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ORIGINAL ARTICLE

Gastrointestinal stromal tumors (GISTs) are the

most common mesenchymal tumors of the gas-

trointestinal tract. They are believed to arise from

interstitial cells of Cajal (i.e. pacemaker cells).1

The annual incidence of GIST is estimated at

0.68–1.45 per 100,000. The tumors occur typi-

cally in older individuals and arise most often 

in the stomach, followed by the small intestine,

colon, rectum and esophagus.2,3 Central to the

tumorigenesis of GISTs are active mutations in

the proto-oncogene tyrosine-protein kinase (KIT)

or platelet-derived growth factor receptor alpha

(PDGFRA) gene, with a detection rate of 60–80%

and 3–7%, respectively.4,5 These mutations have
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been identified as alternative and mutually exclu-

sive genetic events in GIST development, which

target seemingly similar downstream pathways.6,7

Surgery is the mainstay of treatment, but even

after adequate resection, the vast majority of

GISTs recur, and in approximately 50% of cases,

the liver is the main site of metastasis.8,9 A small

number of patients survive intra-abdominal me-

tastasis for up to 20 years. However, patients with

tumors that have metastasized at presentation

have a very poor prognosis.10 The recurrent or

advanced tumors are resistant to radiotherapy

and chemotherapy, and have had an extremely

poor prognosis in the past.11 Recently, the in-

troduction of imatinib mesylate (trade names

Glivec, Gleevec; Novartis, Basel, Switzerland) has

greatly altered the clinical course of patients with

advanced GIST.12,13 Its effectiveness depends on

the mutational status of KIT and PDGFRA.

Approximately 80% of these patients have a par-

tial response or stable disease. However, acquired

resistance is a further clinical challenge, and can

develop in half of the patients who initially 

benefit from the drug.14,15

The criteria delineating benign from malig-

nant tumors have not been established reliably.

Tumor size, mitotic index, and anatomic site are

often used to predict disease-specific survival in

patients with primary disease who undergo com-

plete gross resection.16,17 However, a small subset

of small and/or mitotically inactive tumors does

metastasize subsequently.2,18 Many other prog-

nostic markers have also been reported, with vari-

able significance, including patterns of KIT and

PDGFRA mutations.7 Apparently, the lack of a 

reliable method of prognostication hampers the

selection of patients eligible for imatinib mesy-

late therapy, a critical step for avoiding waste of

resources and possible lack of responsiveness,

particularly with the progress of adjuvant and

neoadjuvant clinical trials.

Although KIT and PDGFRA mutations play 

a fundamental role in early GIST carcinogenesis,

other molecular mechanisms appear to be neces-

sary in tumor progression. Cytogenetic alterations

have been proposed to act as a complementary

mechanism of GIST development, with accumu-

lation of chromosomal imbalances (CIs) in con-

junction with disease progression.19–31 Some CIs

have been suggested to play a prognostic role in

this disease, but have revealed a conflicting sig-

nificance among different studies. For example,

some authors have linked losses at 1p and 22q 

to malignant behavior in GISTs,21,28–31 whereas

others have not identified these aberrations as

carrying prognostic value.22,26

Although gastric and intestinal GISTs are 

cytogenetically related, recent studies have re-

vealed consistently that there are substantial site-

dependent, genetic differences.20–23 Evaluation

of the prognostic role of the CIs in GISTs thus

needs to be examined on a site-specific basis.

Moreover, because of the heterogeneous nature

of malignant tumors, the CIs of a minor but 

aggressive tumor component that leads to metas-

tasis can often be overlooked in the analysis of

primary tumors using comparative genomic hy-

bridization (CGH). To avoid this pitfall, we per-

formed CGH of 13 cases of surgically resected

liver metastatic GISTs, including seven derived

from the stomach and six from the small intestine.

