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SUMMARY

In haloarchaea, sensory rhodopsin II (SRII) mediates
a photophobic response to avoid photo-oxidative
damage in bright light. Upon light activation the re-
ceptor undergoes a conformational change that acti-
vates a tightly bound transducer molecule (HtrII),
which in turn by a chain of homologous reactions
transmits the signal to the chemotactic eubacterial
two-component system. Here, using single-molecule
force spectroscopy, we localize and quantify
changes to the intramolecular interactions within
SRII of Natronomonas pharaonis (NpSRII) upon
NpHtrII binding. Transducer binding affected the in-
teractions at transmembrane a helices F and G of
NpSRII to which the transducer was in contact. Re-
markably, the interactions were distributed asym-
metrically and significantly stabilized a helix G
entirely but a helix F only at its extracellular tip. These
findings provide unique insights into molecular
mechanisms that ‘‘prime’’ the complex for signaling,
and guide the receptor toward transmitting light-ac-
tivated structural changes to its cognate transducer.

INTRODUCTION

Microbial rhodopsins absorb light energy for ion transport or

photosensation (Sharma et al., 2006). These photoreceptors

are membrane proteins that share a common structural motif

consisting of seven transmembrane a helices, A–G. A Schiff

base located at the middle of the seventh a helix G covalently

links the all-trans retinal chromophore to the protein. In haloarch-

aea, four different classes of microbial rhodopsins have been

identified. Two of these, bacteriorhodopsin and halorhodopsin,

use light to transport ions across the membrane and to establish

ion gradients used as an energy source by other proteins. The

other two retinal proteins, sensory rhodopsin I (SRI) and sensory

rhodopsin II (SRII), mediate phototactic and photophobic re-

sponses, respectively. In addition, SRI mediates a repellent re-

sponse after being activated by two sequential photons

(Spudich and Bogomolni, 1984). SRI and SRII bind tightly to their
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cognate transducers, HtrI and HtrII, which upon activation by the

receptor elicit a response via a cascade homologous to the che-

motactic eubacterial two-component system. Both transducers

contain two transmembrane a helices (TM1 and TM2) and a large

cytoplasmic domain. Whereas the transmembrane domains of

the transducer bind to the receptor and receive the light-acti-

vated signal, the two cytoplasmic subdomains transfer this sig-

nal to histidine kinase (CheA) (for reviews, see Klare et al.,

2004, 2008; Spudich, 2006).

A model describing how the signal is transferred from SRII to

its cognate transducer (HtrII) was proposed based on biochem-

ical (Bergo et al., 2003; Wegener et al., 2000) and structural

(Luecke et al., 2001; Wegener et al., 2001; Gordeliy et al.,

2002; Moukhametzianov et al., 2006) data. Light excitation leads

to the isomerization of the retinal chromophore from the all-trans

to the 13-cis conformation, which due to thermal relaxation is fol-

lowed by conformational changes in SRII. The protein passes

through a series of spectroscopically detectable intermediates

(Chizhov et al., 1998) denoted K, L, M, N, and O (named after

BR intermediates). A spectroscopically silent irreversible reac-

tion occurs between two M-states, M1 and M2, which has

been correlated with the signaling state (Chizhov et al., 1998).

In vivo experiments support this conclusion (Yan et al., 1991).

Likely, signal transfer occurs when a helices F and G in SRII

change conformations. These tilt and rotate the cytoplasmic

side of the transmembrane a helix 2 of the bound HtrII (Moukha-

metzianov et al., 2006; Spudich, 2006).

In this study, we used single-molecule force spectroscopy

(SMFS) to measure the interactions of SRII in the absence and

in the presence of its transducer, HtrII (for a review on this tech-

nique, see Kedrov et al., 2007). SRII from Natronomonas pharao-

nis (NpSRII) was chosen because it represents the best charac-

terized haloarchaeal photophobic rhodopsin receptor (Gordeliy

et al., 2002; Klare et al., 2008; Spudich, 2006). Single-molecule

force-distance (F-D) spectra for the mechanical unfolding of

NpSRII and of NpSRII + NpHtrII complexes reconstituted in pur-

ple membrane lipids were obtained. The unfolding pattern,

reflecting the interactions that stabilize structures within the re-

ceptors, was similar to that obtained previously of other archaeal

rhodopsins (Cisneros et al., 2005; Muller et al., 2002). Introducing

a simple method to analyze the membrane protein unfolding

spectra, we could structurally map the interactions that have

been established within the average NpSRII molecule. This
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Figure 1. SMFS of NpSRII Alone and of NpSRII in a Complex with NpHtrII114

