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SUMMARY

Research on emotion attribution has tended to focus
on the perception of overt expressions of at most five
or six basic emotions. However, our ability to identify
others’ emotional states is not limited to perception
of these canonical expressions. Instead, we make
fine-grained inferences about what others feel based
on the situations they encounter, relying on knowl-
edge of the eliciting conditions for different emo-
tions. In the present research, we provide convergent
behavioral and neural evidence concerning the rep-
resentations underlying these concepts. First, we
find that patterns of activity in mentalizing regions
contain information about subtle emotional distinc-
tions conveyed through verbal descriptions of elicit-
ing situations. Second, we identify a space of ab-
stract situation features that well captures the
emotion discriminations subjects make behaviorally
and show that this feature space outperforms
competing models in capturing the similarity space
of neural patterns in these regions. Together, the
data suggest that our knowledge of others’ emotions
is abstract and high dimensional, that brain regions
selective for mental state reasoning support rela-
tively subtle distinctions between emotion concepts,
and that the neural representations in these regions
are not reducible to more primitive affective dimen-
sions such as valence and arousal.

INTRODUCTION

Others’ emotional states can be identified by diverse cues in-

cluding facial expressions [1], vocalizations [2], or body posture

[3]. However, we can also attribute subtle emotions based solely

on the situation a person encounters [4, 5], and our vocabulary

for attributing these states extends beyond the emotions associ-

ated with canonical emotional displays [6]. While the space

of emotions perceived in faces has been studied extensively

[7–9], little is known about how conceptual knowledge of others’

emotions is organized, or how that knowledge is encoded in the

human brain. What neural mechanisms underlie fine-grained at-

tributions (e.g., distinguishing when someone will feel angry

versus disappointed)? Here, we suggest that emotion attribution
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recruits a rich theory of the causal context of different emotions

and show that dimensions of this intuitive knowledge underlie

emotion representations in brain regions associated with theory

of mind (ToM).

Previous research suggests that others’ emotions are repre-

sented at varying levels of abstraction throughout face-selective

and ToM brain regions. For example, different facial expressions

elicit discriminable patterns of activity in the superior temporal

sulcus (STS) and fusiform gyrus [10, 11]. In contrast, the medial

prefrontal cortex (MPFC) has been shown to contain representa-

tions of emotion that are invariant to perceptual modality [12, 13]

and generalize to emotions inferred in the absence of any overt

display [14]. However, all of these studies focused on coarse dis-

tinctions, decoding either valence [14] or five basic emotions

[13]. Does the MPFC also support more fine-grained emotional

discriminations? To address this question, we constructed ver-

bal stimuli (see Table 1) describing situations that would elicit 1

of 20 different emotions in a character (validated using 20-alter-

native-forced-choice [AFC] behavioral experiment with indepen-

dent subjects; see Supplemental Experimental Procedures) and

used multi-voxel pattern analysis [15] to test which regions

contain information about these subtle emotional distinctions.

As a first step, we trained a classifier to distinguish the 20

emotions using distributed patterns of activity across voxels in

a region and tested whether the emotion category of a new

stimulus can be classified based on the pattern of neural activity

it elicits. In addition to whole-brain analyses, we focused on

a priori regions of interest (ROIs), the strongest candidates

being subregions of MPFC—dorsal medial prefrontal cortex

(DMPFC) and middle medial prefrontal cortex (MMPFC) [13,

14]. We also tested other regions of the ToM network [16]: precu-

neus (PC), bilateral temporal parietal junction (TPJ), and right

STS (RSTS).

We then used representational similarity analysis (RSA; [17]) to

test competing hypotheses about the representational spaces in

these regions. RSA complements classification analyses by

providing a framework for characterizing representational struc-

ture and for testing competing models of that structure [17, 18].

In RSA, neural population codes are represented in terms of the

similarity of neural patterns elicited by different stimuli or condi-

tions. A neural representational dissimilarity matrix (RDM) of the

conditions can then be compared to the similarity spaces

captured by a number of different models [18, 19]. Importantly,

RSA allows for comparison of hypotheses that take different

forms and have different numbers of parameters. The correlation

betweenmodel and neural RDMs has no free parameters, mean-

ing that a model will not provide a better fit to the data simply
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Table 1. Example Stimuli

Stimulus

Type Example Stimulus

Emotion After an 18-hr flight, Caitlin arrived at her vacation

destination to learn that her baggage (including necessary

camping gear for her trip) had not made the flight. After

waiting at the airport for two nights, Caitlin was informed

that the airline had lost her luggage altogether and would

not provide any compensation.

