10.4 ± 10.6%, respectively. Procedural success was 99%. Coronary dissections occurred in 14.7% and bailout BMS was required in 13 patients (11.9%). Mean follow-up was 7.5 months; follow-up rate was 99%. Cumulative MACE at follow-up was 8.7%, with 1% all-cause death, 1% myocardial infarction, 6.9% overall target vessel revascularization; of which 2.9% was target lesion revascularizations, and no vessel thrombosis. Angiographic follow-up of a subset of patients (n=26) demonstrated late lumen loss of 0.30 ± 0.36 mm and 0.33 ± 0.37 mm for the in-DB and in-segment analyses, respectively.

Conclusions: The Valentines II trial demonstrated the safety and efficacy of second-generation DIOR DCB as adjunct to POBA in an all-comer population with de novo coronary lesions. This approach achieved high procedural success with acceptable rates of bailout stenting and low MACE rates at mid-term follow-up, and offers an attractive alternative for revascularization of patients who are not good candidates.

TCT-588
Cost-effectiveness of paclitaxel-coated balloon angioplasty for treatment of coronary restenosis in bare-metal stents
Klaus Bonaventura1, Alexander Leber1, Christian Sohn1, Mattias Röser1, Leif-Hendrik Boldt1, Wilhelm Havenkamp1, Marc Dorenkamp6
1Klinikum Ernst von Bergmann, Potsdam, Germany, 2Sunnybrook Health Science Centre, Toronto, Ontario, 3Heart Center, Georg-August-University of Göttingen, Göttingen, Germany, 4Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany

Background: In-stent restenosis (ISR) is a persistent problem limiting the long-term success of percutaneous coronary intervention. Recent studies have demonstrated safety and efficacy of drug-eluting balloon (DEB) angioplasty for the treatment of coronary ISR. The cost-effectiveness of this practice is unknown.

Methods: A Markov state-transition decision analytic model was used to assess the comparative cost-effectiveness of two common treatment strategies for bare-metal stent (BMS) ISR: (1) a strategy involving paclitaxel-eluting DES (drug-eluting stent) versus paclitaxel-eluting balloon angioplasty (SeQuent Please). The model accounted for varying procedural efficacy, complication rates, and cost estimates. Data on procedural outcomes associated with both treatment strategies were derived from the literature, and the cost and QALYs were extrapolated from German health-care perspective. Effectiveness was expressed as life-years gained. Cost-effectiveness was calculated by dividing the difference in mean costs by the difference in effectiveness.

Results: In the base-case analysis, initial procedure costs amounted to $4,497.27 for DEB angioplasty and to $4,128.81 for DES implantation. Over a 12-month time horizon, the DES strategy was found to be less costly ($5,154.47 versus $6,619.98) and slightly more effective in terms of life expectancy (0.983 versus 0.976 years) than the DES strategy. Extensive sensitivity analyses indicated that, in comparison with DES implantation, the cost advantage of the DES strategy was robust to clinically plausible variations in the values of key model input parameters. The variables with the greatest impact on base case Results were the duration of dual antiplatelet therapy after DEB angioplasty, the use of generic clopidogrel, and variations in the costs associated with the DEB device.

Conclusions: DEB angioplasty is a cost-effective treatment option for coronary BMS-ISR. The higher initial costs of DEB are more than offset by later cost savings—predominantly as a result of reduced medication costs. DEB angioplasty can be regarded as one of the rare innovative medical interventions that are cost-saving at equal or even increased effectiveness.

TCT-589
Reaching Further in the Treatment of Calcified Small Vessel Disease - is Rota-DEB an Option?
Paula Mota1, Rita Calé1, Helder Pereira1, Manuel Almeida1, Mário Camacho1, Ernesto Pereira1, Marco Costa2, Rui Teles1, Cristina Martins3, José Baptista3, Hugo Vinhas2, Doniz Martins2, Antonio Leitão-Marques2
1Cardiovascular Intervention Unit, Coimbra, Portugal, 2Hospital Garcia de Orta, Almada, Portugal, 3Hospital of Santa Cruz, CHLO, Carnaxide, Portugal

Background: In spite of the all technological developments that have taken place in coronary artery disease treatment, small diffusely calcified vessels are yet challenging. Rotational atherectomy (ROTA) has a undisputed role in the debulking of severely calcified arteries, followed by drug eluting stent implantation for best long term Results. There are cases, however, where delivering a stent proves to be impossible or inappropriate. In such cases, however, where delivering a stent proves to be impossible or inappropriate.

Methods: All data on pts submitted to rotablation is prospectively collected in a database. From November 2004 to December 2011, 159 consecutive lesions who underwent revascularization for recurrent after DES and CTO (Canadian Taskforce) were involved in this study [77 treated with PEB and 82 treated with controlled (BMS) balloon angioplasty (BA)]. Follow-up anagrogram was obtained 6 months after the procedure. We compared characteristics of patients and lesions between the two groups (PEB vs BA group).

