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The existence of delay in the FitzHugh-Nagumo equation was proved by J. Su.
It is shown that an explicit duck solution and delay exist in this equation under cer-
tain conditions with respect to the coefficients by using the E. Benoit’s criterion.
© 1997 Academic Press

Key Words: FitzHugh—-Nagumo equation, constrained systems, delayed phe-
nomena, duck solutions.

1. INTRODUCTION

In the early 1960s, FitzHugh [5] and Nagumo et al. [ 7] proposed sim-
plified systems which contain the main qualitative features of the original
Hodgkin—Huxley system [ 6] in 1952. These systems describe the generation
and propagation of the nerve impulse along the giant axon of the squid. The
above systems, so-called the FitzHugh-Nagumo (FHN) equations for the
space clamped segment of the axon, have the autonomous form

dv/dt = —p(v)—w+1, L1
{dw/dtzb(vyw), p(v)=v(v—1)(v—a), (L1)
where 0 <a<1/2, b and y are positive constants. Here v(z) denotes the
potential difference at the time ¢ across the membrane of the axon and w(¢)
represents a recovery current which is often taken to be the sum of all ion
flows [6]. Furthermore, I is an injected electric current on the membrane.
It is a control or bifurcation parameter. The first of (1.1) expresses
Kirchhoff’s law applied to the membrane; the second relates the recovery
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current with the potential. From biophysical considerations, it is reasonable
to restrict y so that

y=1ly—(l—a+a*/3>0, (1.2a)
y,=(1—a+a*/3—by>0. (1.2b)

FitzHugh [5] and Baer et al. [2] have pointed out that the coefficient b
in the FHN equation is a very small constant. Some authors [ 13—15] have
put b =e¢ directly in this equation.

Taking account of this fact, we put

b=ce, (L.3)

where ¢ >0 is a very small constant.

In addition, putting /= I, + &t, the equation is newly formulated. Here /,
is a constant.

The reason for putting these conditions is the following.

We consider the relation between b and ¢ in the formula I=1,+ et.
Strictly speaking, we may put b=ce, and I=1,+¢,t. The point is that
whether we should consider ¢, and &, are independent or not. In the
asymptotic expansion for the solution, Baer etz al. [2] have considered ¢,
and ¢, are dependent each other (¢ = O(5*?)) in Section 2 and 4. They also
have referred to e= O(b) and obtained some results though they have not
stated the existence of duck solutions. In this background, we also assume
that ¢, and ¢, are dependent each other and form the simplest assumption
&, =&, =¢. We think that we will deal with some important cases of the
FHN equation.

As the bifurcation parameter [ varies very slowly and b satisfies (1.3), the
system (1.1) becomes the non-autonomous form

{8 dv/dl = —p(v) —w+1,

dw/dl = c(v —yw). (14)

Furthermore, by changing the coordinates, the system (1.4) becomes the
following autonomous form,

dX/di=1,
dY/dl = c(Z —yY), (1.5)
dZjdl=(—p(Z)— Y + X)/e,

where the conditions in (1.1) and (1.2) are still satisfied. In 1983, Benoit
[3] proved the existence of a duck solution under the condition that
“a pseudo singular point is a saddle point,” see Section 3. In the following
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sections, it will be seen that the system (1.5) has a duck solution and delay
by using the results of Benoit.

2. DELAYED PHENOMENA IN THE FHN EQUATION

In the system (1.1), if the current 7 is kept constant, (1.2a) ensures that
the system (1.1) has a unique steady state solution (vy(7), wo(Z)). This solu-
tion called the frame solution is determined by the equation

_(=plo)—w\ (=1
F(v, w)—< bo— by >—< 0 > (2.1)

The frame solution (vy(1), wy(I)) is uniquely determined by the bifurcation
parameter /, since F in (2.1) is difftomorphic. Its components v,(/) and
wo(1) increase as I increases.

The linearized system of (1.1) for the frame solution is

dvjdt = —p'(vo(I)) v —w,

"(v)=dp/d 22

{dw/dt =bv — byw, p'(v) =dpldv, (22)

where v=v—uvy(I), w=w—wy(I). The stability of the frame solution is
determined by the two eigenvalues of the Jacobian matrix

_[—r' (D) —1
(P 1y 23

There exist /_ and 7,, where I_<(a+1)/3<I, such that whenever
I<I_ or I>1,, the eigenvalues of M have negative real parts, i.e., the
frame solution is stable and the eigenvalues of M have positive real parts
ifI_<I<I,, ie, the frame solution is unstable.