For months, Naomi had been struggling to keep up with

her various projects at work. One week, the company

announced that they would be making massive payroll

cuts. The next day, Naomi’s boss asked her to come into

his office and close the door behind her.

Linda was having financial difficulties after graduating

from college. She worked overtime and lived very

meagerly but still had trouble making her loan payments.

One day, she received a letter from her grandfather saying

that he wanted to help. A check for $8,000 was enclosed.

Dana always wanted a puppy, but her parents said it was

too much of a hassle. One summer afternoon, Dana’s

parents returned from a supposed trip to the grocery

store, and Dana heard barking from inside her garage.

She opened the door to see her parents holding a golden

retriever puppy.

Physical

pain

One afternoon, Caitlin was running through her house

while playing tag with her friend. After going through a

doorway, Caitlin slammed the door behind her, but her

fingers were caught in the door. When they opened the

door, two of her fingers were broken.

All experiments used the same set of 200 verbal stimuli in which a char-

acter experienced 1 of 20 different emotions (validated with 20-AFC

experiment on MTurk), conveyed via a description of an emotion-eliciting

event (see Supplemental Experimental Procedures).
because it is higher dimensional. Thus, RSA can go beyond clas-

sification to test specific alternative models of the dimensions

that structure the representation of others’ emotions.

Candidate Feature Spaces for Emotion Inference
Research in affective neuroscience has typically examined rep-

resentations involved in both first-person emotional experience

and emotional face perception. Here, we address a different

question, concerning observers’ inferences about others’ emo-

tions. Nevertheless, it is plausible that intuitive theories of

emotion are fairly veridical (in order to be maximally useful in so-

cial interactions) and even informed by one’s own emotional ex-

periences. Therefore, models of the structure of first-person

emotional experience may also capture the basis for third-per-

son emotion attribution. We drew from prior literature on

emotional experience three alternativemodels of the representa-

tional space of emotions.

A dominant approach has been to represent emotions as com-

binations of more basic affective states. According to basic

emotion theory, complex and subtle emotions can be under-

stood as combinations of 5–6 basic emotional states, each asso-

ciated with a prototypical facial expression and innate neural

substrate [1, 20, 21]. A second theory is the ‘‘circumplex’’ model,

which posits that emotions are composed of only two primitive
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dimensions—valence and arousal [9, 22, 23]—corresponding

to two innate systems implemented in distinct neural circuits

and recruited to varying degrees across different emotions

[24–26]. In this view, neural representations of emotion may be

reduced to a linear combination of these two neurophysiological

dimensions [27].

Although many have focused on the differences between

these two proposals [28, 29], both aim to represent emotions

in terms of combinations of a small number of basic affective

states, rooted in innate neural substrates. An alternative

approach in affective science, termed ‘‘appraisal theory,’’ aims

to instead characterize emotions in terms of people’s interpreta-

tions or ‘‘appraisals’’ of the events around them [30, 31]. Re-

searchers have proposed specific sets of event appraisals that

correspond to different emotions (see Supplemental Experi-

mental Procedures for further details) and shown that these fea-

tures capture differences in the emotions subjects experience

across different situations [32, 33].

All three of these theories have shown some utility in charac-

terizing first-person emotional experiences. Here, we investi-

gated whether any of these approaches successfully capture

subjects’ intuitive attributions of others’ emotions and whether

they could explain the representational spaces in MPFC and

other ToM regions. If people reason about others’ emotions us-

ing an intuitive causal theory (embedded in a larger intuitive

ToM), this theory should capture regularities in the situations

that cause different emotions. Thus, we hypothesized that the

representations involved in inferring the emotions of others,

especially based on short verbal narratives, would be better

captured by abstract event features than by combinations of

basic emotional dimensions.

We therefore used RSA to determine whether representations

in regions that discriminate our 20 categories are best captured

by one of three candidate spaces (see Figure 2): a ‘‘circumplex’’

space defined by independent subjects’ judgments (Amazon

Mechanical Turk [MTurk]; see Supplemental Experimental Pro-

cedures) of valence and arousal for each stimulus, a ‘‘basic

emotion’’ space defined by judgments of the extent to which

the stimulus elicited each of six basic emotions (happy, sad,

angry, afraid, disgusted, or surprised), and a space of abstract

event features derived from appraisal theory. For this third

model, we generated a set of 38 event features thought to reli-

ably vary across different emotion concepts (e.g., ‘‘Did someone

cause this situation intentionally, or did it occur by accident?’’;

See Supplemental Experimental Procedures for appraisal fea-

tures and selection process). Importantly, the latter space differs

from the other two not only in its dimensionality (38 dimensions

versus 6 or 2) but also in its content: rather than reducing the

space of emotions to a smaller set of purportedly ‘‘basic’’ affec-

tive states, it aims to encode emotions in terms of abstract fea-

tures of the causal contexts that tend to elicit them. To test which

feature space best explains the neural representation of these

stimuli, we computed the similarity of emotion conditions within

each proposed feature space and compared the RDMs of candi-

date models to neural RDMs derived from patterns of activity

across voxels in each ROI.