(A) Contacting the terminal end of a single NpSRII with a molecularly sharp AFM tip forces the attachment of both. This molecular link allows exertion of a me-

chanical pulling force that initiates the stepwise unfolding of the receptor (here shown without transducer). (B) F-D curves recorded while unfolding single NpSRII

molecules and (C) in complex with NpHtrII114 by pulling from the C-terminal end. Superimpositions of F-D curves recorded from unfolding of (D) NpSRII alone and

(E) NpSRII + NpHtrII114 complexes. Superimpositions are represented as a density plots. F-D curves were obtained at room temperature at a pulling speed of

�300 nm/s in buffer solution (pH 7.8, Tris-HCl 20 mM, 300 mM KCl).
approach allows single-molecule experiments to describe the in-

teractions common to all NpSRII molecules, normally revealed

by conventional bulk experiments. The comparison of structural

interaction maps revealed from SMFS disclosed the interactions

of NpSRII that changed upon NpHtrII binding. Detectable

changes were restricted to a helices F and G. Functional conse-

quences are discussed in detail.

RESULTS

SMFS of NpSRII with and without Bound Transducer
To determine the interactions that stabilize structural regions of

NpSRII and NpSRII bound to a truncated form of its transducer

(NpHtrII114), we applied SMFS as previously established for other

archaeal rhodopsins and membrane proteins (Kedrov et al.,

2007). Briefly, NpSRII and NpSRII bound to NpHtrII114 were re-

constituted in purple membrane lipids (Wegener et al., 2001).

Subsequently, each sample was adsorbed to freshly cleaved

mica supports (Muller et al., 1997). Resulting membrane patches

were imaged using AFM (data not shown) and selected for SMFS

analysis. After switching the AFM to the SMFS mode, single

NpSRII molecules in the absence (NpSRII) or presence of their

transducer (NpSRII + NpHtrII114 complex) were attached non-

specifically to the AFM tip (Figure 1A; Oesterhelt et al., 2000). Re-

tracting the AFM tip from the membrane induced the unfolding of

single NpSRIIs. F-D curves recorded showed characteristic pat-

terns of unfolding events (Cisneros et al., 2005; Muller et al.,

2002). F-D curves of single NpSRII molecules attached by their

C-terminal end to the AFM tip (see Experimental Procedures)

were selected for further analysis. A total of 164 F-D curves
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were collected for NpSRII alone and 125 for the NpSRII +

NpHtrII114 complex. Every peak of an F-D curve represented

the unfolding of one stable segment of the membrane protein

(Janovjak et al., 2006; Kedrov et al., 2007). At first glance, the

F-D curves tracing the unfolding process of NpSRII (Figure 1B)

and NpSRII in presence of NpHtrII114 (Figure 1C) were similar.

However, individual F-D traces differed slightly from each other,

lacking some force peaks or presenting force peaks at slightly

different positions or of different strengths. To observe common

features, the F-D traces were superimposed and displayed as

density plots (Figures 1D and 1E). Such superimpositions repre-

sent the average F-D spectrum recorded. The superimpositions

highlighted the same five major force peaks recorded for NpSRII

alone (Figure 1D) and the NpSRII + NpHtrII114 complex

(Figure 1E). Comparing single F-D curves and the superimposed

spectrum for the NpSRII alone (Figures 1B and 1D) with those for

the NpSRII + NpHtrII114 complex (Figures 1C and 1E) revealed

differences within the first 20 nm of pulling. In this region the

NpSRII + NpHtrII114 complex showed larger forces and a higher

density of force peaks.

Mapping the Probability at Which Force Peaks Occurred
While SMFS unfolding of bovine rhodopsin (Sapra et al., 2006b),

bacteriorhodopsin (Muller et al., 2002), and halorhodopsin (Cis-

neros et al., 2005), we observed that each force peak within a

F-D curve had a certain probability of occurring. To quantify the

differences in peak appearance probability between F-D curves

obtained from NpSRII alone and from the NpSRII + NpHtrII114

complex, we fitted each force peak detected in individual F-D

curves using the WLC model. As derived from the WLC fit, we
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converted the peak position measured in nanometers into the

amino acid length of the stretched portion of the polypeptide

(Muller et al., 2002; Oesterhelt et al., 2000). The frequency at

which each force peak was detected at a certain position was

plotted over the length of the stretched polypeptide (Figure 2).