Assume that the current / which is treated as a bifurcation parameter
varies very slowly as the time goes by. Moreover, for simplicity, assume
that the current I(z) has the form of

I=1(t)=1,+et, (2.4)

where ¢ >0 is a very small constant and /, is a constant such that 7, <7_.
Using [ as an independent variable, the system (1.1) becomes the non-
autonomous form:

{s dvjdl= —p(v) —w+1, (25)

& dw/dl = bv — byw.
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Note that the conditions of p in (1.1) and y,, y, in (1.2) are still satisfied.
If 7 is an independent bifurcation parameter, the following phenomenon
will occur. The solution of (2.5) with the initial conditions,

v(1y) =vo(1y), w(ly) = wo(1y), 1(0)=1,, (2.6)

stays close to its steady state solution until / reaches /_, and then jumps
away from the steady state solution shortly after / increases and passes /_.

However, if I is as in (2.4), this phenomenon does occur but with delay.
From a Hopf bifurcation structure, as [ increases through /_, the solution
of (2.5) would turn to the large amplitude oscillations. That is, such a criti-
cal point is observed, but the value 7, of I at which it occurs is considerably
delayed beyond the value 7_. In 1989, Baer, Erneux and Rinzel [2]
proceeded an extensive computational experiment of the FHN equation for
the delayed phenomena (or simply delay) and they began to consider the
corresponding mathematical problem.

In 1993, Su [11] provided a rigorous proof of the results conjectured in
[2] and [10] by considering the linearized equation of the system (2.5) for
the steady state solution (v(/,), w(1,)). He showed that the solution of (2.5)
starting from any point near the steady state solution at I, </ _ stays near
the steady one until / reaches I, > 7 . Furthermore, in case that I, is close
to I_, a description of how the solution moves from the steady state solu-
tion to become a large amplitude solution after />, was given. The
general case of it was considered by Neishtadt [8] and Arnold [1].

3. BENOIT’S THEOREM CONCERNING CONSTRAINED SYSTEMS

First we consider a constrained system,

dx/dt = f(x, y, z),
dy/dt =g(x, y, z), (3.1)
h(xa Y, Z) = 09

where f, g and & are defined in R°.
The system (3.1) satisfies the following conditions:

(A1) fand g are of class C!, and 4 is of class C2,

(A2) theset S={(x,y,z)eR’:h(x,y,z)=0} is a 2-dimensional dif-
ferentiable manifold and the set S intersects the set 7= {(x,y,z)eR*:
Oh(x, y,z)/0z =0} transversely so that the set PL = {(x,y,z)eS:
Oh(x, y, z)/0z=0} is a 1-dimensional differentiable manifold,
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(A3) either the value of f or that of g is nonzero at any point p € PL.

Let (x(t), y(2), z(¢)) be a solution of (3.1), then the following equation
holds by differentiating /(x, y, z) with respect to the time z:

ho(x,y,2) f(x,y,2) +h(x,p,2) g(x, y, 2) + h(x,y,z) dz/dt =0, (3.2)
where
h,(x,y,z)=0h(x,y, z)/0x, =X,z
The above system becomes the system
dx/dt= f(x, y, z),

dy/dt=g(x, y, z), (3.3)
dZ/dl = _{hx(x5 y’ Z)f(xs y’ Z) +hy(x5 y’ Z) g(xs y’ Z)}/hz(x7 J’> Z)>

where (x, y, z) e S\PL.

Remark. The system (3.1) coincides with the system (3.3) at any point
peS\PL.

Secondly in order to study the system (3.3), we consider the newly
revised system:

dX/dl = _hz(xn s Z)f(xa s Z)n
dy/dt = —h.(x, y, z) g(x, y, z), (3.4)
dzjdt =hx,y,z) f(x, p, 2) + h,(x, y, 2) g(x, , 2)
Note that the system (3.4) is well defined at any point of R?. Therefore, the
system (3.4) is well defined indeed at any point of PL.
Compare the solutions of (3.4) with those of (3.1) on S\PL. The solu-
tions of (3.4) coincide with those of (3.1) except the velocity and the orien-

tation when they start from the same initial points. Thus each phase path
is quite the same, that is, they have the very same orbits.