Of course, the hypothesis that neural representations of

emotion concepts are best captured by a high-dimensional

space of abstract event features is not incompatible with the
Ltd All rights reserved



Figure 1. Classification Results

(A) Above-chance 20-way classification of emo-

tions in all ToM regions.

(B) Whole-brain random-effects analysis of ToM

localizer (false belief > false photo, red); searchlight

map for 20-way emotion classification (blue);

overlap (purple).

(C) Classification accuracy broken down by

emotion: average classification accuracy for each

emotion condition (±SEM across exemplars) in

behavioral judgments.

(D) Correlation between behavioral classification

accuracies (from C) and neural classification accu-

racies for each emotion class (based on errors of an

SVM trained and tested onMMPFC voxel patterns).
claim that simpler dimensions like valence and arousal con-

tribute to the organization of our emotion knowledge. For

example, we included features such as goal consistency and

pleasantness that intuitively relate to the dimension of valence.

The question, then, is whether the representations in regions

like MPFC can be exhausted by one of the simpler spaces.

With this approach, we show that it is possible to characterize

the fine-grained representational structure of a high-level human

reasoning capacity like emotion attribution.

RESULTS

Classification
In the scanner, subjects (n = 22) read 200 stimuli describing sit-

uations that would cause a particular emotion (see Experi-

mental Procedures; example stimuli provided in Table 1). To

confirm that these stimuli elicit reliable fine-grained emotion at-

tributions, a group of subjects on MTurk were asked to choose

which of 20 emotion labels best described the emotion of the

character in each stimulus. These subjects performed well

above chance (relative to the intended emotion), classifying

the stimuli with 65% accuracy (chance = 5%; Figure 1C; see

Supplemental Information for evidence that subjects attribute

consistent emotions). This classification accuracy provided a

benchmark with which to compare different models and brain

regions.

To identify regions in which neural patterns contain informa-

tion about emotions, we first replicated the finding that MPFC

contains abstract emotion representations by testing whether

neural patterns in MPFC could distinguish the valence in single

trial estimates of these verbal stimuli. We functionally localized
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MPFC and other ToM regions in individual

subjects (see Figure S1). We selected a

subset of conditions that most closely

align with the positive and negative condi-

tions used previously [14] and tested

whether neural patterns in MPFC would

support decoding of valence. Replicating

prior work, classification of valence was

reliably above chance in both DMPFC

(M(SEM) = 0.610(0.028), t(19) = 3.889,

p < 0.001) and MMPFC (0.603(0.019),

t(19) = 5.530, p < 0.001).
We then investigated whether these or other regions contain

information about the full set of 20 emotions. A whole-brain

searchlight revealed that the set of regions that could reliably

decode the 20 emotions was largely restricted to regions of the

ToM network (particularly DMPFC, RTPJ, LTPJ; see Figure 1B

and Table S1). The searchlight analysis exhibited striking overlap

with the set of regions recruited for ToM (Figure 1B shows over-

lap between the searchlight [family-wise error, FWE p < .05, k >

25] and the random effects analysis of false belief > false photo-

graph from the localizer task, shown at p < .001 uncorrected) and

justified our continued focus on these a priori ROIs. Consistent

with the searchlight results, we were able to classify emotions

with above-chance accuracy (1 out of 20 emotions, 5%) based

on neural patterns in all individually localized ToM regions (Fig-

ure 1A; Table S2). Because these analyses involved training

and testing across stimulus items, above-chance classification

indicates a representation of emotion that generalizes across

otherwise highly variable verbal scenarios.

Moreover, in the judgments provided by subjects on MTurk,

there were reliable differences across the emotion categories in

the extent towhich subjects provided the expected emotion label

(one-way ANOVA: F(19,180) = 4.99, p < 0.001; see Figure 1C),

which provided another signature with which to compare neural

representations. We computed separate accuracies for each

emotion category in each ROI and correlated these with the

behavioral emotion labeling accuracies. In all ROIs, the accuracy

of neural classifications for different emotions was significantly

correlatedwith the accuracy levels observed in the emotion judg-

ments of the MTurk behavioral raters (see Table S2; see Fig-

ure 1D). Thus, the reliable across-emotion accuracy differences

observed behaviorally were paralleled in the emotion-specific
ª2015 Elsevier Ltd All rights reserved 1947



Figure 2. Competing Behavioral Feature Spaces Derived from MTurk Ratings

(A–C) Matrix of emotions 3 average dimension scores for the appraisal space (A), the six basic emotion space (B), and the circumplex space (C).