The findings showed a remarkable similarity of the occurrence

of interactions detected between NpSRII alone (Figure 2, blue

bars) and of NpSRII in complex with NpHtrII114 (Figure 2, green

bars). However, small differences were observed. These differ-

ences were distributed over most of the polypeptide lengths

ranging from 15–25 aa, 60–80 aa, 140–170 aa, and 210–240 aa.

Determining the Average Interaction Strength
of Force Peaks
Interactions within bacteriorhodopsin and other rhodopsins de-

pend on boundary conditions such as pH, electrolyte (Kessler

and Gaub, 2006; Park et al., 2007), temperature (Janovjak

et al., 2003), point mutations (Sapra et al., 2008), and the oligo-

meric assembly (Sapra et al., 2006a). To quantify the inter-

action forces that changed within NpSRII upon formation of the

NpSRII + NpHtrII114 complex, we measured the strength of

each force peak detected in the absence and in the presence

of the transducer. The forces of all peaks occurring within a

window of 3 aa were averaged and plotted over the stretched

polypeptide length (Figure 3). Unlike the histogram of peak ap-

pearance frequency (Figure 2), the average forces plotted over

the polypeptide length showed some pronounced changes oc-

curring within the first 80 aa (Figure 3). At higher polypeptide

lengths, the average forces were not significantly different.

Within the first 50 aa of the polypeptide, the NpSRII + NpHtrII114

complexes (Figure 3, blue bars) displayed higher forces com-

pared with the NpSRII characterized in absence of the trans-

ducer (Figure 3, green bars).

Figure 2. Frequency of Force Peaks Detected at Different Portions

of the Stretched Polypeptide

Every force peak detected in individual F-D curves (Figure 1) was fitted using

the WLC model, using the contour length of the polypeptide (L) as the only fit-

ting parameter. The frequency at which the force peaks occurred is plotted in

a histogram. NpSRII (blue, n = 164) and NpSRII + NpHtrII114 complex (green,

n = 125). Error bars represent the standard error of the mean (SEM). The length

of the polypeptide is given in amino acids (aa). The bin size of the histogram is

3 aa and corresponds to the average precision at which individual force peaks

could be fitted using the WLC model (Bustamante et al., 1994).
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Normalizing the Average Interaction Strengths of NpSRII
As calculated, the average peak force does not fully represent the

interaction strength of a given structure. This is because the aver-

age force (Figure 3) did not take into account interactions (peaks)

too weak to be detected. To normalize the average force, we mul-

tiplied the probability at which a force peak occurred (Figure 2) by

the average force of the peak (Figure 3). The normalized average

force reflects the average interaction strength established within

a randomly picked NpSRII molecule. Or, seen from the bulk be-

havior, the normalized average force corresponds to that of all

NpSRII molecules. Displaying the normalized average forces

over the polypeptide length of NpSRII (Figure 4A) enhanced the

differences in the interaction strengths between NpSRII with

and without NpHtrII114 bound. The distribution of these structural

changes is highlighted when the differences between the normal-

ized interactions strengths for each of the NpSRII molecule states

is plotted (Figure 4B). In Figure 4A, the SEM shown in Figures 2

and 3 were used to calculate the SEM according to the following

formula: (SEMFP/(F$P))2 = (SEMforce/F)2 + (SEMprob/P)2, where F is

the mean force (Figure 2) and P is the probability (Figure 3) of

a peak. For Figure 4B, the SEM was calculated as SEMDFP
2 =

SEMFP2
2 + SEMFP1

2, where SEMFP2 and SEMFP1 are the normal-

ized forces, F$N, calculated in Figure 4A for NpSRII bound or

unbound to NpHtrII.

Mapping the Normalized Interactions onto the NpSRII
Sequence
A force peak detected in the F-D spectrum denotes an interac-

tion detected at a certain distance from the AFM tip (Kedrov

et al., 2007). This distance is the length of the stretched polypep-

tide and can be used to locate the structural region of the mem-

brane protein at which an interaction established a sufficient

strength to be detected by SFMS. However, to correctly locate

the interactions detected upon unfolding of NpSRII, it must

be considered that some of the interactions establishing the

Figure 3. Average Force Detected at Different Positions of the

Stretched Polypeptide

The force of every peak detected in an F-D curve was measured. The average

force of force peaks are plotted at the WLC fitted lengths at which they were

detected. Error bars represent the SEM. For each length of the stretched poly-

peptide, force peaks detected within 3 aa were pooled and averaged. Blue

bars represent the average forces detected for NpSRII alone, the green bars

the average forces detected for the NpSRII + NpHtrII114 complex. Arrows indi-

cate large changes in the interaction forces (see text for details).
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anchoring points of the polypeptide were located inside the

membrane (Muller et al., 2002). Because the pulling distance is

referred to the membrane surface, the position of unfolding bar-

riers located inside the membrane had to be corrected. Thus,

each polypeptide region at which the interaction occurred was

located (Figure 4B). This correlation, shown in Figure 4B, high-

lights major differences in interactions detected within the first

70 C-terminal amino acids of NpSRII. Notably, the other NpSRII

Figure 4. Normalizing and Mapping the Interactions Established

within NpSRII upon Binding the Transducer (NpHtrII114)

