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Abstract

We have calculated the quenching parameter, q̂ in a model-independent way using the gauge–gravity 
duality. In earlier calculations, the geometry in the gravity side at finite temperature was usually taken as 
the pure AdS black hole metric for which the dual gauge theory becomes conformally invariant unlike 
QCD. Therefore we use a metric which incorporates the fundamental quarks by embedding the coincident 
D7 branes in the Klebanov–Tseytlin background and a finite temperature is switched on by inserting a 
black hole into the background, known as OKS-BH metric. Further inclusion of an additional UV cap to the 
metric prepares the dual gauge theory to run similar to thermal QCD. Moreover q̂ is usually defined in the 
literature from the Glauber model perturbative QCD evaluation of the Wilson loop, which has no reasons 
to hold if the coupling is large and is thus against the main idea of gauge–gravity duality. Thus we use an 
appropriate definition of q̂: q̂L− = 1/L2, where L is the separation for which the Wilson loop is equal to 
some specific value. The above two refinements cause q̂ to vary with the temperature as T 4 always and to 
depend linearly on the light-cone time L− with an additional (1/L−) correction term in the short-distance 
limit whereas in the long-distance limit, q̂ depends only linearly on L− with no correction term. These 
observations agree with other holographic calculations directly or indirectly.
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1. Introduction

In the initial stage of ultrarelativistic heavy-ion collisions energetic partons in the form of 
jets are produced from the hard collisions. After receiving a large transverse momentum, these 
jets plough through the fireball for a transitional period of about a few fm/c and will thus loose 
energy due to the interaction of the hard partons with the medium constituents, known as the jet 
quenching. As a result the yield of hadrons with high transverse momentum (pT ) is shown to be 
significantly suppressed in comparison with the cumulative yields of nucleon–nucleon collisions. 
There are mainly two contributions to the energy loss of the partons in the medium: one is due 
to the radiation emitted by the decelerated color charges, i.e. bremsstrahlung of gluons [1–3] and 
the other one is due to the collisions among the partons in the medium [4].

The experimental discoveries at RHIC revealed that the matter produced is a strongly cou-
pled quark–gluon plasma (sQGP) unlike weakly interacting gas of partons expected from the 
naive asymptotic freedom, for example, the observed elliptic flow, the quenching of jets while 
traversing through the medium etc. The jet quenching is parametrized by the quenching pa-
rameter, q̂ , which is defined by the average transverse momentum square transferred from the 
traversing parton per unit mean free path. The extracted values of this transport coefficient in rel-
ativistic heavy-ion collisions by the JET collaboration [5] range from 1 to 25 GeV2/fm, which 
are much larger than those estimated from the perturbative QCD calculations. This hints some 
non-perturbative mechanisms which may contribute to the jet quenching mechanism. Thus it is 
worthwhile to calculate the possible values of q̂ in the strong coupling limit. The first principle 
lattice QCD however, cannot be applied for this purpose, which requires the real-time dynamics.

The simplest gauge–gravity duality [6–8] between the type IIB superstring theory formulated 
on AdS5 × S5 space and N = 4 supersymmetric Yang–Mills theory (SYM) in four dimensions 
provides a robust tool to explore the thermodynamical and transport properties of sQGP. Al-
though the underlying dynamics, QCD is different from N = 4 SYM but the correspondence 
seems feasible because some of the properties of all strongly interacting systems show some 
universality behavior. One of the notable observation is the universal value (1/4π) for the η/s

ratio for the quantum field theories having a holographic description [9] and thus it gives a lower 
bound to the ratio for sQGP. Motivated by these similarities between the N = 4 SYM and the cor-
responding theory of supergravity, the jet-quenching parameter, q̂ was related to the expectation 
value of the Wilson loop WA[C] in adjoint representation due to the Eikonal approximation [10]:

〈WA[C]〉 ≈ exp

(
− 1

4
√

2
q̂L−L2

)
, (1)

where C is a rectangular contour of size L × L−, with the sides, having the length L− run along 
the light-cone. There were other calculations of q̂ [11,30,12] using a very different setup and 
arriving at different conclusions. In the context of relativistic heavy ion collisions, the effects 
of finite ’t Hooft coupling (λ) as well as chemical potential on q̂ was studied in [31,40,39] and 
the jet stopping in strongly-coupled QCD-like plasmas with gravity duals have also been studied 
using the string α′ expansion in AdS/CFT [34,35].