DerINITION 3.1. A singular point of (3.4) is called a pseudo singular
point of (3.1) and a set of the pseudo singular points PS is denoted as

PS={(x,y,z)ePL:h(x,y,z)f(x,,2) +h(x,p,z2)g(x,p,2) =0}. (3.5)

Moreover, the following conditions (A4) and (AS) are assumed.

(A4) For any (x, y, z) € S, either the following holds

hy(x,y,z)#0, h(x,y,z)#0,
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that is, the surface S can be expressed as y =¢(x, z), or x=1/(y, z) in the
neighborhood of PL. When y=d¢(x,z), the following system, which
restricts the system (3.4) on the surface S, is obtained using (A4):

{dx/dt = _h:(x’ ¢(X, Z)) Z)f(x9 ¢(Xa Z)a Z)a
dzjdt =h (x, §(x, z), z) f(x, d(x, 2), 2) + h,(x, d(x, 2), 2) g(x, d(x, 2), 2).
(3.6)

(AS5) All the singular points of (3.6) are nondegenerate, that is, the
matrix induced from the linearized system of (3.6) at a singular point has
two nonzero eigenvalues. Note that all the points contained in PS are the
singular points of (3.6). When x =/(y, z), a similar equation is obtained in
the same manner.

DerFiniTION 3.2.  If the two eigenvalues A,, A, mentioned in (AS5) have
the property that 1, <0< 4,, a pseudo singular point of (3.1) is called a
pseudo singular saddle point.

Thirdly, we consider the new system

dx/dt = f(x, y, z),
dy/dt=g(x, y, z), (Bn)
e, dz/dt = h(x, y, z),

where f, g and 4 are the same as system (3.1) and ¢, — 0 as n — c0. For a
fixed sufficiently large n, (Bn) devides the surface S\PL into two parts: one
is an attractive region and the other is a repulsive region.

A solution which starts from a neighborhood of the attractive part goes
rapidly toward S perpendicularly and then goes slowly along S. A solution
which starts from a neighborhood of repulsive part leaves from S rapidly
unless it starts at p € S\PL. Now let us introduce a standard duck solution
defined on systems (Bn), n=1,2, ....

DeriniTION 3.3. A standard duck solution, or simply a standard duck,
on the systems (Bn), n=1, 2, ..., is defined as follows.

It is a sequence of solutions (x,(¢), y,(?), z,(¢)) of (Bn), n=1, 2, ..., such
that

(1) the solution (x,(2), y,(?), z,(t)) is defined for te(c,, d,),

(2) there are two closed disjoint subintervals [ ¢, d,] and [c), d, ]
of (¢,, d,) in which for any re[c),, d,], the point (x,(2), y,(¢), z,(¢)) lies in
a sufficiently small neighbourhood of the attractive part of S, and for any
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te[ch,d)], the point (x,(?),y,(t),z,(t)) lies in a sufficiently small
neighbourhood of the repulsive part of S, and

(3) as m— oo, the solution curves (x,(¢),y,(?),z,(t)), te(c,,d,))
converge to a curve C of the finite length in S, and the curve C is devided
into two parts C’, C". The arc C’ belongs to the attractive part of S, the
arc C" belongs to the repulsive part and the lengths of C’, C" are not
zeroes.

Now we consider the following system in a non-standard version,

dx/dt = f(x, y, z),
du/dt = g(x, y, z), (B)
edz/dt =h(x,y, z),

where ¢ is infinitesimally small. Here a definition of a non-standard duck
solution is given as follows.

DEerFINITION 3.4. A solution (x(¢), y(2), z(t)) of the system (B) is called a
non-standard duck solution, or simply a non-standard duck, if there are
standard ¢, <t,<t, such that

(1) *(x(ty), ¥(to), z(ty)) € S, where *(X) denotes the standard part
of X,

(2) for te(ty,t,) the segment of the trajectory (x(2), y(?),z(2)) is
infinitesimally close to the attracting part of the slow curves,

(3) for te(t,, t,), it is infinitesimally close to the repelling part of the
slow curves, and

(4) the attracting and repelling parts of the solution curve are not
infinitesimally small.

