
Available online at www.sciencedirect.com

Journal of Computational and Applied Mathematics 168 (2004) 255–265
www.elsevier.com/locate/cam

Application of genetic algorithms to lubrication
pump stacking design

V. Kelner∗, O. L+eonard

Turbomachinery Group, University of Li�ege, Chemin des Chevreuils 1, 4000 Li�ege, Belgium

Received 26 September 2002; received in revised form 27 May 2003

Abstract

Sizing a pump stacking used in an aircraft lubrication system is a challenging task. The combination of
several pumps, in parallel and in a single casing, must deliver speci4ed oil 5ow rates, on a variable number
of circuits, and under given 5ight conditions. Furthermore, the optimal assembly has to minimize overall
dimensions, weight and cost. This optimization problem involves a large space search, continuous and discrete
variables and multi-objectives. Genetic Algorithms (GA)—stochastic search methods that mimic the metaphor
of natural biological evolution—seem well suited to solve that kind of problems. A new GA is proposed. The
e;ciency of this GA is 4rst demonstrated in solving various mathematical test-cases and then applied to the
industrial problem.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Multiobjective optimization; Constrained optimization; Mixed variables; Genetic algorithms; Optimal design;
Aircraft lubrication

1. Mathematical statement of the optimal sizing problem

The aircraft lubrication system provides lubrication and cooling for all gears and bearings of the
engine [15]. Generally, positive displacement pumps, such as Gerotor (Fig. 1) or gear pumps, are
used both as pressure pumps (distribution of oil to all the lubricated parts) and scanvenge (return
oil) pumps [4]. These pumps are incorporated in a common casing and must deliver speci4ed oil
5ow rates under various 5ight conditions.

∗ Corresponding author.
E-mail address: v.kelner@ulg.ac.be (V. Kelner).

0377-0427/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2003.05.022

mailto:v.kelner@ulg.ac.be


256 V. Kelner, O. L(eonard / Journal of Computational and Applied Mathematics 168 (2004) 255–265

Fig. 1. Gerotor pump stacking.

In mathematical terms, the optimal sizing problem may be de4ned as 4nding x̃∗ that minimizes

f̃(̃x) = [f1(̃x); : : : ; fnof (̃x)]T (1)

with

x̃ = [x1; : : : ; xnx ]
T (2)

subject to

h̃(̃x) = [h1(̃x); : : : ; hnh (̃x)]T = 0̃; (3)

g̃(̃x) = [g1(̃x); : : : ; gng (̃x)]T6 0̃: (4)

In this study, np pumps, driven by a unique shaft (Fig. 1), and nfc 5ight conditions are considered.
The design variables can be expressed as

x̃= [H̃ gr ; D̃gr ; Ñ t ; M̃ gr]T

= [H 1
gr ; : : : ; H

np
gr ; D1

gr ; : : : ; D
np
gr ; N 1

t ; : : : ; N
np
t ; M

1
gr ; : : : ; M

np
gr ]T; (5)

where Hjgr, D
j
gr, N

j
t and Mjgr, respectively, denote the thickness, the diameter, the number of teeth in

the inner rotor and the multiplicity of the jth Gerotor pump in the stacking.
As the pumps have to be chosen in a catalog, D̃gr and Ñ t have discrete components in addition

to M̃ gr. On the other hand, H̃ gr is a set of continuous parameters.
According to the end-user, the three following constraints have to be satis4ed:

• the pressure pump (identi4ed by the upper script j = 1) must have a six teeth inner rotor

N 1
t = 6; (6)

• the thickness of each Gerotor must be in a de4ned range

H̃min
gr 6 H̃ gr 6 H̃max

gr ; (7)



V. Kelner, O. L(eonard / Journal of Computational and Applied Mathematics 168 (2004) 255–265 257

• each pump, for each 5ight condition, must deliver a speci4ed minimum oil 5ow rate

qi; jmin6M
j
grq
i; j
gr ; i = 1; : : : ; nfc j = 1; : : : ; np: (8)

The optimal stacking has to minimize overall dimensions, weight and cost. This can be achieved by
simultaneously minimizing the three following objective functions:

• the number of stacked Gerotor

Ns =
np∑
j=1

Mjgr ; (9)

• the height of the stacking

Hs =
np∑
j=1

MjgrH
j
gr ; (10)

• the volume of the stacking

Vs =
np∑
j=1

MjgrH
j
gr
�(Djgr)2

4
: (11)

This optimization problem clearly involves a large space search, mixed (continuous and discrete)
variables and multi-objectives. Traditional 4rst-order optimization methods based on the knowledge
of the Jacobian could not be used. The industrial partner attempted to solve the problem with an
expert system, but with a limited success and at the cost of a prohibitive computational eHort.