However, since q̂ is related to the transverse momentum (pT ) broadening so to calculate the 
mean pT , we need to Fourier transform (FT) of the Wilson loop

W(pT ) =
∫

d2L eip·L W(L). (2)

The above FT emerges if we intend to calculate the particle production in the scattering of a 
quark on a target, and the target will be the medium in the jet quenching problem. It turns out 
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that the above FT is proportional to the quark production cross section, W(pT ) ∼ dσ/d2p [13,
14]. Let us explore the subtleties which might help us to search for the correct definition of q̂. For 
example, if we define q̂ as 〈p2

T 〉/L−, as some authors do. So we would then need to find 〈p2
T 〉. 

But this seems easy because 〈p2
T 〉 ∼ ∇2⊥W(L) at L = 0. This seems consistent with getting the 

coefficient of the L2 term in the exponent, as in (1). However, since our aim is to model QCD 
and in QCD at high pT perturbative physics works, and dσ/d2p ∼ 1/p4

T , so 〈pT 〉 is infinite 
(irrespective of what happens at lower pT ). In other words one cannot trust W(L) from AdS at 
very small L. A way out is to define q̂ as 〈pT 〉2/L−. Since 〈pT 〉 is finite even in perturbative 
QCD, this definition is safe. To find 〈pT 〉 we need the typical momentum scale of W(L) and 
if one knows W(pT ), then one should be able to find 〈pT 〉 exactly. Otherwise one could argue 
that 〈pT 〉 is given by the saturation scale Qs , as the only scale available in the problem at high 
enough energy. Hence the standard prescription of finding Qs by requiring the Wilson loop, 
W(L = 1/Qs) to be a constant, should probably give one a good estimate of 〈pT 〉.

In summary the above definition of q̂ in (1) as a coefficient of the L2 term in the Wilson 
line correlator may not be correct because the motivation for the definition (1) in [10] comes 
from the Glauber model perturbative QCD evaluation of the Wilson loop [15,16].1 Therefore 
this perturbative expression has no reasons to hold when the coupling is large, which is the main 
idea of gauge–gravity duality. A more appropriate definition of q̂ is then to postulate the equation

q̂L− = 1/L2 , (3)

where L is the quark–antiquark separation for which the expectation value of the Wilson loop 
in adjoint representation is equal to some specific value. The above definition (3) can also be 
understood as follows: since q̂L− behaves like the saturation scale squared in small-x physics 
and the saturation scale is defined by requiring that the expectation value of Wilson loop is equal 
to some constant at L = 1/Qs [16,15].

The calculations for q̂ discussed so far used the geometry as the pure AdS black hole metric, 
for which the dual gauge theory is conformally invariant SYM theory unlike the QCD. This is 
one of the central theme of our work. Therefore, the aim of the present paper – to extend/modify 
the shortcomings of the above-mentioned calculation [10] – is twofold: (i) the first aim is to study 
the jet quenching in a gravitational background which is dual to a gauge theory with an RG flow 
that confines in the far IR and is asymptotically free at the far UV. Recently a gravity dual with 
a black hole and seven branes embedded via Ouyang embedding is constructed [23,19], which 
resembles the main features of strongly coupled QCD, i.e. is almost conformal in the UV with 
no Landau poles or UV divergences of the Wilson loops, but has logarithmic running of coupling 
in the IR. Recently one of us have explored the properties of heavy quarkonium bound states 
with the above geometry and the findings [20,21] can only be understood as the artifact of the 
correct geometry for real QCD. (ii) The second one is the appropriate definition of q̂ as in (3) for 
which the Wilson loop is equal to some specific value, say 1/2. Our work is therefore organized 
as follows. Section 2 will be devoted to revisit the Ouang–Klebanov–Strassler geometry and its 
improvements at the UV sector. In Section 3.1, we employ the aforesaid geometry to obtain the 
renormalized Nambu–Goto action in both short- and long-distance limits. Thereafter we will 
obtain the quenching parameter in Section 3.2 and will also discuss briefly the results of other 
calculations. Finally we conclude in Section 4.

1 In fact, it is already incorrect once someone includes perturbative QCD corrections to the Glauber formula.



408 B.K. Patra, B. Arya / Nuclear Physics B 914 (2017) 405–420
2. Construction of dual geometry

A conformal gauge theory does not flow with the scale, hence it has a trivial RG flow. The 
AdS/CFT correspondence conjectures that a conformal theory in four dimensions can be mapped 
on the boundary of a pure anti-de Sitter space [6]. But if the theory has a non-trivial RG flow 
like QCD, which is confining in IR and conformal in UV, we cannot describe the full theory 
on the boundary of some higher dimensional space and hence need to envisage differently at 
running energy scales. One way out is to embed the D branes in the geometry and as a result the 
corresponding gauge theory exhibits logarithmic RG flow. Such a construction was done in the 
Klebanov–Strassler (KS) geometry [17] through a warped deformed conifold with three-form 
type IIB fluxes and the corresponding dual gauge theory is confining in the far IR limit but is 
not free at UV limit. The other demerits of the KS geometry are that it is devoid of quarks in the 
fundamental representation and cannot be generalized to finite temperature.