Assessment of the CIs closely associated with

metastatic risk was made by comparing them

with the CGH findings of the 25 primary GISTs

reported in our previous study.23

Methods

Sample selection
In the pathological files at Chi Mei Medical

Center, most cases of metastatic GIST to the liver

were confirmed pathologically through needle

biopsy. The DNA isolated from serial microtome

sections of small paraffin-embedded tissue sam-

ples theoretically contains a high proportion of

truncated nuclei, which may create a certain bias

in the CGH analysis. To avoid such a potential

pitfall, we collaborated with two other hospitals

in Taiwan to collect cases of surgically resected

liver metastatic GIST. A total of 13 cases were

found consecutively in the archive files of these
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hospitals between 1992 and 2004. All tumors 

included in this study were immunohistochemi-

cally positive for CD117. No patients had received

chemotherapy or radiotherapy prior to the surgical

resection.

Under the guide of the hematoxylin and eosin

stained section, the tumor tissue in the paraffin

block was selected for DNA preparation. The 

selected tissue was deparaffinized by treating it

twice with xylene at 55°C for 15 minutes each

time, followed by washes with absolute ethanol

and air-drying. The tissue was then incubated in

proteinase K solution (Sigma, St Louis, MO, USA)

with 0.5 mg/mL in 10 mM Tris, pH 7.8, 5 mM

EDTA, and 0.5% SDS, at 55°C overnight or

longer, if needed. DNA in suspension was puri-

fied using a phenol/chloroform procedure, and

resuspended in 1 × TE buffer.

CGH
The CGH procedure was modified from that de-

scribed by Kallioniemi et al,32 and is described in

detail elsewhere.23 Briefly, the metaphase slides

from normal females were kept in 95% ethanol

at −20°C for at least 48 hours before processing

for CGH. DNA from a tumor and genomic DNA

from an individual with normal karyotype (refer-

ence DNA) were directly labeled with fluorescein-

12-dUTP or Texas red-5-dUTP (NEN Life Science,

Boston, MA, USA), respectively, using the stan-

dard nick-translation procedure. After precipitat-

ing the DNA in the presence of Cot1 DNA (Gibco

BRL, Gaithersburg, MD, USA), the labeled DNA

mixture was hybridized to metaphase spreads on

a glass slide for 2–3 days. The slides were washed

and then counterstained with 4,6-diamidino-2-

phenylindole in an anti-fading solution.

Image acquisition, processing, and evaluation

were performed using a fluorescence microscope

(Olympus BX51, Tokyo, Japan) equipped with 

a Sensys charge-coupled device camera (Kodak

KAF 1400 chip; Photometrics, Tucson, AZ, USA),

which was controlled using the CytoVision im-

aging system (Applied Imaging, Santa Clara, CA,

USA). CIs were determined based on the cal-

culation of standard reference intervals using

CytoVision High-Resolution CGH software, by

which we stringently defined DNA losses or gains

as significant whenever the tumor profile and

the standard reference interval profile at 95%

confidence did not overlap.33 Short chromoso-

mal segments with a test-to-reference fluorescence

ratio > 1.5 were accepted as having high-level

amplification. In each experiment, a negative and

positive control with a known chromosomal gain

or loss was also included. The negative control

DNA was isolated from an individual with a nor-

mal karyotype. The positive control DNAs were

prepared from Epstein–Barr-virus-transformed

lymphoblastoid cell lines with either trisomy 21

(∼50 Mb) or an interstitial deletion of 2q23

(∼15 Mb).

For mathematical analyses, CIs were expressed

as losses, gains or high-level amplifications per

chromosomal arm. Assessment of the CIs with

high risk of metastasis was made by comparing

them with the CGH findings of the 25 primary

GISTs reported in our previous study.23 In the com-

parison between groups, we used Fisher’s exact

two-tailed test, the χ2 test, or the Mann–Whitney

U test. A value of p < 0.05 was considered statisti-

cally significant.

Results

As summarized in Table 1, the liver metastatic

GISTs were derived from the stomach of seven

patients (two female, five male), and from the

small intestine of six patients (two female, four

male). Patients’ age at the diagnosis of primary

GIST ranged from 38 to 70 years (female, 59–68

years; male, 38–70 years), with a mean of 58.8

years. Notably, synchronous detection of liver

metastasis at the initial diagnosis of the primary

GIST was more common in the cases of intes-

tinal origin (5/6, 83.3%) than in those of gastric

origin (2/7, 28.6%) (p = 0.048). The CGH results

disclosed that all liver metastases had a variable

number of CIs, involving 2–35 chromosomal

arms, as described in detail in Table 1. A detailed

description of the CIs of the primary gastric
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(n = 14) and intestinal (n = 11) GISTs reported 

in our previous study23 can be found in the

Progenetix database at http://130.60.44.174/

progenetix/P14730211/.