2. Genetic algorithms

Genetic algorithms (GAs), 4rst developed by Holland [9], are zero order search methods that
mimic the Darwins’s principles of natural selection and survival of the 4ttest. GAs work with
arti4cial populations of individuals that represent candidate solutions and, in spite of their diversity,
all GAs are based on the same iterative procedure [7] (Fig. 2).

Each item in Fig. 2 will be brie5y presented hereafter, as well as their implementation in our
GAGERO (Genetic Algorithm for GERotor Optimization).

Initialization Evaluation Selection Crossover Mutation

Stopping 
Criterion

End

Fig. 2. Standard GA 5owchart.



258 V. Kelner, O. L(eonard / Journal of Computational and Applied Mathematics 168 (2004) 255–265

2.1. Basic mechanics of GAs

Initialization creates an initial population of Npop by random. These candidate solutions are a set
of chromosomes or strings of characters (letters and/or numbers) that represent the 4rst potential
solutions of the problem. To overcome the major drawbacks of a classical binary coding (huge string
length, discrepancy between the binary and the real design space), a real-valued representation has
been chosen.

During evaluation, the 4tness of each candidate solution is computed by objective values.
Selection [1,8] is the process in which the 4ttest individuals are selected and reproduced (once

or more) to create a new mating pool of Npop parents. Two traditional selection schemes have been
implemented in our code:

• Ranking selection [2]: the population is sorted from best (rank R= 1) to worst (R= Npop). Then
a linear selection probability ps is computed for each individual by

ps(i) =
1
Npop

[
Sp − 2(Sp − 1)

R(i)
Npop

]
; (12)

where Sp (selection pressure) is a user speci4ed parameter (Sp ∈ [1; 2]). Afterwards this probability
distribution is sampled by a biased roulette wheel.

• Tournament selection: Ntour individuals are randomly selected in the population. The best one is
reproduced in the new mating pool. The process is repeated Npop times with reintegration of the
winner in the population.

Crossover [13] provides the search mechanism of the GA. It generates children (new solutions)
by exchanging features of the previously selected parents. Two traditional schemes have been im-
plemented in our code:

• Blended crossover (BLX-�) [5] is applied to the continuous variables: parents P̃1, P̃2 give birth
to children C̃1, C̃2 according to

C̃1 = �P̃1 + (1 − �)P̃2 (13)

C̃2 = (1 − �)P̃1 + �P̃2 (14)

with

�= (1 + 2�)u− �; (15)

where u is a random number in [1,2] and � is user-speci4ed parameter.
• One-point crosser is used for the discrete part of the chromosome: the vector components of two

parents are simply swapped in groups at a random position.

Mutation [13] randomly alters some individual’s genes. In our application, mutation is only applied
to the discrete variables.



V. Kelner, O. L(eonard / Journal of Computational and Applied Mathematics 168 (2004) 255–265 259

2.2. GAs and multi-objective constrained optimization problems

As stated by Eqs. (1)–(4), a multi-objective optimization problem (MOP) can be viewed as the
problem of 4nding—from among the set F of all solutions which satisfy (3) and (4)—the particular
set x̃∗ which yields the optimum values of all the objective functions [3].

However, in a MOP, there is rarely a single point that simultaneously optimizes all the objective
functions, and therefore, the notion of “optimum” is quite diHerent.

When dealing with MOP, the commonly adopted notion of optimality is the one proposed by
Pareto [12]: a vector of decision variables x̃∗ is Pareto optimal if there does not exist another x̃∈F
such that fi (̃x)6fi (̃x∗) for all i = 1; : : : ; nof and fj (̃x)¡fj (̃x∗) for at least one j.

