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For being a polarized neuron and having a sensory cilium, photoreceptors attract remarkable attention.
This is due their highly polarized structure and active visual signal transduction cascades and for the
enrichment of complex networks of proteins in the cilium. Structural and functional maintenance of
the photoreceptor sensory cilium, also called outer segment, ensures that light signal is received and
relayed appropriately to the brain. Any perturbations in the protein content of the outer segment result
in photoreceptor dysfunction, degeneration and eventually, blindness. This review focuses on the impor-
tance of photoreceptor sensory cilium to carry out signal transduction cascade for vision.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction to cilia

The primary cilium is a microtubule based membranous exten-
sion that grows from a basal body (or mother centriole) in nearly
all cell types during interphase (Kobayashi & Dynlacht, 2011). Cil-
iogenesis is initiated by the attachment of the mother centriole
(which becomes the basal body) to a ciliary vesicle followed by
nucleation of microtubules to form the axoneme (Sorokin, 1962).
The base of the axoneme is structurally distinct and consists dou-
blet microtubules as opposed to triplet microtubules observed in
the basal body. This region is called the transition zone (TZ) and
consists of Y-linkers that connect the TZ microtubules to the ciliary
membrane (Gilula & Satir, 1972). There is no known protein syn-
thesis machinery within the cilium; therefore, the components
that make or maintain the cilia must be delivered to the cilia. Cilia
are built and maintained by an elaborate and evolutionarily con-
served bidirectional transport system called Intraflagellar Trans-
port (IFT). The IFT was first described elegantly in green alga
Chlamydomonas reinhardtii (Kozminski, Diener, & Rosenbaum,
1993; Kozminski et al., 1993). The IFT is carried out by two distinct
multiprotein complexes, IFT-A and IFT-B and microtubule based
motor assemblies Kinesin-2 (anterograde) and cytoplasmic dynein
(retrograde) (Rosenbaum & Witman, 2002). IFT-B and Kinesins are
ll rights reserved.
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involved in the anterograde transport of cargo whereas IFT-A and
the cytoplasmic dynein carry out retrograde movement of the pre-
cursors and other products back towards the basal body. Consis-
tent with this function, inactivation of IFT-B and the Kinesin
complex results in defective generation of cilia. However, role of
the retrograde transport complex in cilia formation or function is
not clear; nonetheless, inactivation of the IFT-A subunits as well
as cytoplasmic dynein can result in defective cilia.

There are two types of cilia: motile cilia and immotile (primary
or sensory) cilia. Motile cilia contain a 9 + 2 array of microtubules
(9 outer and 2 central microtubules) as well as outer and inner dy-
nein arms, which provide motility and modulate beating of these
cilia. On the other hand, primary cilia lack the central microtubule
pair and the dynein arms (9 + 0 array of microtubules) (Satir &
Christensen, 2008). Motile cilia are detected in a tissue restricted
manner, such as in propelling sperm, in embryonic node to pattern
left-right asymmetry, in airway epithelial cells and in cerebrospi-
nal fluid. Primary cilia are specialized as cellular antennae and
are detected in a more ubiquitous pattern compared to motile cilia.
They are involved in renal development and function, embryonic
development, limb bud development and in neurosensory func-
tions, such as hearing, smell, and sight (Anand & Khanna, 2012;
Gerdes, Davis, & Katsanis, 2009; Hildebrandt, Benzing, & Katsanis,
2011). Commensurate with their near ubiquitous presence and
their involvement in developmental pathways, any defects in cilia
formation or function are associated with a large number severe
defects, collectively called ciliopathies (Anand & Khanna, 2012;
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Badano et al., 2006; Hildebrandt, Benzing, & Katsanis, 2011). These
include Bardet–Biedl Syndrome (BBS), Joubert Syndrome (JBTS),
Meckel–Gruber Syndrome (MKS), and Senior–Løken Syndrome
(SLSN). In addition, ciliary dysfunction is also associated with iso-
lated disorders, such as cystic kidney disease (nephronophthisis
and polycystic kidney disease) and photoreceptor degeneration
(Anand & Khanna, 2012; Hildebrandt & Zhou, 2007; Pazour &
Rosenbaum, 2002).
2. Retina and photoreceptors