The inclusion of fundamental matter in string theory is possible by embedding a set of flavor 
branes in addition to the color branes. The strings connecting to the color and flavor branes in 
the adjoint representation of U(Nc) group give the gauge particles and the mesons, respectively 
whereas those connected to both the flavor and color branes in the fundamental representation 
give the quarks and antiquarks, respectively. In principle one could go to large number of color 
(Nc) and flavor (Nf ) branes in the near horizon limit and translates the branes into fluxes and then 
construct the gravity background which is holographically dual to gauge theory of quarks and 
gluons. In practice the back reaction of the probes on the background could be neglected through 
the probe approximation (Nf � Nc) and the flavor physics is then extracted by analyzing the 
effective action which describes the flavor branes in the color background [28,29]. Since the full 
global solution for the backreaction of D7 branes in the KS background becomes nontrivial so 
the insertion of the fundamental quarks in the original KS geometry [17] becomes difficult. Peter 
Ouyang [18] has successfully put the coincident D7 branes into the Klebanov–Tseytlin back-
ground [22], known as OKS geometry, which has all the type IIB fluxes switched on including 
the axio-dilaton and the local metric was then computed by incorporating the deformations of 
the seven branes by moving them far away from the regime of interest. Hence the axion-dilaton 
vanishes for the background locally, but there will be non-zero axion-dilaton globally, as a result 
the local back reactions on the metric modify the warp factors to the full global scenario.

For realizing the finite temperature a black hole is inserted into the OKS background, i.e.
OKS-BH geometry, where the Hawking temperature corresponds to the gauge theory tempera-
ture. Thus the metric in OKS-BH geometry is expressed in terms of warp factor (h) [23]

ds2 = 1√
h

[
− g1(u)dt2 + dx2 + dy2 + dz2

]
+ √

h
[
g−1

2 (u)du2 + dM2
5

]
(4)

where gi(u) are the black-hole factors as a function of the extra dimension, u and dM2
5 is due to 

the warped resolved–deformed conifold. The gauge theory dual to the metric (4) flows correctly 
at IR like QCD but the effective degrees of freedom grow indefinitely at UV limit. The situation 
becomes worse even in the presence of fundamental flavors because its proliferation leads to 
Landau poles and hence the Wilson loops diverges at UV. To circumvent the problem, one need 
to add the appropriate UV cap to the AdS–Schwarzschild geometry in the asymptotic UV limit. 
However, the additional UV caps, in general may deform the IR geometry but the far IR geom-
etry has not been changed because the UV caps correspond to adding the non-trivial irrelevant 
operators in the dual gauge theory. These operators keep far IR physics completely unchanged, 
but the physics at not-so-small energies may be changed a bit.
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Recently the IR geometry part has been suitably modified to obtain the desired dual gauge 
theory by the McGill group [19,23,24], where the metric (4) will receive further corrections, guu, 
because the unwarped metric may not remain Ricci flat due to the presence of both axio-dilaton 
and seven-brane sources, as:

ds2 = 1√
h

[
− g(u)dt2 + dx2 + dy2 + dz2

]
+ √

h
[
g(u)−1guudu2 + gmndxmdxn

]
(5)

where the black hole factors gi(u) are set as g1(u) = g2(u) ≡ g(u) and the corrections guu are 
of the form 1/un and may be written as a series expansion:

guu = 1 +
∞∑
i=0

auu,i

ui
, (6)

where the coefficients auu,i are independent of the extra-dimension coordinate u and are solved 
exactly in [19]. Thus the warp factor, h can be extracted from the above corrections (6) as

h = L4

u4

[
1 +

∞∑
i=1

ai

ui

]

where the coefficients ai are of O(gsNf ) and L is the curvature of space. Thus the metric (5)
reduces to OKS-BH in the IR limit and becomes AdS5 × M5 in the UV limit, hence describes 
well both in IR and UV limits. Therefore, with the change of coordinates z = 1/u, we can rewrite 
the metric (5) as

ds2 = gμνdXμdXν

= Anz
n−2

[
−g(z)dt2 + d

−→
x 2
]
+ Blz

l

Amzm+2g(z)
dz2 + 1

Anzn
ds2

M5
, (7)

where ds2
M5

is the metric of the internal space and the coefficients An can be obtained from the 
coefficients ai in the warp factor (2) as follows:

1√
h

= 1

L2z2
√

aizi
≡ Anz

n−2 = 1

L2z2

[
a0 − a1z

2
+
(

3a2
1

8a0
− a2

2

)
z2 + · · ·

]
, (8)

which gives A0 = a0
L2 , A1 = − a1

2L2 , A2 = 1
L2

(
3a2

1
8a0

− a2
2

)
etc. Note that since ai’s for i ≥ 1 are 

of O(gsNf ) and L2 ∝ √
gsN , so in the limit gsNf → 0 and N → ∞ all Ai ’s for i ≥ 1 are very 

small. The second term in the metric (7) accommodates the 1/un corrections in (5) via the series, 
Blz

l , which is expanded further:

Blz
l = 1 + azz,iz

i . (9)

In a comprehensive study [23], the entire geometry is split into three regions. Apart from the 
two asymptotic regions at IR and UV denoted as regions I and III, respectively, there is an in-
terpolating region II, where at the outermost boundary the three-forms vanish and the innermost 
boundary will be the outermost boundary of region I. The background in these three regions 
and the insertion of additional UV cap are extensively analyzed by the corresponding RG flows 
and the field theory realizations have been discussed in [25]. Recently another suitable model to 
study certain IR dynamics of QCD is the Sakai–Sugimoto model [26] in the type IIA string the-
ory, which consists of a set of N wrapped color D4-branes on the circle and the flavor branes D8 
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and D̄8 placed at the anti-nodal points of the circle to conceive the mesonic bound states. In its 
dual gravity, the wrapped D4-branes are replaced by an asymptotically AdS space, but the eight-
branes remain and so does the circular direction. However the Sakai–Sugimoto model does not 
have a UV completion and had been compared recently with the aforesaid gravity dual in [27]. 
We shall not go into the complete details here and will use the metric (7) to obtain the Nambu–
Goto action and hence the Wilson loop is computed through gauge–gravity correspondence in 
the next section.

3. Gauge–gravity duality

According to the gauge/gravity prescription [6], the expectation value of the Wilson loop, 
W(C) in a strongly coupled gauge theory is related to the generating functional of the string in 
the bulk which has the loop C at the boundary

〈W(C)〉 ∼ Zstring (10)

In supergravity limit, the generating functional becomes

Zstring = eiSstring , (11)

where Sstring is obtained by extremizing the string action, known as the Nambu–Goto action. So 
the above correspondence (10) is translated into

〈W(C)〉 ∼ eiSstring (12)

Thus we will now evaluate the Nambu–Goto action in the next subsection.

3.1. Nambu–Goto action

By the light-cone transformation,

dt = dx+ + dx−
√

2

dx1 = dx+ − dx−
√

2
(13)

the metric (7) is rewritten in terms of light-cone coordinates as

ds2 =
[
−1

2
Anz

n−2g + 1

2
Anz

n−2
][

dx+2 + dx−2
]
− (1 + g)Anz

n−2dx+dx−

+ Anz
n−2

[
dx2

2 + dx3
2
]
+ Bnz

n

Anzn+2g
dz2 + 1

Anzn
dsM5

2 (14)

We parametrize the two-dimensional world sheet and their derivatives in terms of the light-cone 
coordinates

τ = x−, σ = x2 ∈ [− r

2
,
r

2
],

x2 = const, x3 = const, z = z(x2)

∂α = ∂

∂τ
, ∂β = ∂

∂σ
. (15)

With the above parametrization (15), the elements of the induced metric defined by
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gαβ = Gμν
∂xμ

∂σα

∂xν

∂σβ
(16)

can be read off from the above metric (14)

g−− = Anz
n (1 − g)

2z2

g−2 = g2− = 0

g22 = Anz
n

z2
+ Bnz

n

z2Anzng
z′2 . (17)

Thus the determinant of the induced metric, gαβ can be calculated

det gαβ = g−−g22 = 1

2zh
4

[(
Anz

n
)2 + (Bnz

n) z′2

g

]
, (18)

hence the Nambu–Goto action can be obtained as

S = − 1

2πα′

∫ ∫
dσdτ

√
−detgαβ

= − 1

2πα′

∫ ∫
dσdτ

√√√√− 1

2zh
4

[
(Anzn)2 + (Bnzn) z′2

g

]
, (19)

where α′ (= R2√
λ

, R is the AdS radius and λ is the ’t Hooft coupling) is the string tension. Thus 
the equation of motion:

z′ ∂L
∂z′ −L = C (20)

can be written from the above Lagrangian (L) in (19) as

− (Anz
n
)2 = C

√
(Anzn)2 + (Bnzn) z′2

g
, (21)

where C is a constant of motion and can be obtained from the condition: z′ = 0 at z = zm,