(D) Classification of 20 emotions (across stimulus exemplars) using information from each of the three competing spaces (±SEM across exemplars). Orange

dotted line reflects chance (.05); blue dotted line reflects behavioral performance (.65).
accuracies of these neural populations (see Figure S1B for neural

confusion matrices).

RSA
Representational similarity analyses were then used to test spe-

cific hypotheses about the structure of the representations in

these regions. We generated three competing feature spaces

using independent behavioral ratings (Figure 2A) and tested

which feature space could best capture the neural representa-

tion of the 20 emotions. We first analyzed the behavioral data

alone, assessing the extent to which emotion categories could

be reliably classified based on feature vectors in each of these

candidate spaces. Specifically, we tested whether models

trained on each of the feature vectors for a subset of stimuli could

reliably classify the emotion label of untrained stimuli (see Sup-

plemental Experimental Procedures). Do any of these feature

spaces provide a stimulus representation sufficient to match

the performance of human subjects in discriminating these 20

emotions (65%)?We found that although all three feature spaces

classified well above a chance level of 5%, the appraisal feature

space outperformed the other lower-dimensional spaces (57%,

compared to behavioral benchmark of 65%; see Figure 2B; note

because we used cross-validated accuracy, this analysis is not

biased by the dimensionality of themodels). Using a paired sam-

ples t test across individual items, we found that the abstract

appraisal space performed reliably better than the circumplex

space (t(199) = 8.288, p < 0.001) and the basic emotion space

(t(199) = 2.176, p = 0.031).

RDMs derived from these three feature spaces were then

compared to neural RDMs in each region to identify the space

that best accounts for the similarity of the emotion conditions

in their neural patterns. Because the appraisal RDM could

perform best simply because it better discriminates the 20 emo-

tions, we compared its performance to that of a pure categorical
1948 Current Biology 25, 1945–1954, August 3, 2015 ª2015 Elsevier
model and an RDM defined from the behavioral confusion matrix

(see Supplemental Experimental Procedures), both of which

also successfully discriminate the emotions (Figure 3). We

also tested a model in which condition similarity is defined in

terms of similarity of word-frequency vectors, a representation

frequently used in fully automated approaches to emotional

text classification such as sentiment analysis of reviews or

other social media [34, 35]. Does the appraisal space outperform

a raw word-level representation of the stimuli? Finally, we

tested three control spaces capturing possible lower-level di-

mensions: reading ease, syntactic complexity, and rated inten-

sity (confounded with motor response) (see Supplemental

Experimental Procedures).

For each region, we correlated RDMs for the competing

feature spaces to neural RDMs from individual ROIs (distances

of the 20 emotions in their voxel-wise patterns). In the two

MPFC subregions, the similarity of emotion conditions in voxel-

level patterns was positively correlated with similarity in the

space of 38 appraisal dimensions (group-level Kendall’s tau,

DMPFC: 0.28; MMPFC: 0.21). Correlations with individual sub-

ject neural RDMs revealed a reliable relationship between the

neural and model RDMs (see Table 2; Figure 4). In both DMPFC

and MMPFC, the neural similarities were more correlated with

the appraisal space than with either basic or circumplex spaces

(see Table 3). In both regions, the appraisal RDM also outper-

formed the categorical and confusion spaces, suggesting that

the superior performance of this model cannot be fully explained

by its ability to better differentiate the 20 emotions. The appraisal

space also outperformed the RDM defined from word-token fre-

quencies and the control spaces for reading ease, syntactic

complexity, and intensity (see Table 3).