The retina is part of the central nervous system and is located at
the back of the eye. It exhibits a unique laminated structure formed
by six types of neurons and one type of glia. The outermost layer of
the retina consists of photoreceptors (PRs), which are the first or-
der of neurons that respond to light. Overlaying the photoreceptors
is a layer of phagocytic cells called retinal pigmented epithelium
(RPE). The photoreceptors transmit the visual signal to the inner
retinal neurons, which eventually transmit it to the optic nerve
and the brain (Masland, 1986). There are two types of photorecep-
tors: rods and cones. Rod photoreceptors are sensitive to dim light
and assist in dim light vision whereas cone photoreceptors are
responsible for the high acuity daytime vision (Wang & Kefalov,
2011). In humans, mice and other mammals, 95–97% of the photo-
receptors are rods and 3–5% are cones. The distribution of these
photoreceptors in the retina is also uneven with majority of cones
present in the central retina (or fovea in primates) while rods pre-
dominantly populate the peripheral retina (Carter-Dawson &
LaVail, 1979). Rod and cone photoreceptors also exhibit structural
differences. While all PRs have a distinct inner segment and
light-sensitive outer segment (OS), rod OS is arranged in the forms
of densely packed membranous disks enclosed by the plasma
membrane. In contrast, cone outer segments form disk-like
membranous invaginations that are not ensheathed in the plasma
membrane and hence, are in direct contact with the extraphotore-
ceptor milieu (also called interphotoreceptor matrix).
Fig. 1. Schematic representation of phototransduction components in photoreceptors. T
apical region of the inner segment. The transition zone extends from the BB and gives ris
the outer segment are enriched in rhodopsin and other proteins required for carrying out
RPE (retinal pigmented epithelium). In addition, RPE is also required for periodic disk she
the inset. N: nucleus.
3. Photoreceptor sensory cilium

The OS of photoreceptors is a modified sensory cilium. The cil-
ium originates from the basal body in the apical inner segment as
TZ (also called connecting cilium) (Fig. 1). The axoneme of the cil-
ium extends into the OS and is thought to provide structural back-
bone to the membranous disks that are loaded with the
photopigment rhodopsin and other proteins required for photo-
transduction (Liu et al., 2003). Photoreceptor cilia are unique in
two major ways: (i) the ciliary OS membrane contains coin-stack
shaped disks to increase the efficiency of signal detection and (ii)
the OS disks are periodically shed distally and new disks and mem-
brane components are renewed proximally. It is estimated that
approximately 10% of the OS is shed each day and to renew the
cognate membrane components, nearly 2000 opsin molecules are
transported per second in a normal human photoreceptor (Beshar-
se, Forestner, & Defoe, 1985; Besharse & Hollyfield, 1976, 1979;
Besharse, Hollyfield, & Rayborn, 1977a, 1977b; Young, 1967, 1968).

4. Ciliary signaling

The ciliary membrane maintains a unique composition of
peripheral and integral membrane proteins and receptors (Nachu-
ry, Seeley, & Jin, 2010). This feature makes cilia a platform to carry
out diverse signaling cascades by modulating the relay of extrinsic
cues to the cell interior. These pathways include sonic hgedgehog
(Shh), Wnt, and Platelet derived growth factor signaling. Shh sig-
naling is in the foundation of many developmental processes rang-
ing from left-right asymmetry, neural tube patterning and
formation of various tissues such as pancreas and lungs (Goetz &
Anderson, 2010; Scholey & Anderson, 2006; Singla & Reiter,
2006; Yoder, 2006). The relay of secreted ligand Shh depends on
the membrane bound receptor called patched1 (Ptch1). In the ab-
sence of the ligand, Ptch1 functions as a repressor of seven trans-
membrane protein Smoothened (Smo). Binding of Shh to Ptch1
results in the exit of Ptch1 from the cilium and translocation of
Smo into the cilium and conversion of Gli transcription factors into
he outer segment (OS) is a modified cilium, with the basal body (BB) located at the
e to the axoneme, which continues into the outer segment. The disk membranes in
the phototransduction cascade. Part of the cascade also takes place in the overlaying
dding by phagocytosis. Only selected proteins in the outer segment are depicted in
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their activator form. The activated Gli proteins are then translo-
cated to the nucleus to modulate gene transcription. In addition
to Shh signaling, cilia are also implicated in Wnt signaling, Notch
signaling, platelet derived growth factor receptor signaling as well
as signaling cascades involved in C. reinhardtii mating and photo-
tactic behaviors (Ezratty et al., 2011; Singla & Reiter, 2006).