For the gastric group, the liver metastatic tumors

(n = 7) had CIs that involved 6–39 chromosomal

arms, with gains more prevalent than deletions.

The average number of chromosomal arms with

gain and deletions were 11.1 and 7.3, respectively.

However, the primary tumors (n = 14) reported

in our previous study23 had more deletions than

gains, with gains and deletions involving an 

Table 1. CIs detected in 13 liver metastatic GISTs using comparative genomic hybridization

Case Sex Age at Pri Dx of Mets* CIs

From stomach
1 M 38 38 +1q, +2pter-q12, +2q21-qter, −3p13-p24, −3q12-q24, +5 (5q21-q23), 

−6p24-q25, −9, +12, −14q11-q31, +15, −16q11-q23, +17, +19, +20p, +21

2 F 59 59 −1p31-p36.1, +1q42-qter, −2q21, +3p12, −10p12-p13, 10q21-q22, 
15q13-q24, +18q23

3 M 54 55 (1) −1p33-pter, +1p13-p21, +7q, +8, −9pter-q33, −10p13-q25, −11p15-q13, 
−11q21-q24, −13, −14, −15, +16p12-p13.2, +20q, +21, −22 

4 M 69 70 (1) −9p13-p23, +11p12-pter (11p15), −15q12-q15, −16q12-q22, 
+17q21-qter (17q24-q25), −22

5 F 59 61 (2) −1p, +1q, +2p, +2q33-qter, +3p21, +3p24, +3q21-q23, +3q27-qter, +4p16,
+5p13.3, −5q, +6p21-p22, −6q11-q21, +6q24-qter, +7, +8p, +8q21, 
−9p21-pter, +9q22-qter (9q34), −10, +11p15, +11p11.2-q13, +11q23-qter, 
+12p13, +12q11-q13, +12q23-qter, +13q32-qter, −14q12-q31, −15q11-q25, 
+16, +17, +18p11.2, +18q23, +19, +20, +21q22, −22q12

6 M 70 73 (3) −1p21-pter, +3q27-qter, +4p14-pter, −9p13-p23, +12q24.3, −14q11-q31, 
+17q24-q25, −20p11.2-12, +21, −22

7 M 51 58 (7) −1p, +1q21-q24, +1q31-qter, +3p21, +5q31, −4p14-pter, −6p, −7q32-qter, 
+9q34, +10p11.2, +10q26, +11p11-q13, +11q23, +12p, −12q15-q24.2, 
−13, −14q21-q22, +16p11.2, +16q21-qter, +17p12-q21, +17q24-qter, 
+19p (19p13.2-13.3), −19q12, +20, +21, −22

From small intestine
8 M 48 48 −1p, +1q, −2p12-pter, +2q21-q36, +3p12, +3q24-qter, +5p, −7q11.2, 

9, +7q31, +8q, +11p11.2-q13, +11q24-qter, −12p13, −13, +12q24.3, 
−15q11-q25, +16q11.2, +17q11.2, −18q11.2-q21, +18q22-qter, +19q, 
+20, −22q13

9 M 54 54 −14q11.2-q24, −15q11.2-q25

10 F 60 60 −1p13-p33, +2q23, +3q26-qter, +6p21-p23, −6q, +7p22, +8p12-p21, 
+8q242-qter, +9q34, +10p13-pter, +11p15, +11q12-q13, −12p13, 
+12p11.2-q13, +12q24.1-qter, +14q31-q32, −15q11.2-q25, 
+16p13.1-pter, +16q21-qter, +17, −18q11.2-q22, +19, −21q21

11 M 65 65 −1p, +1q31, +3p12, +4p, +5p12-p13, −6, +7q, +12q11.2-q23, −13, −14, 
−15q14-qter, +16p11.2, −18q, +20, −21, −22

12 F 68 68 −1p31-pter, −6q21-q22, −15q15-q25, −18q21, −22

13 M 69 73 (4) −1p31-p34.2, +3p12, +4p12-p14, +4q21-q31.1, +5p11-p14, −9q21-q22, 
+10p11.2, −11q13-q22, −15q14-q25, +16p11.2, +21q22

*Years between diagnosis of primary and metastatic GISTs in parentheses. Pri = primary GIST; Dx = diagnosis; Mets = metastatic GIST.
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average of 0.9 and 3.1 chromosomal arms, re-

spectively. The CIs detected in primary and liver

metastatic tumors are compared in Figure 1.