According to this de4nition, a MOP has no unique solution, but rather a set of compromised
solutions (called the Pareto front): these so called nondominated solutions are the ones for which
the value of any objective functions cannot be improved without deteriorating at least one of the
others.

A usual way to solve a MOP is to reduce it into a classical single objective problem through an
aggregating method (weighted sum, goal programming, weighted min–max, etc.) [3].

For example, in a weighted sum approach, the objective function is given by

�(̃x) =
nfo∑
k=1

wkfk (̃x); (16)

where wk¿ 0 are the weighting coe;cients representing the relative importance of the objectives
fk (̃x).

The major drawback of these aggregating techniques is that the obtained solution corresponds to
only one point of the Pareto front, depending on the arbitrary choice of the weights. Moreover,
there is no guarantee that the non dominated solutions are uniformly distributed on the Pareto
front.

On the contrary, GAs, working with a population of candidate solutions, are able to approximate
the Pareto front in a single run. Furthermore, they are less susceptible to the shape or continuity of
the Pareto front (they can approximate concave or noncontinuous Pareto front).

These advantages have made them very popular to solve unconstrained MOPs and numerous
Pareto based approaches (MOGA, NSGA, NPGA, etc.) have been proposed and compared in the
literature [3,16].

When the optimization problem involves constraints, the classical approach is to use a penalization
method. In this technique, a new objective function is simply de4ned by adding a (static, dynamic
or adaptive) penalty to each unfeasible solutions.

For example, in the dynamic penalty approach [10], the new objective is given by

�′(̃x) = �(̃x) + (C · t)�
∑
gj¿0

[gj (̃x)]!; (17)

where t is the generation number; C, � and ! are the parameters of the method; and � is the
objective function of the unconstrained problem.

The penalization techniques are very popular because they can be implemented without signi4cant
modi4cation of the standard genetic algorithm. However, to be e;cient, they require an adequate



260 V. Kelner, O. L(eonard / Journal of Computational and Applied Mathematics 168 (2004) 255–265

Initialization

Constraints evaluation

Feasible
yes no

Compute objective functions Compute penalty term

Ranking: MOGA

Selection: penalized tournament

Crossover

Mutation

Stopping 
criterion

End

Fig. 3. GAGERO 5owchart.

“tuning” of the parameters. Another major drawback of these methods is that they lead to consider
once again a single objective approach: in the case of a MOP, the objective function � in Eq. (17)
has to be computed through an aggregating method.

We propose here an original approach to take into account simultaneously the multiobjective and
constrained aspects of the optimization problem.

In our application (Fig. 3), the constraints are 4rstly evaluated for each individual. On the one
hand, the feasible solutions are ranked according to the MOGA algorithm [6]. This scheme (Fig. 4)



V. Kelner, O. L(eonard / Journal of Computational and Applied Mathematics 168 (2004) 255–265 261

f2

f1

1

1

1

1

2

2

3

3

5

5

Fig. 4. Example of the MOGA ranking procedure with two objectives functions which have to be minimized.

consists in evaluating the individual’s rank by

R(i) = 1 + p(i); (18)

where p(i) denotes the number of (feasible) solutions in the current population by which the indi-
vidual is dominated.

On the other hand, each infeasible solution receives a penalty 4tness computed by

Rconst =
∑
gj¿0

gj (̃x): (19)

At last, a selection, based on a “penalized tournament”, is applied. It consists of randomly choosing
and comparing the (generally two) individuals:

• if they are all feasible, the best ranked element wins,
• if they are all infeasible, the one having the lower Rconst value wins,
• if one is feasible and the others are infeasible, the feasible individual wins.

The major advantage of this method is that the computation of the objective functions and the
ranking procedure are performed only for the feasible solutions. Furthermore, this Pareto based
technique can approximate the Pareto front in a single run. Moreover, with this approach, the user
does not need to choose any explicit penalty parameter.

3. Mathematical test-cases

GAGERO has been tested on many mathematical problems. Two relevant test-cases proposed by
Poloni are presented here.