To combine force and probability (Figure 1), the average force (Figure 3) was

multiplied with the frequency of force-peak appearance (Figure 2). (A) Normal-

ized forces measured for NpSRII alone (blue) and for NpSRII complexed with

NpHtrII114 (green) are plotted. Error bars represent SEM. (B) Difference calcu-

lated between normalized interaction strengths detected for NpSRII without

and with transducer (A) shows the interactions established upon NpHtrII114

binding to NpSRII. The color scale (inset bar, saturated at 20 pN) indicates

changes of the normalized force (positive = red, negative = blue). The bar

above the force difference histogram (B) maps the interaction differences

onto the loops and helices (lettered A–G) of the NpSRII structure. The lower

x axis of the histogram shows the length of the stretched polypeptide as re-

vealed from WLC fitting individual force peaks in the F-D spectra. The upper

x axis reflects the amino acid position of structures holding the stretched

NpSRII polypeptide chain. Small shifts in the positions of the force differences

mapped onto the length of the stretched polypeptide (lower x axis) and onto

the NpSRII polypeptide (upper x axis and scale bar above histogram) occur be-

cause systematic errors in the position of structural interactions lying within the

membranes are corrected (see Experimental Procedures).
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structures showed only minor variations (>70 aa; Figure 4B). The

highest force difference of �80 pN (Figure 4B) was centered at

amino acid 34 of the stretched polypeptide, which corresponds

to amino acid position �211 (a helix G) as counted from the

N-terminal end. A second maximum of �18 pN was observed

at a stretched polypeptide length of �45 aa, or approximately

amino acid position 174 (a helix F).

DISCUSSION

In recent years, SMFS has been applied to elucidate the unfold-

ing pathways of bacteriorhodopsin (Muller et al., 2002), halorho-

dopsin (Cisneros et al., 2005), proteorhodopsin (Klyszejko et al.,

2008), bovine rhodopsin (Sapra et al., 2006b), and several other

membrane proteins (Kedrov et al., 2004, 2007). As expected, the

unfolding pattern of NpSRII (Figures 1D and 1E) is similar to those

observed of other archaeal rhodopsins, and different to that of

bovine rhodospin. In bovine rhodopsin, the tendency of individ-

ual structural segments to unfold together in cooperative events

is much more pronounced (Sapra et al., 2006b). In addition, the

interactions detected by SMFS and mapped onto rhodopsin

show less correlation to the secondary structures. Differences

in the unfolding behavior may indicate that these proteins are

nonhomologous (Sharma et al., 2006). However, the similarity

of unfolding patterns of different archeal rhodopsins indicate

that they are not only structurally and functionally similar

(Sharma et al., 2006) but also that their intramolecular interac-

tions have been conserved.

Applying a New Procedure to Analyze F-D Spectra
In previous work, we have introduced the superimposition of F-D

curves to highlight common features (Kedrov et al., 2007; Oester-

helt et al., 2000). However, superimpositions do not allow force

and probability to be determined. In addition, distances in F-D

curves are given in metric units, making it difficult to correlate

force peaks with portions of the stretched peptide. To directly

correlate the force peaks to the stretched polypeptide lengths,

we introduce a new procedure to analyze the F-D spectra. First,

we fit every force peak detected in a single F-D curve using the

WLC model (Muller et al., 2002). From each fit we obtain the length

of the stretched polypeptide and the rupture force of each peak.

Analyzing every F-D curve provides the probability and the aver-

age force at which a certain force peak is detected. Replacing the

WLC fitted pulling distance with the polypeptide length allows

mapping interaction force and probability onto the unfolded poly-

peptide (Figures 2 and 3). As noted previously, the average force

includes only data from detected force peaks. To be able to de-

termine the true average strength of interactions established

within all NpSRII molecules, the average force had to be normal-

ized. Therefore, we multiplied the peak probability and average

force for every stretched length of the polypeptide (Figure 4A).

This normalized average force presents the interaction strength

that can be expected in a randomly picked NpSRII molecule, or

in other words, the average interaction strength in NpSRII.