High-level amplification was not found in any of

the 14 primary tumors, but was detected in five

different sites in four samples of liver metastasis

(as underlined in Table 1 and indicated by broad

dark boxes in Figure 1).

With respect to the intestinal group, the liver

metastatic tumors (n = 6) had CIs that involved

2–26 chromosomal arms, with gains slightly

more common than deletions. The average num-

ber of chromosomal arms with gains and dele-

tions were 8.3 and 6.3, respectively. Similarly, 

for the primary tumors (n = 11) reported in our

previous study,23 gains were more common than

deletions, with gains and deletions involving an

average of 6.5 and 5.3 chromosomal arms, re-

spectively. The CIs detected in both primary and

liver metastatic tumors are compared in Figure 2.

No sample of primary or metastatic tumor

showed a chromosomal region with high-level

amplification.

Compared with the primary GISTs, the cumu-

lative CI profile of the liver metastases was very

similar to that of the intestinal group but not 

the gastric group (Figure 3). As indicated by the

dotted rectangle, 9p deletion seemed to be par-

ticularly more prevalent in the metastatic tumors

than in the primary intestinal GISTs. However,

from the detailed comparison of each group of

primary and metastatic GISTs (Table 2), it was

evident that 9p deletion was significantly more

prevalent in the metastatic tumor of the gastric

group than the intestinal group. Deletion of 14q

was the most common alteration in the primary

gastric GISTs, but did not become more preva-

lent in the metastatic lesions of either group.

Deletion of 22q, the second most common CI 

in the primary gastric GISTs, doubled in fre-

quency in the liver metastases of both groups,

with no significant difference. Deletions of 1p

and 15q were very common (> 80%) in both pri-

mary and metastatic tumors of the intestinal

group, and also exhibited a trend towards in-

crease in the metastatic tumors of the gastric

group. Most of the other common CIs listed in

Table 2 increased significantly in the liver metas-

tases of the gastric group but not the intestinal

group.

1 2 3 4 5 6

12

1716151413

2221201918

1110987

Figure 1. CGH profile of gastric GISTs, 
including 14 primary tumors (gray bars) 

and seven liver metastases (dark bars). Each
bar represents one tumor, with gains on the

right side and losses on the left side of the
ideogram of each chromosome. The broad 

dark boxes represent high-level amplification.



Discussion

The development and progression of cancer is

believed to involve a multistep genetic process,

with changes both at the molecular and cytoge-

netic level. While primary changes are important

for cellular transformation and tumor initiation,

secondary non-random changes accumulate at

later stages and are responsible for biological

tumor progression and dissemination.34 For

GISTs, mutually exclusive gain-of-function KIT

or PDGFRA mutations have been identified as

Comparative genomic hybridization changes associated with aggressive GIST
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22q
20q
19p
18q
17q
17p
15q
14q
13q
12q
11q

9q
9p

7
6q
1q
1p

Small intestine
(n = 11)

1.00 0.50 0.00 0.501.00 0.50

Stomach
(n = 14)

0.00

Liver metastases
(n = 13)

1.00 0.50 0.00 0.50

Figure 2. CGH profile of intestinal GISTs, 
including 11 primary tumors (gray bars) and 
six liver metastases (dark bars). Each bar 
represents one tumor, with gains on the 
right side and losses on the left side of the
ideogram of each chromosome.