Zvonkin and Shubin [12] proved the following theorem concerning a
standard duck and a non-standard duck.

THEOREM 3.1. There exists a standard duck on the systems (Bn), n=
1,2, ..., if and only if there exists a non-standard duck on the system (B).

Benoit [3] investigated the relations between the system (3.1) and the
systems (Bn), n=1,2, ... By introducing a method of a non-standard
analysis (Nelson’s version [9]) on each system (Bn), he got a result, which
is essentially the same as the following theorem.

THEOREM 3.2 (Benoit). If the system (3.1) has a pseudo saddle point,
then the systems (Bn), n=1, 2, ..., have a standard duck solution.
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4. A DUCK SOLUTION IN THE FHN EQUATION

Now we return to the system (1.1). Let ¢ be a small positive constant,
and let ¢,, n=1, 2, ..., be positive constants such that 0 <¢, <& and ¢, — 0
as n— o0. As mentioned in Section 2, we put I=1,+¢,t and b =g, for
each n.

By using I as an independent variable, the system (1.1) becomes the
following new systems:

{en dv/dl = —p(v)—w+ 1, (Dn)

dw/dl = c(v—yw).
Then the following theorem is obtained.

THEOREM 4.1. The systems (Dn), n=1, 2, ..., have delay for sufficiently
small e.

Proof. 1f ¢, is sufficiently small, the condition (1.2) holds. So, we can
conclude that the delayed phenomenon occurs by the main theorem of Su

[11].
By changing the coordinates /=X, w=Y and v=Z, the system (Dn)
becomes system (En) for each n:
dx/dl=1,
dY/dl=c(Z—yY), (En)
dZ/dl=(—p(Z)— Y+ X)/e,,.
Consider the following constrained system induced from the system (En):
dXxjdl =1,
dY/dl=c(Z—yY), (4.1)
—p(Z)— Y+ X=0.
The conditions (A1)—(AS5) in Sect. 2 are satisfied on the system (4.1). The

condition (Al) holds, since f(X, Y, Z)=1, g(X,Y,Z)=c(Z—7Y) and
WX, Y, Z)= —p(Z)— Y+ X are all analytic. Since the set S is expressed as

S={(X,Y,Z)eR*: Y= —p(Z)+ X}, (4.2)

the condition (A4) holds. It is obvious that S is a 2-dimensional differen-
tiable manifold. Put the set

T={(X,Y,Z)eR*:3Z2°>=2(a+1)Z+a=0}. (4.3)
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Then the set T is a differentiable manifold and S intersects T transversely.
The condition (A2) holds, since PL =S n T. Also the condition (A3) holds,
since dX/dI=1+#0 at any point in R* The system (4.1) restricted to the
surface S is described as the following equation by using the local coor-
dinates (X, Z),

{dX/d1=p'(Z),

dZjdl =1+ cyX — c(Z +yp(2)). (44)

Let (X,, Z,) be a singular point in the system (4.4), then the following
equation holds:

{/J'(Zo) =0,

4.5
L+ pXo— d(Zo + 9p(Zo)) =0, #42)

Consider the linearized system for (X, Z,) in the system (4.4) as follows:

{dX/dlz p"(Z)Z, 46)

dZ/dl = cyX — cZ,

where X=X —-X,, Z=Z—Z,. As p'(Z) =0 has the following two
solutions

P _a+li1/a2—a+l

o+ = >
- 3

system (4.4) has two singular points; (X, , Z,,) and (X,_, Z,_).
The linearized system for (X,, , Z,,) in system (4.4) is given by the
following equation:

— 2 _
{dX/dI—z Ad—a+1Z, 47)

dZ/dl = cyX — cZ.

Similarly, the linearized system for (X,_, Z,_) is given by the following
equation:

AX/dl= —2 J@—a+ 12
{ / a—atls (438)

dZ/dl = cyyX — cZ.

Since the eigenvalues associated with the linearized systems (4.7) and (4.8)
are not zeroes, the condition (AS) holds.