Interactions Occurring upon Transducer Binding
Are Localized
The histograms shown in Figures 2 and 3 allow a coarse correla-

tion of interactions measured for the stretched polypeptide
06–1213, August 6, 2008 ª2008 Elsevier Ltd All rights reserved 1209
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Figure 5. Structural Map of Interactions

That Change upon NpHtrII114 to NpSRII

Binding

The X-ray structure of the NpSRII + NpHtrII114

heterodimeric complex (Gordeliy et al., 2002)

was color scaled to visualize changes in normal-

ized average interaction forces. To visualize subtle

changes in the interaction force, the color scale

ranges from �20 to 20 pN (note that interaction

forces detected at helix G can scale up to�80 pN;

see Figure 4B). Positive changes (red) indicate in-

teractions strengths increasing upon NpHtrII114

binding. Transmembrane a helices of NpSRII are

named from A to G. Transmembrane a helices

TM1 and TM2 belong to the truncated transducer

(NpHtrII114).
lengths to positions at which these interactions occur in the

NpSRII polypeptide. After correcting the location of the interac-

tions that are within the membrane bilayer or on the side of the

membrane opposite to the pulling AFM tip (see Experimental

Procedures), the peaks are more accurately mapped onto the

NpSRII polypeptide (Figure 4). The map calculated by finding

the difference between the normalized average interactions of

NpSRII alone and of NpSRII in complex with the transducer

(Figure 4A) locates the polypeptide regions at which intramolec-

ular interactions changed upon transducer binding (Figure 4B).

The predominant changes were at WLC fitted polypeptide

lengths of �34 aa and �45 aa (Figure 4B, lower x axis of histo-

gram), which correlate to amino acid positions �211 and �174

as counted from the N-terminal end (Figure 4B, upper x axis of

histogram), respectively. These maxima locate to structural re-

gions of transmembrane a helices F and G. Whereas transducer

binding enhances the normalized interaction strength at trans-

membrane a helix G by �80 pN, that established at a helix F is

enhanced by only �18 pN.

The force histograms (Figures 2 and 4A) show that the peaks at

�34 aa and �45 aa were detected in NpSRII independent of the

transducer binding. In the case of bacteriorhodopsin (Muller

et al., 2002) and halorhodopsin (Cisneros et al., 2005), SMFS de-

tects interactions at the same positions. Thus, interactions and

locations appear to be conserved among all three archaeal rho-

dopsins. Upon transducer binding, both interactions are

strengthened. This leads to several conclusions. First, trans-

ducer binding specifically influences certain interactions within

the NpSRII molecule. Two transmembrane a helices, F and G,

are affected, whereas the other five a helices show no changes

in their interaction strengths. Second, the transducer binding

does not alter the NpSRII molecule enough to establish interac-

tions at new positions. Third, the magnitude of changes to the in-

teractions introduced upon transducer binding at helices F and G

scale differently (Figure 4). The strengthening at a helix G

appears to be more than four times stronger then at a helix F,

suggesting a tighter interaction with the transducer.

NpSRII Interactions in the Vicinity of Transducer Binding
Are Strengthened
To visualize the location of interaction differences we mapped

these onto the 3D structure of the NpSRII + NpHtrII complex

(Figure 5). In good agreement, the regions most affected—a he-

lices G and F—form the NpHtrII binding site (Gordeliy et al.,
1210 Structure 16, 1206–1213, August 6, 2008 ª2008 Elsevier Ltd A
2002). Alpha helices F and G also shield the remaining helices,

A–E, from direct interactions with the transducer. This may ex-

plain why we did not detect any changes to interactions in these

structures, neither in probability (Figure 2) nor in force (Figure 3).

This finding indicates the absence of long-range interactions

(Sapra et al., 2008) introduced by the transducer and bridging

to structures different from a helices F and G. Thus, we assume

that a helices F and G interact with the transducer independently

of the other NpSRII structural regions. This is consistent with the

receptor structure being almost identical with and without trans-

ducer (Luecke et al., 2001; Gordeliy et al., 2002).