Figure 3. Comparison of the CGH profile of primary GISTs (including 14 from the stomach and 11 from the small intes-
tine) and liver metastases. The dark bars on the left side of each group indicate the relative frequency of deletion of the
corresponding chromosome arm, and the gray bars on the right side are frequencies of chromosomal gains.



primary steps in tumorigenesis. Rare variant KIT

or PDGFRA mutations have also been found in

association with anatomic site and distinct clini-

cal phenotype in selected GIST subsets.7 However,

the mutational status alone cannot fully explain

the diverse and apparently site-dependent biol-

ogy of these tumors. Other non-random genetic

changes identified at the cytogenetic level may

eventually complete the picture.

Gunawan et al22 and the authors of the pres-

ent study23 have described a site-dependent het-

erogeneous CI profile in GISTs, which has been

confirmed in a recent CGH analysis of 203 sam-

ples.20 Overall, deletion of 14q was more fre-

quent in gastric GISTs, while deletions of 1p, 6q,

13q, 15q and 22q and gain of 5p occurred more

often in intestinal tumors. Such site-dependent

heterogeneity of the CGH pattern does not relate

to tumor genotypes of KIT and PDGFRA genes.21

In the present analysis of 13 cases, we noticed

that liver metastases present at the initial diagno-

sis of the primary tumor was more common for

the intestinal group (83.3%, 5/6) than for the

gastric group (28.6%, 2/7) (p = 0.048). Moreover,

as depicted in Figure 3, we noticed that the 

CI profiles between primary intestinal and liver

metastatic tumors were very similar. Such an as-

sociation suggests that the CIs that are particu-

larly prevalent in the intestinal GISTs might be

closely associated with the intrinsic aggressive

characteristics of the intestinal GISTs.7,17

As shown in Table 2, the comparative results

disclosed that deletions 1p and 15q were very

common in primary and metastatic GISTs of in-

testinal origin, with detection frequencies rang-

ing from 82% to 100%. For the gastric group,

these alterations also showed a similar trend to-

wards an increase in the metastatic tumors. The

lack of statistical significance for the gastric group

was likely the result of the small sample size in

our study. However, when combined with the

CGH findings of another large study of primary

gastric GISTs (n = 116) reported by Gunawan 

et al,20 we noticed that these two alterations were

Y. Chen, et al
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Table 2. Comparison of the frequencies of common CIs between primary and liver metastatic GISTs of gastric and intestinal
origin*

Stomach Small intestine

Primary (n = 14) Liver metastasis (n = 7) p Primary (n = 11) Liver metastasis (n = 6) p

Gains
1q42-q44 0 4 (57) 0.002 4 (36) 1 (17) NS
12q24.3 0 3 (43) 0.008 4 (36) 2 (33) NS
17p11.2-p12 1 (7) 3 (43) MS 2 (18) 1 (17) NS
17q24-q25 1 (7) 5 (71) 0.002 4 (36) 1 (17) NS
19p13 1 (7) 3 (43) MS 3 (27) 1 (17) NS
20p12 0 3 (43) 0.008 1 (9) 2 (33) NS
20q13.1 0 3 (43) 0.008 5 (45) 2 (33) NS
21q22 0 5 (71) < 0.001 1 (9) 1 (17) NS

Deletions
1p32-p34 5 (36) 5 (71) NS 11 (100) 5 (83) NS
9p21-p23 2 (14) 5 (71) 0.009 0 1 (17) NS
10p12-p13 0 3 (43) 0.008 1 (9) 0 NS
10q21-q22 0 3 (43) 0.008 2 (18) 0 NS
13q 0 2 (29) MS 4 (36) 2 (33) NS
14q 11 (78) 5 (71) NS 6 (55) 2 (33) NS
15q 2 (14) 4 (57) MS 9 (82) 6 (100) NS
22q 5 (36) 5 (71) NS 3 (27) 3 (50) NS

*Data presented as n (%). NS = no statistical significance; MS = marginal statistical significance, with p ranging from 0.035 to 0.049 (Fisher’s exact test).



significantly more prevalent in the liver metas-

tases than in the primary tumors of gastric ori-

gin, with p = 0.003 for 1p deletion (5/7 vs. 25/116)

and p < 0.001 for 15q deletion (4/7 vs. 9/116).