THEOREM 4.2. There exists a duck solution and delay on the systems
(En),n=1,2, ....
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Proof. Our purpose is to show that the system (4.7) has a saddle point.
By the Benoit’s results, it follows that there is a duck solution on the set
of the systems (En), n=1, 2, ..., in this situation. The characteristic equa-
tion for the Jacobian matrix at the singular point of the system (4.7) is
given by

24 ch—2cyJa*—a+1=0. (4.9)

The solutions 4,, 4, of (4.9), which are the eigenvalues associated with (4.7)
are

Li=

_ _1[ 2 2 _ 1
2= )\/c;gc“a @l iZL2 (410)

It follows immediately 1, <0 < 4,. This implies that the system (4.7) has a
saddle point. This completes the proof.

5. AN EXPLICIT EXPRESSION OF DUCK SOLUTIONS

In this section, we consider the FHN equation which contains not only
a pseudo singular saddle point but also a pseudo singular node point. In
this case the existence of duck solutions is shown explicitly. When we apply
the “local model” theory by E. Benoit [4] on the system B in Sect. 3, we
need the following two conditions in order to obtain the explicit duck
solutions:

(1) f(0) ~h(0)~h,(0)~h(0)~0,
(2) g(0)£0, h(0)2£0, h.(0) %0, where O = (0,0, 0).

In the FHN Eq. (1.5), exchanging the variable X to Y, the next system is
obtained:

dX/dt =c(Z —yX),
dY/dt =1, (5.1)
edZldt= —p(Z)—X+Y.

Note that this system does not satisfy the above conditions (1) and (2) by
itself.

THEOREM 5.1. By a suitable coordinate transformation, the system (5.1)
is transformed to satisfy the conditions (1) and (2).
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Proof. Let P,=(X,, Y,, Z,) be one of the two pseudo singular points
of the system (5.1). Applying the affine transformation (5.2) of the
coordinate

x 1 -1 0\/X-—X,
yl=l =1 2 o] Y-V, (5.2)
z 0 0 1/\z-z

o

the following sytstem (5.3) is obtained:

dx/dt = —cy(2x +y) + cz,
dyldt=cy(2x+y)—cz+1, (5.3)
edz/dt= —x—p(z+Z,)+ p(Z,).

It is clear that the system (5.3) satisfies these conditions (1) and (2).

Moreover, on the system (5.3) we make the following coordinate trans-
formations (5.4a) and (5.4b) successively:

O(2u

X
y|=| o |, (5.4a)
z

ow
(x>0, g/a®> ~0)

h(0) h..(0) u/2 + (h,,(0) h..(0) — h,(0)) v*/4
v/g(o) . (54b)
—h,.(0) v/2—h_(0) w/2

N ~
[

Then the system (5.5) is obtained,

dX/dt=pY+qZ + (X, Y, Z),
dY/dt=1+y(X, Y, Z), (5.5)

where
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Here &(X, Y, Z), n(X, Y, Z) and {(X, Y, Z) are in finitesimal when X, Y
and Z are limited. By the “local model” theory, the existence of the explicit
duck solutions of the system (5.1) is equivalent to those of the system

dX/di = pY +qZ,
dY/di=1, (5.6)
odZ/dt = —(Z* + X),

Wherep:(—l)icy az—a+1,i=1,2,q=c.

Restricting the system (5.6) on the surface —(Z*+ X) =0, the linearized
system (5.7) is obtained,

{dY/dtzZ, 57

dZldt= —(pY + cZ)/2.

If we choose p= —cy./a>—a+1 so that the system (5.6) has a pseudo
singular saddle point, then the characteristic equation with respect to the
system (5.7) is the following as the same as (4.9):

224+ ch—cyJa*—a+1=0. (5.8)

THEOREM 5.2. Let A, (i=1,2) be two solutions of the Eq. (5.8), the
explicit duck solutions y, (1) of the system (5.1) are obtained as follows:

()= (=222 =00 t, 2y1),  i=1,2.

COROLLARY 5.3. If we choose p=cy./a*—a+1and c>8y./a*—a+1
so that the system (5.6) has a pseudo singular node point, then there are
explicit duck solutions 7y, (1):

y[li(t):(_ﬂlgtz_aﬂi’ t);uil)a 12192

Here p; (i=1,2) are the solutions of the following characteristic equation
with respect to the linearized Eq. (5.7)

2u+cu+ceyJa*—a+1=0. (5.9)

Remark. 1t is known that there may be another kind of duck solutions
in this system. See [4].
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