It may be argued that the structure of NpSRII relaxes after the

first a helices have been unfolded by SMFS. Such a relaxation

would disfavor detecting changes to the a helices remaining

folded in the membrane. Though membrane proteins typically

fold into a membrane bilayer in seconds, SMFS, as applied

here, forces transmembrane helices to unfold in 10–20 micro-

seconds. Although quick, the microsecond time range may allow

small structural rearrangements within the folded part of the pro-

tein. Thus, it may be that SMFS does not probe the native struc-

tures within a membrane protein. Molecular dynamics (MD) sim-

ulations investigating the SMFS-induced unfolding process of

bacteriorhodopsin indicate that membrane protein structures

remain unchanged during the mechanical unfolding process

(Cieplak et al., 2006; Seeber et al., 2006). However, these MD

simulations were done at much faster pulling speed than

experimentally used (Kedrov et al., 2007). Nevertheless, MD sim-

ulations and experiments suggest that unpulled structures of an

unfolding membrane protein remain largely unchanged. Findings

in accordance with this observation are provided by experiments

on the H+/Na+ antiporter NhaA. While unfolding NhaA by SMFS,

it was possible to observe the binding of a ligand to a transmem-

brane a helix residing in the middle of the structure (Kedrov et al.,

2005). Furthermore, from the F-D data it was possible to distin-

guish whether a ligand or an inhibitor was bound to the antiporter

(Kedrov et al., 2006, 2008). Independent of small rearrangements

to structural elements that may occur while unfolding the protein,

SMFS allows comparative measurements. Here we compared

the interactions established in free NpSRII molecules with those

in NpSRII bound to NpHtrII114 and determined where and to

which extent transducer binding induced changes to NpSRII.

To what extent our comparative experiments reflect the absolute

interaction strengths established within native proteins needs to

be shown.
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Binding of NpHtrII to NpSRII Helices F and G May Have
Possible Functional Consequences
NpSRII function as a light-driven proton pump (Schmies et al.,

2000, is suppressed by the binding of the transducer NpHtrII

(Schmies et al., 2001). Proton transport has been thoroughly

studied in the structurally and functionally related bacteriorho-

dopsin (Haupts et al., 1999; Oesterhelt and Stoeckenius, 1973;

Subramaniam and Henderson, 2000). A key event is the opening

of the proton channel on the cytoplasmic side of the membrane,

which is accompanied by tilting transmembrane a helix F (Koch

et al., 1991; Moukhametzianov et al., 2006; Yoshida et al., 2004).

This conformational change provides the basis for reprotonation

of the Schiff base. Binding of NpHtrII to NpSRII is aided by hydro-

gen bonds between Thr189 and Tyr199 of a helix G with trans-

membrane a helix TM2 of the transducer (Klare et al., 2004). Sig-

nal transduction is controlled by the receptor, in particular by

Thr204 (a helix G) and its hydrogen-bonded partner Tyr174 (a he-

lix F). These two residues are essential for phototaxis (Sudo et al.,

2006), and their introduction into bacteriorhodopsin converts the

proton pump to, like SRII, activate HtrII (Sudo and Spudich,

2006). This demonstrates the key role of residues and hosting

a helices F and G.

In recent years, several biophysical techniques have been ap-

plied to investigate possible structural rearrangements occurring

at the interface between receptor and transducer. The interac-

tions between NpSRII and NpHtrII appear to couple the light-in-

duced conformational change of a helix F to signal transduction

(Wegener et al., 2000; Klare et al., 2004). FTIR, FRET, molecular

dynamics simulations, and EPR spectroscopy yielded partly

contradictory results on light-induced structural rearrangements

of transmembrane a helices F and G of the receptor and a helix

TM2 of the transducer (Bordignon et al., 2007). In absence of the

transducer, a helix F bends outward, allowing uptake and pump-

ing of the proton from the cytoplasmic side of the membrane. In

the presence of the transducer, this proton pumping mechanism

is impaired. FTIR measurements by the Spudich group sug-

gested that the reconstituted NpSRII + NpHtrII147 fusion com-

plex undergoes conformational changes consistent with an out-

ward tilting of a helix F (Bergo et al., 2003). In apparent contrast,

FTIR measurements (Kamada et al., 2006) suggested that the

opening of the cytoplasmic cleft required for the proton uptake

does not occur in phosphatidylcholine reconstituted NpSRII in

the presence of the transducer. However, EPR measurements

of the NpSRII + NpHtrII114 complex reconstituted into purple

membrane lipids, such as investigated in our study, suggest

that during receptor activation, a helix F undergoes conforma-

tional changes both in the presence and absence of the trans-

ducer (Bordignon et al., 2007; Wegener et al., 2000). Light-in-

duced isomerization of the retinal is proposed to induce

specific conformational changes to the receptor that triggers

an outward motion of transmembrane a helix F. In this motion,

a helix F slides along a helix G, whose structure remains un-

changed, and induces a clockwise rotary motion of transmem-

brane a helix TM2 to activate the transducer. The evidence of

a conformational change is contradicted by the X-ray structures

of the inactivated and illuminated NpSRII + NpHtrII complex

(Moukhametzianov et al., 2006). Here, the light-induced isomer-

ization of the retinal does not cause conformational changes in

a helix F. This finding is surprising because the transducer ap-
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pears to be structurally altered in a helix TM2. It is assumed

that the interactions with the transducer inhibit conformational

changes of a helix F. However, loop EF of the receptor in the

3D crystal forms contacts with other proteins. Because the flex-

ibility of the EF loop is important for the outward tilting of helix F

(Koch et al., 1991; Subramaniam and Henderson, 2000), the

crystal-specific contact of the EF loop may inhibit this motion.

