY activity and thereby promotes thermophilic behavior

etic stimulation of AFD [35]. Inhibitory transmission from AWC is

Current Opinion in Neurobiology 2015, 34:117–124
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Conclusion and perspective
In vertebrates, thermosensation is predominantly gov-

erned by TRP channels [53]. In C. elegans, on the other

hand, TRP channels are involved in the sensation of

noxious temperature rather than that of ambient temper-

ature. Instead, the latter is mediated by cGMP and CNG

channels, which is reminiscent of the vertebrate visual

system (Figure 3a). It is of especial interest that a subtype

of mammalian guanylate cyclase was recently reported to

respond to cool temperatures [54].

The major thermosensory neuron AFD in C. elegans
responds to the warming above the threshold according

to the calcium imaging. By contrast, exocytosis from

AFD, monitored by pHluorin, a fluorescent pH probe,

fused to synaptobrevin, is down-regulated when the

ambient temperature is equal to past cultivation temper-

ature [55]. It is of great interest whether the discrepancy

between calcium influx and synaptic release of AFD

results from the information integration between temper-

ature and the existence of food, as is the case in salt

chemotaxis [56]. It would also be valuable to specifically

monitor exocytosis of synaptic vesicles and that of DCVs

in order to distinguish whether each signal molecule

contributes to excitation or inhibition of the downstream

neurons.

Exploration and exploitation is an important issue for

understanding animal behavior. Interestingly, AWC neg-

atively regulates isothermal tracking (IT) behavior. AWC

neurons of srtx-1 loss-of-function mutant animals lacking

G protein-coupled receptor SRTX-1 are hyperactive, and

the srtx-1 mutants show greatly reduced IT behavior,

which is an opposite behavioral phenotype as compared

with the AWC-ablated animals [32]. Since migration to

the cultivation temperature is regarded as an exploration

strategy and IT behavior at around the cultivation tem-

perature as an exploitation strategy, we propose that the

investigation of the molecular mechanism for the ther-

motaxis neural circuit shed light onto the switching of

exploration–exploitation strategy. Appropriate selection

of exploration and exploitation strategies should further

lead to dissecting the suboptimal behavior, which may

contribute to the behavioral plasticity.
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