We conducted the same analyses in the remaining ToM re-

gions (RTPJ, LTPJ, PC, RSTS, and VMPFC): neural representa-

tions in these ROIs were also reliably correlated with the
Ltd All rights reserved



Figure 3. RSA Methods

Representational dissimilarity matrices (RDMs)

encode the pairwise Euclidean distances between

different emotions within each feature space. For

each region, a neural RDM captures the pairwise

Euclidean distances between different emotions in

the patterns of activity elicited across voxels

(DMPFC shown here). Feature spaces are fit to the

neural data by computing correlations between

feature space RDMs and neural RDMs for each

region in each subject. In addition to the three

candidate theories, we also test confusion and

categorical spaces. Given that the appraisal space

best captures the distinctions between the 20

emotions, it could outperform simpler models

simply by virtue of its superior emotion discrimi-

nation. To test this possibility, we compare the

appraisal space to a pure categorical RDM, which

assumes that all emotions are perfectly and

equally discriminable. As a more conservative test,

we compute the correlation between neural RDMs

and the raw behavioral confusion matrix. Like the

categorical model, this confusion RDM captures

the distinctions between the 20 emotions but also

encodes similarity between different emotions as

reflected in the behavioral confusions. If the

appraisal space outperforms these two models, it

suggests that the appraisal space fits the neural

data in virtue of the features rather than emotion

discriminability alone.
appraisal space RDM (see Figure 4 for RTPJ; see Figure S3 for

results from other ToM regions), and no region was reliably

more correlated with the basic emotion or circumplex spaces.

The 38-dimensional space outperformed competing spaces in

all ToM regions except for VMPFC (where the best-performing

space was the word-frequency representation). However,

DMPFC and MMPFC were the only regions in which the high-

dimensional space significantly outperformed all models.

Region Contributions
We could reliably decode emotions in all ToM ROIs, and the

appraisal space did the best job of capturing the neural similarity

space in most regions. Is the same information represented

redundantly, or might these regions contribute differently to

the representation of emotions? When classifying only valence,

a model trained with voxels from all ToM ROIs (M(SEM) =

0.581(0.016), t(21) = 4.942, p < 0.001) performed less well than

a model trained only with voxels in DMPFC (58.1% relative to

61%). However, when classifying the full set of 20 emotions, a

model trained with voxels from all regions outperformed any of

the individual ROIs, raising the possibility of non-redundant infor-

mation across ToM regions.

To test for possible representational differences across the

ROIs, we first used an iterative split-half reliability analysis

(Supplemental Experimental Procedures). We found that neu-
Current Biology 25, 1945–1954, August 3, 2015
ral RDMs in DMPFC and RTPJ were

more correlated with themselves than

with the other ROI (Mwithin = 0.178,

Mbetween = 0.164, p < 0.001) and that

this effect was not observed between
MMPFC and RTPJ (Mwithin = 0.121, Mbetween = 0.123, p <

0.922). To further characterize potential non-redundancy, we

explored whether the regions differed in the particular situa-

tion features they represent. Rather than compute separate

RDMs for each of 38 appraisal features, we identified a

reduced set of ten features that captured the most unique

variance in behavioral ratings across items, using a stepwise

regression approach (see Figures S2 and S4; Supplemental

Experimental Procedures). We then computed the RDMs for

this ten-dimensional space and also for each of the ten fea-

tures individually and correlated each with the neural RDMs

in different regions. The neural RDMs in all regions were reli-

ably correlated with the RDM of the ten-feature space (see

Table 2; Figure S4), which appears to capture much of the

representational structure of the initial 38-dimensional space

(Figure S2). Consistent with the results above, a repeated-

measures ANOVA on the neural-model correlations for each

feature (with ROI and feature as within-subjects factors) re-

vealed a significant ROI 3 feature interaction for the compar-

ison of DMPFC and RTPJ (F(9,171) = 2.06, p = 0.036), but not

between MMPFC and RTPJ (F(9,171) = 1.036, p = 0.414).

Together, these results provide evidence that multiple ToM re-

gions are involved in the attribution of emotion and that some

of these regions may contribute unique information to the final

representational space that governs behavior.
ª2015 Elsevier Ltd All rights reserved 1949



Table 2. Neural RDM Results

ROI Model M SEM Z df Significance

DMPFC appraisals .08 .02 3.32 19 <0.001

ten features .08 .02 3.21 19 <0.001

MMPFC appraisals .06 .02 2.95 19 <0.002

ten features .05 .02 2.61 19 <0.004

RTPJ appraisals .07 .02 3.59 21 <0.001

ten features .06 .01 3.55 21 <0.001

ToM

network

appraisals .09 .02 3.68 21 <0.001

ten features .08 .02 3.68 21 <0.001

Model-neural correlations for 38-dimensional abstract event space and

reduced space of ten features. df, degrees of freedom.
DISCUSSION

Decades of research in the science of emotion have aimed to

characterize emotions in terms of some low-dimensional space

of basic affective primitives [1, 23, 27, 36]. Behaviorally, we

find that a space of abstract event features, derived from work

in appraisal theory [33], reliably outperforms these simpler

spaces in discriminating the 20 different emotions in our stimuli.