262 V. Kelner, O. L(eonard / Journal of Computational and Applied Mathematics 168 (2004) 255–265

The 4rst test-case (TC1) [14] is a maximization of a two objective functions de4ned by

f1(x1; x2) = −[1 + (A1 − B1)2 + (A2 − B2)2] (20)

f2(x1; x2) = −[1 + (x1 + 3)2 + (x2 + 1)2] (21)

with

x1; x2 ∈ [ − �;+�]; (22)

Ai =
2∑
j=1

aij sin(�j) + bij cos(�j); (23)

Bi =
2∑
j=1

aij sin(!j) + bij cos(!j); (24)

a=

[
0:5 1:0

1:5 2:0

]
; (25)

b=

[−2:0 −1:5

−1:0 −0:5

]
; (26)

�= [1:0 2:0]; (27)

! = [x1 x2]: (28)

The second test-case (TC2) proposed by Poloni [14] is an extension of the previous one where two
constraints given by

(x1 − 2)2 + (x2 − 2)26 9; (29)

(x1 + 2)2 + (x2 + 2)2¿ 9 (30)

have also to be satis4ed.

3.1. Results

The parameters used in the algorithm are summarized hereafter:

• Npop: population size—set to 576.
• Sp: selection pressure—set to 2.
• &: the GA is stopped when the diHerence between the objective function of the best and the worst

individual in the population is lower or equal to this parameter—not used for Poloni’s test cases.
• Gmax: maximum number of allowed generations—set to 250.



V. Kelner, O. L(eonard / Journal of Computational and Applied Mathematics 168 (2004) 255–265 263

-70 -60 -50 -40 -30 -20 -10 0
-60

-50

-40

-30

-20

-10

0

F1

F
2

Fig. 5. Pareto front for TC1.

-35 -30 -25 -20 -15 -10 -5 0
-60

-50

-40

-30

-20

-10

0

F1

F
2

Fig. 6. Pareto front for TC2.

Figs. 5 and 6 show the Pareto fronts for the test-cases TC1 and TC2, respectively. GAGERO has
clearly identi4ed the set of non dominated solutions.

Moreover, the concave and discrete parts of the Pareto fronts have been uniformly approximated.

4. An industrial application

GAGERO has been applied to a real problem proposed by the industrial partner i.e., optimizing
a lubrication pump stacking as described in Section 1.

The values for the discrete variables, such as the three diHerent 5ight operating conditions and
the 4ve considered Gerotor pumps can be found in [11].



264 V. Kelner, O. L(eonard / Journal of Computational and Applied Mathematics 168 (2004) 255–265

Table 1
Examples of optimal stacking

Pump (n◦) Optimal stacking “1 Optimal stacking “2

Hgr (mm) Dgr (mm) Nt Mgr Hgr (mm) Dgr (mm) Nt Mgr

1 6.159 80.0 6 2 5.951 80.0 6 2
2 10.454 80.0 4 1 5.670 80.0 4 2
3 7.252 80.0 4 1 7.019 80.0 4 1
4 8.770 80.0 6 1 7.014 80.0 4 1
5 5.634 80.0 6 1 7.640 63.0 6 1

Various combinations of Gerotor pumps have been proposed by GAGERO.
Table 1 provide two examples of optimal stacking among the seven found by the code.
The results have been obtained after 20 iterations and with a initial population of 500 individuals.
This computation has been performed on a 600 MHz—256 Mb RAM—Pentium III and the CPU

time was about 160 s.

5. Conclusions

A genetic algorithm (GA) has been developed based on a real coding that can easily deal with
mixed (discrete and continuous) variables. This GA is able to solve eHectively multiobjective and
constrained optimization problems, through an original approach which combines MOGA and a
penalized tournament selection scheme. This approach is very eHective when most of the initial
candidate solutions violate the constraints, as it is usually the case after a random exploration of the
design space.

Results provided by GAGERO were obtained within a few minutes and have shown to be at least
as good as those resulting from the experience of the industrial partner—and a laborious procedure
of trials and errors.

GAGERO and its Pareto strategy is now being compared to other zero order optimization tools
which reduce the multi-objective aspects of the problems into a single-objective via a weighted
combination.