Disruption of ciliary membrane protein transport affects Shh
signaling and results in developmental disorders. Mice carrying
mutations in IFT complex components exhibit neural patterning
phenotypes, reminiscent of defective Shh signaling (Huangfu &
Anderson, 2005; Liem et al., 2012). Loss of ciliary protein RPGRIP1L
(NPHP8; FTM) also results in defective Gli processing and Shh sig-
naling in mice (Vierkotten et al., 2007). Although mutations in
RPGRIP1L are primarily found in MKS and JBTS patients (Arts
et al., 2007; Brancati et al., 2008; Delous et al., 2007), hypomorphic
variations in RPGRIP1L can affect the penetrance and severity of
photoreceptor degeneration phenotype in JBTS and MKS patients
(Khanna et al., 2009).

Cilia are also implicated in the modulation of Wnt signaling
pathway. Discovered by Nusse and Varmus (1982), this signaling
cascade is a key regulator of embryogenesis, regeneration and can-
cer progression. There are two types of Wnt signaling cascades:
canonical (mediated by b-catenin) and non-canonical. Mechanistic
details of the mode of action of these pathways have been detailed
elsewhere. As Wnt signaling is also involved in retinal cell fate
determination and development, defects in Wnt pathway are asso-
ciated with retinal diseases, including Norrie’s disease, RP, and
familial exudative vitroretinopathy (Lad, Cheshier, & Kalani, 2009).

It should be noted that signaling events also take place in the
RPE due to periodic uptake of distal tips of the photoreceptor OS
by the RPE. These signaling events involve the a v b 5 integrin
receptors and downstream activation of tyrosine kinases, such as
Mer receptor tyrosine kinase (Mertk) and focal adhesion kinase.
These studies highlight the importance of ciliary signaling proteins
in carrying out photoreceptor development and function. These
studies have been elegantly described earlier (Feng et al., 2002;
Finnemann et al., 1997; Mao & Finnemann, 2012; Nandrot et al.,
2006). Subsequent sections in this article will focus on the impor-
tance of ciliary proteins in regulating photoreceptor ciliary signal-
ing cascades, specifically phototransduction. This article does not
attempt to focus on the phototransduction cascade per se, which
has been extensively reviewed previously. In fact, we would like
to focus on the role of ciliary transport processes that assist in
the recruitment of the various phototransduction signaling compo-
nents from the inner segment to the outer segment.
5. Light-dependent signal transduction in photoreceptors

Photon absorption requires the presence of a photopigment.
Both rods and cones have specific proteins called opsins that act
as the visual pigment when bound to the chromophore. In rods,
rhodopsin is the opsin that responds to light stimulus while cones
express cone opsins: there are generally three types of cone opsins
in humans: short wavelength or S-opsin, medium wavelength or
M-opsin and long wavelength or L-opsin. Mice express only two
types of cone opsins: S opsin and M opsin. Moreover, in mice, S
and M opsins are co-expressed in most cones. Opsins are members
of the G protein coupled receptor family of transmembrane pro-
teins and are the most abundant protein in the OS of photorecep-
tors (Palczewski, 2006) {Arshavsky & Burns, 2012 #1306;
Palczewski, 2012 #1307}.

In dark, the opsin is bound to the chromophore 11-cis retinal,
making a visual pigment. Photon absorption results in the isomer-
ization of 11-cis retinal (11 cis-RAL) to all-trans retinal (at-RAL),
which ultimately results in conformational changes in the opsin
to form an activated Meta II form of rhodopsin. Eventually, the
Meta II rhodopsin decays into an inactive Meta III state with disso-
ciation of at-RAL. This process is relatively faster in cones (within
seconds) than in rods (in several minutes). The conversion of light
signal into electrical signal is called phototransduction. Rhodopsin
activation is followed by signal amplification and deactivation to
confer reproducibility and higher demand of activity of these cells.
The next step in the visual transduction cascade is activation of G
protein transducing (Gt), which leads to activation of cGMP phos-
phodiesterase (PDE) causing hydrolysis of cGMP. Decrease in cGMP
concentration results in the closure of cyclic nucleotide gated
(CNG) channels, which are located at the OS plasma membrane.
This results in a decrease in the inward current eliciting membrane
hyperpolarization and block of glutamate release, which leads to
conveying the light signal to the next order of neurons as electrical
signal. The recovery after each phototransduction is essential to
ensure continuous response to light. Activated rhodopsin is turned
off by two steps. First addition of three phosphates by rhodopsin
kinase (GRK1) and second, arrestin binds and traps the phosphor-
ylated rhodopsin, reviewed in Wang and Kefalov (2011).
6. Transport of signaling proteins into ciliary OS