C2 = (Anz
n
m

)2 (22)

After substituting the constant C, the equation of motion becomes finally

z′2 = (Anz
n)2 g

Bnzn

[
(Anz

n)2

(Anzm
n)2

− 1

]
(23)

Since the Lagrangian is independent of the time so after integrating over the time-like coordinate 
(x−), the action becomes

S = − iL−

2
√

2πα′zh
2

+ L
2∫

− L
2

dx2

√
(Anzn)2 + (Bnzn) z′2

g
(24)

= − i2L−

2
√

2πα′zh
2

zm∫
dz

√
(Anzn)2

z′2 + (Bnzn)

g
(25)
0
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We will now substitute z′2 from the equation of motion (23) to obtain the action. Since 
(Anz

n)2 � (Anzm
n)2 so neglecting the higher-order terms and keeping up to the second-order 

term, the action (25) is simplified into (without loss of generality, A0 = 1, A1 = 0, and A2 = A

(say), and similarly, B0 = 1, B1 = 0, and B2 = B (say) in units of L2 [19]2)

S � −
√

2L−

2πα′zh
2
(
1 + Azm

2
)

zm∫
0

dz√
g

(
1 + B

2
z2
)(

1 + Az2
)

(26)

We will now evaluate the Nambu–Goto action by solving the above integral in both short- and 
long-distance limits:

Case-I: In the short-distance (zm � zh) limit, after performing the integration in (26) the action 
is written in terms of Gaussian hypergeometric functions

S = − L−
√

2πα′zh
2
(
1 + Az2

m

)
zm∫

0

dz

⎛
⎜⎜⎝1 + B+2Az2

2 + ABz4

2√
1 − z4

z4
h

⎞
⎟⎟⎠

= − L−zm√
2πα′zh

2(1 + Az2
m)

[
2F1

(
1

4
,

1

2
,

5

4
; z4

m

z4
h

)
+ (B + 2A)z2

m

6
2F1

(
1

2
,

3

4
,

7

4
; z4

m

z4
h

)

+ ABz4
h

6

(
−
√

1 − z4
m

z4
h

+ 2F1

(
1

4
,

1

2
,

5

4
; z4

m

z4
h

))]
(27)

On expanding the hypergeometric functions in powers of ( zm

zh
)

2F1

(
1

4
,

1

2
,

5

4
; z4

m

z4
h

)
=
(

1 + zm
4

10zh
4

+ ...

)
,

2F1

(
1

2
,

3

4
,

7

4
; z4

m

z4
h

)
=
(

1 + 3zm
4

14zh
4

+ ...

)
,

2F1

(
1

4
,

1

2
,

5

4
; z4

m

z4
h

)
=
(

1 + zm
4

10zh
4

+ ...

)
, (28)

respectively and ignoring the higher-order terms beyond the second power, the action becomes

S
zm�zh� − L−zm√

2πα′z2
h

[
1 + (B − 4A)z2

m

6
+ z4

m

10z4
h

]
(29)

In addition to the extremal surface constructed above for the Nambu–Goto action, there is another 
trivial one given by the two disconnected world sheets, placed one at x2 = +L

2 and another at 
x2 = −L

2 . The action for these two surfaces is

S0 = − 2

2πα′

∫
dzdx−√−g−−gzz

2 Such a choice is of course consistent with supergravity solution for the background we used in our work.
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= − iL−
√

2πα′z2
h

zm∫
0

dz
1 + B

2 z2√
1 − z4

z4
h

(30)

= − iL−zm√
2πα′z2

h

[
2F1

(
1

4
,

1

2
,

5

4
; z4

m

z4
h

)
+ Bz2

m

6
2F1

(
1

2
,

3

4
,

7

4
; z4

m

z4
h

)]
(31)

Expanding the above hypergeometric functions in powers of ( zm

zh
)

2F1

(
1

4
,

1

2
,

5

4
; z4

m

z4
h

)
=
(

1 + zm
4

10zh
4

+ ...

)
, (32)

2F1

(
1

2
,

3

4
,

7

4
; z4

m

z4
h

)
=
(

1 + 3zm
4

14zh
4

+ ...