Our SMFS measurements reveal that the binding of NpHtrII114

to NpSRII significantly increases the interactions established at

transmembrane a helices F and G (Figure 4B). Compared with

transmembrane a helix F, a helix G exhibited an almost 4-fold

higher increase of interactions strength. In a helix G these inter-

actions induced by the transducer are distributed over nearly the

entire helix, whereas a helix F is stabilized only at its extracellular

end (Figure 5). Previously, in the case of the H+/Na+ antiporter

NhaA, we showed that inhibitor binding enhances the interac-

tions at transmembrane a helix IX and reduces its structural flex-

ibility (Kedrov et al., 2006, 2008). Analogous to this finding, we

speculate that the strengthening of the existing interactions at

transmembrane a helix G of NpSRII further stabilizes this helix

and reduces its flexibility. Similarly, transducer binding enhances

the stability and thus may reduce the flexibility at the extracellular

end of a helix F. Most importantly, both structural domains ex-

hibiting significantly enhanced stability and reduced flexibility

must act differently in NpSRII complexed with the transducer.

The enhanced stability and reduced flexibility of helix G leads

to the assumption that this structure will remain unchanged

upon light-induced activation of the NpSRII + NpHtrII114 com-

plex. In contrast, the transducer binding ‘‘pins’’ a helix F only

at its extracellular end. It may be that this pinning of the structure

guides the cytoplasmic end of the helix to enable efficient signal

transduction. Such a model is supposed by EPR measurements

(Bordignon et al., 2007; Wegener et al., 2001) in which light acti-

vation of the receptor induces an outward motion of a helix F

along G to activate the transducer. However, in our SMFS mea-

surements we can only detect and locate interactions in NpSRII.

Thus, interpretations of how such interactions may guide confor-

mational changes of a receptor remain speculative until further

insights are obtained. Our findings show how transducer binding

changes the interactions and coupling within the receptor in

a way that proton pumping is inhibited (Spudich, 1998) and sig-

nal transduction enabled.

Conclusion
Using SMFS, we detected interactions within NpSRII without

and with its transducer bound. To reveal the differences between

transducer bound and unbound states we introduced a simple

way to analyze the F-D spectra. The analysis revealed the

strength and structural location of intramolecular interactions

within the average receptor. Binding of the transducer to NpSRII

enhanced intramolecular interactions that already existed at

transmembrane a helices G and F. We suggest that the specific

binding of the transducer and its ability to strengthen key interac-

tions at a helices F and G of NpSRII ‘‘prime’’ the receptor for sig-

naling rather than ion pumping. This binding, with its specific

interactions, may reflect a mechanism by which the receptor-

transducer interaction could have evolved without compromis-

ing the photocycle of microbial rhodopsins.
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Sample Preparation

NpSRII and NpHtrII114 from N. pharaonis were overexpressed as His-tagged

proteins in Escherichia coli and purified by affinity chromatography using

a Ni-NTA agarose column (QIAGEN, Hilden, Germany). NpSRII was then re-

constituted into purple membrane lipids with a 1:35 (w/w) protein-to-lipid ratio

(Hohenfeld et al., 1999). NpSRII + NpHtrII114 complexes were prepared by mix-

ing NpSRII and NpHtrII114 at a ratio of 1:1 followed by reconstitution into lipids

(Wegener et al., 2001).

SMFS

SMFS on NpSRII and NpSRII + NpHtrII114 complexes was performed as de-

scribed (Muller et al., 2002; Oesterhelt et al., 2000). Membrane patches con-

taining the reconstituted NpSRII were adsorbed to the mica support and

visualized by AFM. After imaging, the AFM was switched to the SMFS

mode. The AFM tip was then pushed onto the protein membrane until a termi-

nal end of the protein adsorbed to the tip by unspecific interactions (Janovjak

et al., 2003; Oesterhelt et al., 2000). The AFM tip was then retracted from the

membrane surface at a velocity of �300 nm/s. Force-versus-distance (F-D)

curves were obtained by recording the cantilever deflection over the separa-

tion distance. Si3N4 cantilevers (model NP-S, nominal spring constant

�0.06 N/m and resonance frequency�18 kHz; Veeco Instruments, Santa Bar-

bara, CA) were used for imaging and force spectroscopy. All cantilevers

showed a spring constant of �0.07 ± 0.01 N/m, which was determined using

the equipartition theorem (Butt et al., 1995).