These findings indicate that deletions of 1p and

15q play an important role in the acquisition of

aggressiveness in the early stage of tumorigenesis

of intestinal GISTs. To the best of our knowledge,

the genes residing on 1p and 15q have not yet

been fully elucidated as potential candidates. An

interesting tumor-associated gene that maps to

1p36 is ENO1, also known as MYC promoter-

binding protein 1. The binding of ENO1 represses

MYC expression and prevents the stimulation of

cell proliferation.35

In the GISTs of gastric origin, the most com-

mon CI is 14q deletion, which showed a similar

frequency in the primary tumors (78%) and liver

metastases (71%). However, as depicted in Table

2, the alteration was present in only 55% (6/11)

and 33% (2/6), respectively, of the primary and

metastatic GISTs of intestinal origin. Hence, it is

unlikely to be associated with metastatic risk of

this disease. The next most prevalent CIs of pri-

mary gastric GISTs are deletions of 1p (36%),

which had doubled to 71% in liver metastases.

Compared with tumors of intestinal origin, in

contrast to 1p deletion with high prevalence, 22q

deletion also doubled from 27% to 50% in the

liver metastases at a relatively low rate. These

findings seemingly imply that 22q deletion also

plays a role, with less critical significance, in the

acquisition of aggressiveness by GISTs. This alter-

ation has been reported in association with high-

risk GISTs previously, including by our own

group,20,23,28,30 but was not seen in another pre-

vious study.26 Recently, Gunawan et al,20 based

on CGH analysis and long-term follow-up, pro-

posed three major cytogenetic pathways in GISTs,

one initiated by 14q deletion, one by 1p dele-

tion, and another by 22q deletion. They indi-

cated that 22q deletion appears to initiate the

critical transition to an unfavorable cytogenetic

sub-pathway, by accumulating gain of 8q and

deletions of 9p and 9q. However, in the current

study of 13 liver metastases, eight samples had

22q deletion, including five and three of gastric

and intestinal origin, respectively. Only three

samples had gain of 8q and/or deletions of 9p

and 9q.

Another alteration worthy of note is 9p dele-

tion, which is one of the CIs commonly reported

in association with high-risk GISTs.26,30,36,37 In the

study of El-Rifai et al26 of clinically malignant

GISTs, the authors found that three of five liver

metastatic GISTs (of unknown primary origin)

had 9p deletion. In a microsatellite analysis of

GISTs, Sabah et al37 demonstrated that the loss

of heterozygosity at 9p21 was a common finding

in high-risk (malignant or recurrent) tumors, but

was absent in those of low malignant potential.

However, as shown in Table 2, we found that the

association between 9p deletion and liver metas-

tasis is significant only in the gastric group but

not in the intestinal group. Similarly, Schneider-

Stock et al38 found that a high predictive value

for p16INK4 (mapped to 9p21) alterations is

only significant in the group of benign and bor-

derline GISTs with regard to the clinical outcome.

Recently, in another much larger series of 284 pri-

mary GISTs,39 they further pointed out that loss

of p16INK4 seemed to identify a subgroup of

gastric GISTs with a worse prognosis (p = 0.037),

whereas it had no additional value for predicting

prognosis in intestinal GISTs.

As depicted in Table 2, some other CIs, includ-

ing deletions of 10p, 10q and 13q and gains of

1q, 12q, 17p + q, 19p, 20p + q and 21, were signif-

icantly more prevalent in liver metastases than in

primary tumors of gastric origin. Some of these,

including 10q deletion and gains of 17q and 20q,

have been found more frequently in high-risk

and/or clinically malignant GISTs in previous

studies.23,26 However, we did not discern a trend

towards similar increases of these CIs in the liver

metastases that arose from intestinal GISTs. There-

fore, it indicates that a role for these alterations for

the acquisition of aggressiveness during the early

stage of GIST progression is unlikely to be as criti-

cal as that of deletions of 1p, 15q, 22q and 9p.

In conclusion, among the common CIs, dele-

tions of 1q and 15q play an important role in 
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the acquisition of aggressiveness during the early

stage of GIST development. Deletion of 22q

plays a similar role with less critical significance.

Finally, 9p deletion is significant for the gastric

GISTs, but not in those arising from the small 

intestine.
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