)
, (33)

respectively and ignoring the higher-order terms beyond the second power, the action to be sub-
tracted (S0) becomes

S0
zm�zh� − iL−zm√

2πα′z2
h

[
1 + Bz2

m

6
+ z4

m

10z4
h

+ · · ·
]

(34)

Therefore the renormalized action is obtained by subtracting the action (34) for the two discon-
nected surfaces from (29)

SI

zm�zh� S − S0

= − L−zm√
2πα′zh

2

[(
1 + (B − 4A)z2

m

6
+ z4

m

10z4
h

)
− i

(
1 + Bz2

m

6
+ z4

m

10z4
h

)]
(35)

Case II: In the long-distance limit (zm � zh) the integral in the action (26) is split into integra-
tions:

S = − L−
√

2πα′zh
2(1 + Azm

2)

⎡
⎢⎣

zh∫
0

dz
(1 + Bz2

2 )(1 + Az2)√
1 − z4

zh
4

+
zm∫

zh

dz
(1 + Bz2

2 )(1 + Az2)√
1 − z4

zh
4

⎤
⎥⎦

≡ I + II , (36)

where the first integral (I) becomes

I = − L−
√

2πα′zh
2(1 + Azm

2)

⎡
⎢⎣

zh∫
0

dz
(1 + Bz2

2 )(1 + Az2)√
1 − z4

zh
4

⎤
⎥⎦

� − L−
√

2πα′zh
2

[
1.3zh + 0.3(B + 2A)zh

3 + 0.22ABzh
5
]

(37)

and the second integral (II) becomes, after neglecting the higher-order terms in powers of ( zh

zm
)

and keeping up to the second order
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II = − L−
√

2πα′zh
2(1 + Azm

2)

⎡
⎢⎣

zm∫
zh

dz
(1 + Bz2

2 )(1 + Az2)√
1 − z4

zh
4

⎤
⎥⎦

� −iL−
√

2πα′zh
2
(1.14zh + 0.5(B + 2A)zmzh

2 + 0.17ABzm
3zh

2) (38)

Therefore the Nambu–Goto action in this limit becomes

S
zm�zh= − L−

√
2πα′zh

2

[
(1.3zh + 0.3(B + 2A)zh

3 + 0.22ABzh
5)

+ i(1.14zh + 0.5(B + 2A)zmzh
2 + 0.17ABzm

3zh
2)
]

(39)

Similarly the action to be subtracted (30) in this limit can be written as

S0 = − iL−
√

2πα′z2
h

⎡
⎢⎢⎣

zh∫
0

dz
1 + B

2 z2√
1 − z4

z4
h

+
zm∫

zh

dz
1 + B

2 z2√
1 − z4

z4
h

⎤
⎥⎥⎦ (40)

After integrating and keeping the terms up to the second-order, the action, S0 for two discon-
nected surfaces becomes

S0
zm�zh� − L−

√
2πα′zh

2

[
−1.14zh − 0.3Bzh

3 + i(1.3zh + 0.3Bzh
3)
]

(41)

Therefore, the renormalized action is given by

SI
zm�zh= S − S0

= − L−
√

2πα′zh
2

[
2.44zh + 0.5Bzmzh

2 + i(−0.16zh + 0.5(B + 2A)zmzh
2)
]

(42)

3.2. Jet quenching parameter

We will now obtain the quenching parameter, q̂ for which the expectation value of the Wilson 
loop in the adjoint representation is equal to some specific value, say, C,

〈WA〉 = ei2SI = C (43)

In our problem, 〈W 〉 becomes complex-valued, which is a feature previously encountered in [15]
as well. Since 〈W 〉 is the S-matrix for a quark dipole-medium scattering, it is allowed to be 
complex. If we were calculating Qs we would need the imaginary part of the forward scattering 
amplitude: since S = 1 + iT , then �T = 1 − �S = 1 − �〈W 〉. This was exactly done in [15]. 
Therefore we redefined q̂ in (3), where L is the separation at which the real part of the Wilson 
loop is constant (C).

Thus decomposing the renormalized action, SI into the real and imaginary parts, the real part 
of the expectation value of Wilson loop is

�〈WA〉 = �
[
ei(2�SI +2i�SI )

]
= e−2�SI [cos (2�SI )] = C (44)
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Now we will evaluate the quenching parameter for both long- and short-distance limits, using the 
actions in the respective limits.