Consistent with previous reports [13, 14], we find that neural rep-

resentations in MPFC contain information about attributed emo-

tions.Whereas prior studies focused on coarse distinctions (e.g.,

valence), we classify a set of nuanced emotions at above-

chance levels. Moreover, by expanding to a rich space of elicit-

ing situations, we are able to decode attributed emotions in all

regions of the ToM network, and the searchlight results suggest

that this information is largely restricted to these regions (partic-

ularly MPFC, RTPJ, and LTPJ).

Although these classifications are reliably above chance (5%),

they are far from reaching the accuracy observed behaviorally

(65%). This discrepancy between neural and behavioral classifi-

cation could arise because the population code in these regions

is insufficient to explain the behavior and/or because single trial

estimates of fMRI data provide a noisy, blurred measurement of

the underlying neural code. However, across different emotions,

there are reliable correlations in the average accuracy of the neu-

ral populations and of independent behavioral ratings, providing

support for the role of these regions in emotion attribution

behaviors.

The present work also probes the underlying representa-

tional structure that supports emotion discrimination. Previous

literature [12–14] is consistent with the possibility that MPFC

codes a limited space of affective dimensions such as valence

and/or arousal. Moreover, even in our neural classification an-

alyses, a region could support 20-way classification at above-

chance levels by coding only a single dimension or feature

that varies across emotions. Using RSA, we find not only

that brain regions involved in ToM reasoning contain informa-

tion about attributed emotions but also that this information

is best captured by the high-dimensional space of event

features.

In the majority of ToM regions, the similarity of emotion con-

ditions in their voxel response patterns is most correlated with

the similarity of the emotions in the space of appraisals. This

result suggests a neural code that does not reduce to a simpler
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set of distinctions, such as valence and arousal, and provides

novel insight into the granularity of the emotion representations

in MPFC and other ToM regions. Together, the data suggest

that human emotion attribution is organized around abstract

features of the causal context in which different emotions occur

rather than the affective primitives that have dominated prior

research.

A challenge for future work will be characterizing the scope

and specificity of the neural representations in ToM regions.

Do these neural populations contain representations specific

to attributed emotion, coded within a space of emotion-relevant

event features, or contain information in the form of domain-gen-

eral semantic representations used in the service of emotion

attribution? It is quite possible that these event representations

function as intermediate features in the service of diverse infer-

ential processes in addition to emotion attribution. Ultimately,

successfully inferring emotions depends on a rich body of world

knowledge, and neural populations specific to social cognition

must interface with more general-purpose semantic systems.

Characterizing information flow within and between these

different networks will be an important avenue for future

research.

Characterizing Representational Spaces
To characterize the feature space that governs representation

of attributed emotion in the human brain, we draw on methods

that have been fruitful in recent research on visual object

recognition and object semantics, where researchers have

tested a range of high-level and low-level features that could

capture neural similarity of different objects [18, 37–39]. In

one study, Mitchell and colleagues [38] coded object words

in terms of co-occurrence with a set of verbs hypothesized

to pick out relevant semantic dimensions (e.g., ‘‘manipulate,’’

‘‘taste’’), a representation that was sufficient to support neural

classification of untrained stimuli. Later work showed that a

corpus-based co-occurrence space is outperformed by a

space derived from behavioral ratings on a set of a priori ob-

ject properties (e.g., is it alive?) [40]. The present research is

most similar to this second approach, relying on behavioral

ratings of a set of hypothesized event features. We show

that it is possible to generate candidate representational

spaces for domains of high-level cognition such as emotion

inference and to use these spaces to characterize patterns

of activity in ToM brain regions.

The study of object representation has also made headway on

understanding differences across regions and temporal stages

[37, 39], with RSA in particular providing a flexible framework

for comparing the structure of the representations along the

ventral pathway [41]. Interestingly, the present results provide

preliminary evidence that ToM regions (particularly DMPFC

versus RTPJ) may differ in their contributions to emotion infer-

ence. Further work is needed to characterize the precise compu-

tational roles of these regions and how they interact with other

networks to form a processing stream.