Like other cilia, PR cilia lack a protein synthesis machinery.
Therefore, all its components are synthesized in the IS and have
to be delivered to the basal body for eventual trafficking distally
into the cilia. PRs exhibit a light dependent enrichment of selected
soluble proteins in the OS: arrestin is accumulated in the OS in
light and translocates to the IS in dark. On the other hand, trans-
ducin is found predominantly in the dark (Sokolov et al., 2002;
Strissel et al., 2006). The mechanism of visual signal dependent
enrichment of proteins in the OS is thought to be regulated by dif-
fusion (Nair et al., 2005). It was also recently shown that soluble
GFP can freely diffuse between the IS and the OS (Calvert, Schies-
ser, & Pugh, 2010). However, it was recently shown that light-
dependent translocation of arrestin depends upon phospholipase
C dependent signaling and requires ATP (Orisme et al., 2010).
Membrane proteins traffic from the trans-Golgi network (TGN) as
vesicles and based on their targeting sequence, undergo polarized
transport to specific membrane compartments (Deretic, 1998).
Although it was shown that in PRs, the OS acts as the default des-
tination for transmembrane proteins (Baker et al., 2008), presence
of ciliary targeting sequence (CTS) might ensure complete and
more efficient system of delivery of key signaling molecules, such
as rhodopsin to the OS. The consensus CTS described for some cil-
iary membrane protein is VxPx . The CTS of rhodopsin is present in
its cytoplasmic tail and seems to facilitate ciliary trafficking by
associating with small GTPase ARF4, ASAP1, Rab11 and other asso-
ciated proteins (Deretic, Puleo-Scheppke, & Trippe, 1996; Deretic
et al., 1998; Mazelova et al., 2009). Trafficking from the Golgi to
the cilia also involved the IFT protein IFT20, which localizes to
the Golgi as well as cilia (Follit et al., 2006; Keady, Le, & Pazour,
2011). At the cilia, rhodopsin transport vesicles recruit Rab8, which
tethers the vesicle to the periciliary membrane, a privileged mem-
brane structure at the base of the cilia. The perciliary ridge was first
identified by Papermaster and colleagues (Papermaster, 2002). A
number of ciliary disease proteins have been found to localize to
the periciliary membrane or periciliary ridge. These include Usher
syndrome protein network and RP2 (Evans et al., 2010; Maerker
et al., 2008; Yang et al., 2010). The precise role of these proteins
at the perciliary membrane is currently unclear; nonetheless, these
proteins seem to modulate rhodopsin trafficking by regulating the
structure of the connecting cilium.

Entry of proteins into the cilia is regulated by the presence of a
membrane diffusion barrier or a gate in the form of TZ. The TZ
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consists of unique Y-shaped linkers and contains discrete multi-
protein complexes (Insinna & Besharse, 2008). The transport is
facilitated by interaction of the vesicles with the TZ complexes,
such as the BBSome, a complex of selected BBS proteins and the
IFT machinery (Nachury et al., 2007). PRs also exhibit a unique
characteristic by enriching additional GEF for Rab8, called RPGR
(retinitis pigmentosa GTPase regulator) (Hong et al., 2003; Khanna
et al., 2005; Murga-Zamalloa, Atkins, et al., 2010). Although RPGR
is widely expressed, its enrichment in the PRs indicates its role
in increasing the efficiency or specificity of membrane protein traf-
ficking to the OS. Commensurate with this, mutations in RPGR are a
major cause of inherited retinal degenerative disease retinitis pig-
mentosa in humans (Shu et al., 2007).

In addition to rhodopsin, the OS is enriched in other compo-
nents of the phototransduction cascade, such as GRK1, CNG, and
phosphodiesterases. The transport of these proteins to the OS is
equally important for normal function and maintenance of the
OS. Remarkable studies have shown that cone and rod photorecep-
tors possess distinct transport machinery and pathways for the
trafficking of OS proteins (Zhang et al., 2007, 2008, 2011). These
data add to the complex ciliary signaling cascades that are at work
in photoreceptors. The presence of a large array of TZ protein com-
plexes might provide a platform to direct the trafficking of specific
membrane proteins by loading them onto distinct IFT particles.
7. Concluding remarks

The property of PRs to stringently regulate immense protein
delivery at the base of the cilium, entry into the OS and eventual
shedding of the ciliary tips makes it an attractive model system
to not only examine regulation of ciliary trafficking but also to
understand how terminally differentiated and polarized neurons
maintain their structure and function throughout the life span of
an organism. We are now beginning to understand the complexi-
ties of the TZ protein assemblies of photoreceptors with at least
two discrete ciliary protein complexes identified as part of RPGR-
interactome (Murga-Zamalloa, Desai, et al., 2010). How such elab-
orate protein complexes are assembled and transported to the OS
requires further detailed studies in model organisms.
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