Results: No significant differences were observed in clinical characteristics between the two groups. Angiographic characteristics before the procedure were similar between the two groups (Reference diameter: 3.07 ± 0.56 mm vs 3.07 ± 0.55 mm, p = 0.9; Lesion length: 18.0 ± 15.0 mm vs 15.0 ± 11.7 mm, p = 0.1; Minimal lumen diameter: 0.85 ± 0.53 mm vs 0.95 ± 0.58 mm, p = 0.3). Acute gain was also similar between the two groups (1.33 ± 0.69 mm vs 1.26 ± 0.68mm, p = 0.8). At the 6-month angiographic follow-up (follow-up rate: 94%), the incidence of recurrent restenosis (29.2% vs 59.7%, p = 0.0003) and target lesion revascularization (23.6% vs 40.3%, p = 0.036) was significantly lower in the PEB group than in the BA group. Late lumen loss was significantly lower in the PEB group than in the BA group (0.46 ± 0.63 mm vs 0.82 ± 0.73 mm, p = 0.0017).

Conclusions: In patients with recurrent restenosis after DES implantation for in-stent restenosis(stent in stent lesions), PEB provided much better clinical, angiographic outcomes than conventional BA.

TCT-590
Efficacy of Paclitaxel-eluting Balloon Catheter in Patients with Recurrences after Drug-eluting Stent Implantation for In-stent Restenosis
Seiji Habara1, Kazuhide Kadota1, Taihei Ichinose1, Masatomo Ozaki1, Shunsuke Kubo1, Yasutake Hyodo1, Koshi Miyake1, Naoki Saito1, Suguru Otsubo1, Hideo Kazuyo1, Daiji Hashigawa1, Yohitaka Shigemoto1, Takeshi Tada2, Hiroyuki Tanaka1, Yasushi Fukai1, Tsuyoshi Goto1, Kazuaki Mitsuoda1, Kurashiki Central Hospital, Kurashiki, Japan

Background: The efficacy of paclitaxel-eluting balloon (PEB) for in-stent restenosis lesions is proven; however, its efficacy for recurrences after drug-eluting stent (DES) implantation in the in-stent restenosis lesion is still unclear. The aim of this study was to investigate the efficacy of PEB in patients with recurrences after DES implantation for in-stent restenosis.

Methods: From November 2004 to December 2011, 159 consecutive lesions who underwent revascularization for recurrences after DES implantation for in-stent restenosis were involved in this study [77 treated with PEB and 82 treated with controlled (BMS) balloon angioplasty (BA)]. Follow-up anagrogram was obtained 6 months after the procedure. We compared characteristics of patients and lesions between the two groups (PEB vs BA group).

Results: No significant differences were observed in clinical characteristics between the two groups. Angiographic characteristics before the procedure were similar between the two groups (Reference diameter: 3.07 ± 0.56 mm vs 3.07 ± 0.55 mm, p = 0.9; Lesion length: 18.0 ± 15.0 mm vs 15.0 ± 11.7 mm, p = 0.1; Minimal lumen diameter: 0.85 ± 0.53 mm vs 0.95 ± 0.58 mm, p = 0.3). Acute gain was also similar between the two groups (1.33 ± 0.69 mm vs 1.26 ± 0.68 mm, p = 0.8). At the 6-month angiographic follow-up (follow-up rate: 94%), the incidence of recurrent restenosis (29.2% vs 59.7%, p = 0.0003) and target lesion revascularization (23.6% vs 40.3%, p = 0.036) was significantly lower in the PEB group than in the BA group. Late lumen loss was significantly lower in the PEB group than in the BA group (0.46 ± 0.63 mm vs 0.82 ± 0.73 mm, p = 0.0017).

Conclusions: In patients with recurrent restenosis after DES implantation for in-stent restenosis(stent in stent lesions), PEB provided much better clinical, angiographic outcomes than conventional BA.

TCT-591
Biological Efficacy and Vessel Healing of Second Generation Paclitaxel Coated Balloons: A Comparative Study with the original PACCOCATH Technology in the Ilio-Femoral In-Stent Restenosis Model in the Familial Hypercholesterolemic Swine
Piotr Buszman1, Armando Tellez1, Maxwell Afari1, Jenn McGregor1, Juan Granada1, Piotr Buszman1, Maxwell Afari1, Maxwelly Afari1, Jennifer McGregor1, Juan Granada1
1Cardiovascular Research Foundation, Orangeburg, NY, 2Alizee Pathology, LLC, Thurmont, MD

Background: In comparison to the original PACCOCATH formulation, second generation PCB have improved coating uniformity and decreased drug content variability by modifying coating Methods and processes. In this study, we intended to evaluate the biological and vessel healing response of 2nd generation PCB in comparison to a 1st generation balloons technologies containing identical coating formulation and drug concentration.

Methods: A total of 18 Ilio-Femoral arterial segments of 8 FHS were included in the study. At baseline overstretched balloon injury followed by self-expanding BMS implantation was performed. Two weeks following initial injury, all stents were randomized to either a 2nd gen. PCB (n=6, Cotavance V2, Medrad), 1st gen. PCB (n=6, PACCOCATH, Medrad) or POBA (n=6, control group). Imaging evaluation (QVA, IVUS) was conducted in all animals at baseline, treatment time (2 weeks) and 28 days following treatment. At termination, stented segments were harvested for histopathological evaluation.

Results: At last follow up angiographic %DS was significantly reduced in both generations of PCBs when compared to controls (2nd Gen PCB: 11.0% vs. POBA: 46.5 ±10.9%, p = 0.001). These findings were confirmed by histopathological analysis (see table) displaying an ~35% reduction of %AS and neointimal thickness in both PCB groups. Vessel healing defined as fibrin deposition, neointimal maturity and medial cell loss scores was significantly improved in 2nd Gen PCB when compared to 1st Gen PCB. Endothelialization was completed in all three groups.