As in previous studies, the length of F-D spectra was used to discard F-D

curves that resulted from the attachment of the AFM tip with regions of the

polypeptide other than the terminal ends (Cisneros et al., 2005; Muller et al.,

2002). The N-terminal end of NpSRII forms a 1 or 2 aa-long end of a helix A,

which is mainly embedded in the membrane (Luecke et al., 2001). Because

of this limited exposure, the probability of the N-terminal end attaching to

the AFM tip was assumed to be very low. The C-terminal end is longer (�23

aa) and, thus, has a much higher probability of attaching to the AFM tip. We

assume that upon mechanically pulling from a terminal end all transmembrane

a helices unfold sequentially from this end while the tip is separated from the

membrane. The maximum length of the stretched polypeptide, indicated by

the last force peak, measures the stability of the last a helix embedded in

the membrane. Thus the maximum length of the stretched polypeptide can

be estimated by the polypeptide stretch from the terminal end pulled to this

last a helix (Kedrov et al., 2004; Kessler and Gaub, 2006). This simple model

predicts different maximum lengths of F-D curves obtained for pulling at the

N-terminal or C-terminal ends of NpSRII. Mechanical unfolding of the first

six transmembrane a helices results in a stretched polypeptide segment of

�60 nm (�200 aa) length when pulling from the N-terminal end, and lengths

ranging between 60 and 65 nm (202–219 aa) when pulled from the C-terminal

end. Therefore, F-D curves obtained from pulling at either terminal end could

be separated from each other. Thus, to analyze only F-D curves obtained pull-

ing single NpSRII molecules from the C-terminal end, we selected curves ex-

hibiting lengths R60 nm.

In contrast to this unambiguous criterion, the classification and analysis of

shorter F-D curves was not attempted. For example, F-D curves of lengths be-

tween 50 and 60 nm represent NpSRII pulled from either the C- or the N-termi-

nal end. Even shorter F-D curves may have resulted from picking the NpSRII

molecule from one of its polypeptide loops. These F-D curves cannot be

used because pulling at different loops results in F-D curves of similar lengths.

In addition, protein and AFM tip frequently unbind during mechanically pulling,

resulting in abortive short F-D curves. These considerations are further compli-

cated by the presence of the transducer, which may be unfolded from either

terminal end, resulting in F-D curves of similar lengths as expected when un-

folding NpSRII from either its CD or EF loops. Therefore, we focused our

data analysis on F-D curves that resulted from full unfolding and stretching

of NpSRII by pulling at the C-terminal end.

After selecting a sufficiently long F-D curve (R60 nm), each force peak was

fitted using the wormlike chain (WLC) model (Bustamante et al., 1994). The

contour length (L) of the stretched polypeptide was obtained from the WLC

fit assuming a persistence length (lp) of 0.4 nm (Oesterhelt et al., 2000). Equally,

for each peak the rupture force was measured. To locate the interactions cor-
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responding to force peaks onto the NpSRII structure (1H2S; Gordeliy et al.,

2002), the contour length at which this peak occurred was subtracted from

the C-terminal end.

When pulling the protein from the C-terminal end, the interaction anchoring

the stretched polypeptide segment was sometimes not located at the cyto-

plasmic end of an a helix, but at the opposite N-terminal surface. In this

case, the effective length of the stretched polypeptide was longer and the lipid

membrane thickness (�4 nm) had to be considered. In this case, we added 11

aa (11 3 0.36 nm z 4 nm) to the number of amino acids determined by the

WLC model (Muller et al., 2002). If a segment was shorter than the width of

the membrane, a fraction of the membrane thickness (11 aa) proportional to the

length of the apparent stretched polypeptide was added. To visualize the inter-

actions within NpSRII that have changed upon NpHtrII binding, the histograms

of the normalized interaction forces measured for NpSRII with and without the

transducer NpHtrII114 (Figure 4A) were subtracted from each other. To avoid

artifacts, the resulting histogram was smoothed by an algorithm that distrib-

uted 25% of the counts of each bin to the previous and following bin. The

differences of the normalized forces were then mapped onto the NpSRII

structure.
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