Case I: Short-distance limit (zm � zh)
To write the action as a function of the separation L, we first express zm in terms of L. For 

that we rewrite the equation of motion (23) in this limit (zm � zh)

z′2 = − (Anz
n)2 g

Bnzn
(45)

because (Anz
n)2 is much less than (Anzm

n)2. Integrating both sides of the equation of motion 
(45)

zm∫
0

dz

√
Bnzn

(Anzn)
√

g
= i

0∫
−L/2

dx2 (46)

the separation (L) becomes

iL

2
=

zm∫
0

dz
(1 + 0.5Bz2)(1 − Az2)√

1 − z4

zh
4

= zm + z5
m

10z4
h

+ 0.17(B − 2A)z3
m

(
1 + 3z4

m

14z4
h

)

− 0.17ABz4
hzm

(
−
√

1 − z4
m

z4
h

+ 2F1

(
1

4
,

1

2
,

5

4
,
z4
m

z4
h

))
(47)

Inverting the series and ignoring the higher-order terms we can express zm as a function of L as

zm = Li

2

(
1 + (B − 2A)

24
L2
)

(48)

Thus the renormalized action can be expressed in terms of the separation (L) by replacing zm as 
a function of L into (35). Ignoring the higher-order terms, the renormalized action is then given 
by

SI = −
√

2L−

2πα′zh
2

Li

2

(
1 + (B − 2A)L2

24

)[(
1 + (B − 4A)L2

24
+ L4

160z4
h

)

− i

(
1 + BL2

24
+ L4

160z4
h

)]
(49)

Now the imaginary and real parts of the renormalized action can be separated, respectively as

�SI = −
√

2L−

2πα′zh
2

L

2

(
1 + (B − 2A)L2

24

)(
1 + (B − 4A)L2

24
+ L4

160z4
h

)
(50)

and

�SI = −
√

2L−

2πα′zh
2

L

2

(
1 + (B − 2A)L2

24

)(
1 + BL2

24
+ L4

160z4

)
. (51)
h
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Thus the gauge–gravity prescription (44) is reduced into

C = (1 − 2�SI )
(

1 − 2 (�SI )
2
)

=
[

1 + L−L√
2πα′zh

2

(
1 + (B − 2A)L2

24

)(
1 + (B − 4A)L2

24
+ L4

160z4
h

)]

×
[

1 − L−2L2

4π2α′2z4
h

(
1 + (B − 2A)L2

12

)(
1 + BL2

12
+ L4

80z4
h

)]
(52)

Let the first and the second term in the square bracket in the above equation (52) be denoted by I 
and II, respectively

I ≡
[

1 + L−L√
2πα′zh

2

(
1 + (B − 4A)L2

24
+ L4

160z4
h

− (B − 2A)L2

24

)]

=
[

1 + L−L√
2πα′zh

2

(
1 − AL2

12
+ L4

160z4
h

)]
(53)

II ≡
[

1 − L−2L2

4π2α′2z4
h

(
1 + (B − A)L2

6
+ L4

80z4
h

)]
(54)

Therefore the product of the terms I and II in (52) yields

C =
[
1 − pL − qL2 − rL3 − sL4 − tL5 − uL6 + higher order terms

]
, (55)

where

p ≡ − L−

π
√

2α′zh
2

q ≡ L−2

4π2α′2zh
4

r ≡ AL−

12π
√

2α′zh
2

(56)

By inverting the equation and ignoring the higher-order terms, the separation (L) is given by

L = 1 − C

p
− q (1 − C)2

p2
+ (1 − C)3 (2q2 − pr

)
p5

(57)

Therefore the quenching parameter, q̂ is obtained from the definition (3):

q̂ = 1

L−L2

= L−

2π2α′2z4
h(1 − C)2

[
1 − L−(1 − C)√

2πα′z2
h

− (1 − C)2

(
1 + Aπ2α′2z4

h

3L−2

)]
, (58)

which finally results into for C = 1
2 ,

q̂ = 2L−

π2α′2z4

[
3

4
− L−

2
√

2παz2
− Aπ2α′2z4

h

12L−2

]
(59)
h h
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Case II: In the long-distance limit (zm � zh), let us first express the separation (L) as a function 
of zm. Therefore, we split up the limits of integration to the equation of motion (23) and then 
integrate it to yield L as a function of zm:

iL

2
=

zm∫
0

dz
(1 + 0.5Bz2)(1 − Az2)√

1 − z4

zh
4

=
zh∫

0

dz
(1 + 0.5Bz2)(1 − Az2)√

1 − z4

zh
4

+
zm∫

zh

dz
(1 + 0.5Bz2)(1 − Az2)√

1 − z4

zh
4

= 1.3zh + 0.15(B − 2A)zh
3 − 0.22ABzh

5

+ i
[
1.14zh + 0.5(B − 2A)zm − 0.17ABzm

3
]

(60)

Inverting the series and ignoring the higher-order terms we express zm in terms of L as

zm = L − 2.28zh + i2.6zh

(B − 2A)zh
2

(61)

Now the (renormalized) action (42) in this limit can be expressed as a function of L:

SI = − L−
√

2πα′zh
2

[
2.44zh + 0.5Bzh

2
(

L − 2.28zh + i2.6zh

(B − 2A)zh
2

)
− 0.16izh

+ i0.5(B + 2A)zh
2
(

L − 2.28zh + i2.6zh

(B − 2A)zh
2

)]
. (62)

Ignoring the higher-order terms, we get the action as a function of L,

SI
zm�zh= − L−

√
2πα′zh

2

[
0.5BL

(B − 2A)
+ i

0.5(B + 2A)L

(B − 2A)

]
(63)

Now the real and the imaginary parts of renormalized action can be separated, respectively as

�SI = − BL−L

2
√

2π(B − 2A)α′zh
2

(64)

�SI = − (B + 2A)L−L

2
√

2π(B − 2A)α′zh
2

(65)

Thus the gauge–gravity correspondence (44) in this limit is translated into:

C = e

[
(B+2A)L−L√
2πα′(B−2A)z2

h

]
cos

[
BL−L√

2πα′(B − 2A)z2
h

]
(66)

Defining

a ≡ (B + 2A)L−
√

2πα′(B − 2A)z2
h

b ≡ BL−
√

2πα′(B − 2A)z2
, (67)
h
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the above equation (66) has been inverted to give rise the expression for the dipole separation 
(L) as

L = C − 1

a

[
1 + (a2 − b2)(1 − C)

2a2
+ (2a4 − 3a2b2 + 3b4)(1 − C)2

6a4

+ (6a6 − 11a4b2 + 16a2b4 − 15b6)(1 − C)3

24a6
+ · · ·

]
(68)

Using the numerical values of A and B in [19] (A = B = 0.124), the expressions for a and b in 
Eq. (67) can be rewritten as

a = −3πT 2L−
√

2α′ and b = −πT 2L−
√

2α′ , (69)

and hence the separation becomes

L =
√

2(1 − C)α′

3πT 2L−

[
1 + 4(1 − C)

9
+ 23(1 − C)2

81
+ 301(1 − C)3

1458
+ · · ·

]
(70)

Thus the quenching parameter q̂ is obtained from (3) by substituting the square of the separation 
(70) for C = 1/2

q̂ = 102T 4

α′2 L−, (71)

which is seen to be linear in L−.
In the study of DIS on a large nucleus in AdS/CFT set up [15], although authors did not calcu-

late q̂ directly but if we translate their calculation of the saturation scale, Qs into our calculation, 
we could use q̂ = Q2

s /L
−. The way Qs depends on L is, in turn, dependent on which complex 

branch is chosen. In particular they took Qs ∼ A1/3 ∼ L−, since L ∼ A1/3. Hence in both cases 
q̂ comes out to be ∼ L−, which appears to be in agreement with our calculation. Since they 
assumed L−(∼ A1/3) to be large enough, they need not keep the inverse powers of L−. We even 
checked with their shock-wave metric [15], where q̂ is ∼ L− for large L− and in agreement with 
our result in the respective limit.

From other perspective of jet quenching phenomena, by comparing the medium induced en-
ergy loss and the pT -broadening in perturbative QCD with that of the trailing string picture 
of conformal theory in [30], they also have used Qs ∼ L−, such that q̂ = Q2

s /L
− ∼ L− is in 

agreement with everything else we obtained so far in our calculations.

4. Results and discussions

We have calculated the quenching parameter, q̂ in the holographic set-up of gauge–gravity 
duality, where the dual gauge theory at finite temperature is more closer to thermal QCD than the 
N = 4 SYM theory usually used in the literature. Moreover we use a more appropriate definition 
of q̂ compatible with the strong coupling limit of gauge–gravity duality, for which the real part 
of the Wilson loop expectation value is equal to some specific value (1/2). We have found that in 
both short- and long-distance limit, q̂ depends linearly on L−. However, in short-distance limit 
we obtain 1/L− and L−2 correction terms.
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It is however worth to mention here that it is not clear what one should do with q̂ found in 
a non-perturbative AdS calculation. Since the energy loss calculations are usually done using 
the perturbative approximation, one cannot simply take a non-perturbative q̂ and plug it into the 
perturbative energy loss expression. But then there is nothing else one can do. This is why people 
calculated drag force on a heavy quark without looking for q̂ [36–38] or the instantaneous energy 
loss suffered by light quarks in AdS directly [32,33]. It would be interesting to see whether the 
drag calculation would give the same q̂ as the one we have obtained. As far as we remember, the 
drag calculation in [30] obtained both q̂ and Qs which are in qualitative agreement with what we 
have gotten.
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