As has been the case in research on object representation, we

assume that future studies of emotion attribution will yield stim-

ulus representations that outperform the 38-dimensional space

explored here. Many early approaches to modeling neural object

representations involved hand-picked features (e.g., 25 verbs)
Ltd All rights reserved



Figure 4. RSA Results

Mean correlation (Kendall’s tau) between candi-

date model RDMs and individual subject neural

RDMs (±SEM across subjects). Dotted line shows

the noise ceiling (see Table S3).
[38] and often manual coding of stimuli within those spaces [37,

42]. However, recent research using high-throughput, data-

driven approaches has yielded computational models that can

be applied to raw stimuli (i.e., images) and achieve high quanti-

tative fit to neural patterns [43]. Here, candidate features were

selected based on prior theories without subsequent optimiza-

tion (this list may therefore contain redundant or uninformative

features, and some additional features are likely necessary),

and the stimuli required manual annotation (MTurk ratings). In

fact, the model using 38 abstract event features falls short of hu-

man behavioral performance when labeling stimuli (57% versus

65%accurate), indicating that this collection of features does not

completely capture intuitive emotion knowledge. A data-driven

discovery method might be better able to capture the full range

of relevant dimensions; future research would ideally identify

new sets of optimized features (either event features or some

other candidate basis) and ways to infer these features directly

from text.

A second, more fundamental limitation is that this approach

aims to encode human emotion knowledge in terms of lists of

appraisal checks applied to each stimulus. While this flat feature

vector approach has been productive in other domains [44] and
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proved useful in the present paradigm, it is

unlikely that representations in domains of

high-level cognition such as ToM can be

reduced to operations over lists of associ-

ated features [45]. For example, an attrib-

uted emotion depends critically on the

temporal and causal order of the different

elements of the event (e.g., eating a whole

cake and then swearing to keep to your

diet versus swearing to keep your diet

and then eating a whole cake). To capture

the causal and compositional nature of

emotion inference [4], future research

may need to incorporate structured,

generative knowledge representations

from other areas of cognitive science

[46]. The present findings lay groundwork

for such research by providing an initial

sketch of specific dimensions that might

structure human emotion concepts and a

framework for evaluating competing

models of this knowledge.

Conclusions
Despite important open questions, the

present data provide novel insight into

the representations underlying human

emotion inference and the neural popula-

tions that support them.We show that it is

possible to decode attributed emotions

from neural patterns in regions involved in mental state

reasoning and provide quantitative insight into the underlying

representational structure that supports this inferential ability.

Together, the results suggest that our knowledge of others’

emotions is abstract and high dimensional, that brain regions

associated with emotion perception and inference contain infor-

mation about relatively fine-grained emotional distinctions, and

that the neural representations in these regions are not reduc-

ible to more primitive affective primitives such as valence and

arousal.

EXPERIMENTAL PROCEDURES

Further details on experimental procedures (e.g., ROI selection and univariate

analyses) are provided in Supplemental Experimental Procedures.

Behavioral Feature Ratings

A separate set of MTurk subjects (n = 250) provided ratings (1–10 scale) for

each of the stimuli on each of the features of the three competing feature

spaces (Supplemental Experimental Procedures). A given subject rated

stimuli on either features from the abstract event space (e.g., ‘‘Did someone

cause this situation intentionally, or did it occur by accident?’’; see Feature

Table in Supplemental Information) or dimensions corresponding to the

basic emotion space (e.g., ‘‘Was <character> happy in this situation?’’)
ª2015 Elsevier Ltd All rights reserved 1951



Table 3. Neural RDM Results

Comparison ROI M1 M2 z Significance

Appraisals versus

basic emotions

DMPFC .08 .05 3.02 .002

MMPFC .06 .03 2.31 .021

Appraisals versus

circumplex

DMPFC .08 .06 2.84 .005

MMPFC .06 .04 2.80 .005

Appraisals versus

word frequency

DMPFC .08 .02 2.99 .003

MMPFC .06 .02 2.17 .030

Appraisals versus

confusions

DMPFC .08 .04 2.54 .011

MMPFC .06 .03 2.20 .028

Appraisals versus

categorical

DMPFC .08 .02 3.17 .002

MMPFC .06 .01 2.61 .009

Appraisals versus

reading ease

DMPFC .08 .02 2.39 .017

MMPFC .06 .01 2.02 .044

Appraisals versus

syntax

DMPFC .08 .03 2.50 .012

MMPFC .06 .02 1.98 .048

Appraisals versus

intensity

DMPFC .08 .02 3.21 .001

MMPFC .06 .03 2.05 .040

Statistical comparisons (Wilcoxon signed-rank test) of neural-model cor-

relations for the appraisal space compared to all other candidate models,

using neural RDMs in MMPFC (df = 19) and DMPFC (df = 19).
and the circumplex space (e.g., ‘‘Did <character> find this situation to be

positive or negative?’’).