GAGERO has been extended to binary coding and was successfully applied to the problem of
Pump Scheduling, i.e., 4nding the best strategy to use a number of pumps supplying water to a
variable demand, while minimizing the energy consumption and the number of on–oH switchs.

Acknowledgements

This work was funded by the R+egion Wallonne (RW) and the Fonds Social Europen (FSE) in
the framework of a First Europe Program (project 991/4329). The authors would like to thank the
industrial partner (Techspace Aero - Snecma Group) for providing the pump performance code and
useful data.



V. Kelner, O. L(eonard / Journal of Computational and Applied Mathematics 168 (2004) 255–265 265

References

[1] T. BTack, F. HoHmeister, Extended selection mechanisms in genetic algorithms, in: R. Belew, L. Booker (Eds.),
Proceedings of the Fourth International Conference on Genetic Algorithms and their Applications, Morgan Kaufmann
Publishers, San Mateo, CA, 1991, pp. 92–99.

[2] J. Baker, Adaptive selection methods for genetic algorithms, in: J. Grefenstette (Ed.), Proceedings of the First
International Conference on Genetic Algorithm and their Applications, Lawrence Erlbaum Associates, Hillsdale, NJ,
1985, pp. 101–111.

[3] C. Coello, A comprehensive survey of evolutionary-based multiobjective optimization techniques, Knowledge Inform.
Systems 1 (3) (1999) 269–308.

[4] T. Dickenson, Pumping Manual, 9th Edition, Elsevier Advanced Technology, 1995, ISBN 1 85617215 5.
[5] L. Eshelman, S. SchaHer, Real-coded genetic algorithms and interval schemata, in: L. Whitley (Ed.), Foundations

of Genetic Algorithms, Vol. 2, Morgan Kaufmann Publishers, San Mateo, CA, 1993, pp. 187–202.
[6] C. Fonseca, Multiobjective genetic algorithms with application to control engineering problems, Ph.D. Thesis,

University of She;eld, 1995.
[7] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Publishing

Company Inc., Reading, MA, 1989.
[8] D. Goldberg, K. Deb, A comparative analysis of selection scheme used in genetic algorithms, in: G. Rawlins (Ed.),

Foundations of Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, CA, 1991, pp. 69–93.
[9] J. Holland, Adaptation in Natural and Arti4cial Systems, The University of Michigan Press, Ann Arbor, 1975.

[10] J. Joines, C. Houck, On the use of non-stationary penalty functions to solve nonlinear constrained optimization
problems with GAs, in: Proceedings of the First IEEE International Conference on Evolutionary Computation, IEEE
Press, New York, 1994, pp. 579–584.

[11] V. Kelner, Etude de l’ad+equation optimale Va un ensemble de sp+eci4cations d’un empilement de pompes travaillant
en parallVele, Rapport technique Convention RW 991/4329, Universit+e de LiVege, D+ecembre 2001.

[12] V. Pareto, Cours d’+economie politique, F. Rouge, Lausanne, 1896.
[13] H. Pohlheim, Geatbx: Genetic and evolutionary algorithm toolbox for use with matlab,

http://www.systemtechnik.tu-ilmenau.de/∼pohlheim/GA Toolbox.
[14] C. Poloni, Multi-criteria optimisation, constraint handling with GAs, in: Lecture Series 2000-07: Genetic Algorithms

for Optimisation in Aeronautics and Turbomachinery, von Karman Institute, 2000.
[15] Rolls-Royce, The Jet Engine, Lubrication, 1999, pp. 73–83 (Chapter 8).
[16] D. Van Veldhuizen, Multiobjective evolutionary algorithms: classi4cations, analyses, and new innovations, Ph.D.

Thesis, Department of Electrical and Computer Engineering, Graduate School of Engineering. Air Force Institute of
Technology, Wright-Patterson AFB, OH, May 1999.

http://www.systemtechnik.tu-ilmenau.de/~pohlheim/GA_Toolbox

	Application of genetic algorithms to lubricationpump stacking design
	Mathematical statement of the optimal sizing problem
	Genetic algorithms
	Basic mechanics of GAs
	GAs and multi-objective constrained optimization problems

	Mathematical test-cases
	Results

	An industrial application
	Conclusions
	Acknowledgements
	References