Feature-Based Classification of Behavioral Data

To test whether any of the three candidate spaces (basic emotion, circumplex,

and 38 appraisals) capture the full range of attributed emotions, we created an

item-by-feature matrix for each possible space and tested whether a model

(linear support vector machine [SVM]) trained on these features could classify

the 20 distinct emotions (see Supplemental Experimental Procedures). We

tested whether each feature space provided a basis for emotion discrimination

that generalized across the different exemplars by using item-based cross-

validation folds and computing the average cross-item classification accuracy

for each feature space (comparing to the behavioral benchmark: 65%).

fMRI Emotion Attribution Task

In the emotion attribution task, subjects viewed 200 emotion stimuli, along with

ten stories describing physical pain [47]. The experiment consisted of ten runs

(7.37 min/run), each containing one exemplar for each of 21 trial types (20

emotion conditions, 1 pain). Each story was presented at fixation for 13 s, fol-

lowed by a 2 s window for a behavioral response. Subjects were instructed to

press a button to indicate the intensity of the character’s experience (1 to 4,

neutral to extreme), which focused subjects’ attention on the character’s

emotional state but ensured that behavioral responses (intensity) were orthog-

onal to discriminations of interest. The stories were presented in a jittered,

event-related design, with a central fixation cross presented between trials

at a variable inter-stimulus interval of 3-5-7 s. The order of conditions was

counterbalanced across runs and participants, and order of individual stories

for each condition was randomized.

fMRI Analyses

Acquisition and preprocessing details are provided in Supplemental Experi-

mental Procedures.

Classification Analyses

We first aimed to replicate previous valence decoding in MPFC [14] by

choosing a subset of conditions that most closely matched the happy versus

sad emotions used in that study (‘‘excited,’’ ‘‘joyful,’’ ‘‘proud’’ versus ‘‘devas-

tated,’’ ‘‘disappointed,’’ ‘‘annoyed’’) and testing whether voxel patterns in
1952 Current Biology 25, 1945–1954, August 3, 2015 ª2015 Elsevier
MPFC could reliably classify the valence of these stimuli. We then tested

whether voxel patterns in MPFC or other ToM regions could reliably classify

the set of 20 emotions.

We conducted MVPA within ROIs that were functionally defined based on

individual subject localizer scans (including a ToM network ROI defined as

the union of each subject’s individually localized ROIs). We computed a single

voxel pattern for each individual trial by averaging the preprocessed bold im-

ages for the trial and Z scoring relative to the mean across all trial responses in

each voxel. The data were classified using a support vector machine; this clas-

sifier uses condition-labeled training data to learn a weight for each voxel, and

subsequent stimuli can then be assigned to one of two classes based on a

weighted linear combination of the responses in each voxel. For the 20-way

discrimination, multi-class classification was conducted with a one-versus-

one method [48]. Classification accuracy was averaged across ten cross-vali-

dation folds to yield a score for each subject per ROI, assessed with a one-

sample t test (one tailed) over individual accuracies (comparing to chance:

0.5 for positive versus negative; 0.05 for 20-way classification). See Supple-

mental Experimental Procedures for further details.

RSA

To create RDMs for the competing representational spaces, we first averaged

the feature vectors (from MTurk ratings) for each emotion condition (across

stimuli), yielding the emotion-by-feature matrices shown in Figure 2. For

each matrix, we then computed the Euclidean distance of feature vectors for

each pair of emotions.We conducted this analysis iteratively (n = 1,000) across

split halves of the data (five items per condition in each half), such that the self-

distances along the diagonal are meaningful. In addition to the five candidate

feature spaces (circumplex, basic emotions, appraisals, confusions, and cat-

egorical), we generated an additional space defined in terms of the similarity in

word occurrences across stimuli, as well as additional control spaces to

confirm that neural RDMs could not be explained in terms of lower-level prop-

erties of the stimuli: reading ease, syntactic complexity, and behavioral ratings

of intensity (Supplemental Experimental Procedures).

Neural RDMs were computed separately for each region in each subject

with the same procedure as for feature space RDMs, except that features

were voxel-wise neural responses rather than behavioral ratings (see Supple-

mental Information). We computed similarity of the conditions (Euclidean dis-

tance) in their voxel patterns (conducted across even and odd subsets so that

the diagonal is interpretable), yielding an RDM for each region. To compare

neural and model similarity spaces, we then computed the rank correlation

(Kendall’s tau-a) between the model and neural RDMs for each region in

each subject and compared these correlations to chance (average Kendall’s

tau = 0) with a Wilcoxon test. We also compared the fit of different models

by conducting a one-tailed Wilcoxon signed-rank test on the correlations for

different pairs of models.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and three tables and can be found with this article online at

http://dx.doi.org/10.1016/j.cub.2015.06.009.
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