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Abstract

For a sequence of blow up solutions of the Yamabe equation on non-locally conformally flat compact
Riemannian manifolds of dimension 10 or 11, we establish sharp estimates on its asymptotic profile near
blow up points as well as sharp decay estimates of the Weyl tensor and its covariant derivatives at blow
up points. If the Positive Mass Theorem held in dimensions 10 and 11, these estimates would imply the
compactness of the set of solutions of the Yamabe equation on such manifolds.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let (M", g) be a compact, smooth, connected Riemannian manifold (without boundary) of
dimension n > 3. The Yamabe conjecture has been proved through the works of Yamabe [19],
Trudinger [18], Aubin [1] and Schoen [16]: the conformal class of g contains a metric of constant
scalar curvature. Different proofs of the Yamabe conjecture in the case n < 5 and in the case
(M, g) is locally conformally flat are given by Bahri and Brezis [5] and Bahri [4].
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Consider the Yamabe equation and its sub-critical approximations:
—Agu~+c(m)Reu =n(n —2)u’, u>0 onM, (D

where 1 < p < %, Ay is the Laplace-Beltrami operator associated with g, R, is the scalar

curvature of g, and c(n) = 4(?,,_,21))~ Let

M,, = lu € C*(M) | u satisfies (1)}.

If (M, g) is locally conformally flat and is not conformally diffeomorphic to the standard
sphere, Schoen [17] proved that forany 1 <1+4+¢€ < p < % and any non-negative integer k,
lullcrp,gy < Co Vue M, 2

where C is some constant depending only on (M, g), € and k. The same conclusion has been
proved to hold in dimension n < 7 for (M", g) which are not locally conformally flat, see Li and
Zhang [13] and Marques [15]. See also the introduction of [13] where works of Li and Zhu [14],
Li and Zhang [12], and Druet [9,10] for dimensions n = 3,4, 5 are described. Extensive works
on the problem and closely related ones can be found in [13] as well.

For n = 8,9 and on (M", g) which are not locally conformally flat, [13] also contains sharp
estimates on blow up solutions of (1) and sharp decay estimates of the Weyl tensor and its first
covariant derivatives at blow up points. If the Positive Mass Theorem held in dimensions 8 and 9,
these estimates would yield (2) for n = 8,9. Soon after completing [13], we extended these
sharp estimates to dimensions n = 10, 11 (see Theorem 1.1); however we have encountered some
difficulty in extending such estimates to n > 12. Very interesting results have subsequently been
obtained by Aubin in [2,3].

To study the compactness of solutions to the Yamabe equation, it is crucial to establish sharp
estimates of blow up solutions. An important step is to find out the right asymptotic profile of
blow up solutions near a blow up point. Our earlier work [13] strongly suggested such a profile
in dimensions n > 10, which we describe below.

Let {uy} be a sequence of solutions to the Yamabe equation on (M", g) satisfying, for some
P.eM,

uk([_’k) =maxu; —> 0.
M

Assume that g = g;;(z)d Zidz/ is already in conformal normal coordinates centered at P.

For dimensions n = 8, 9, sharp estimates on blow up solutions and sharp decay estimates of
the Weyl tensor and its covariant derivatives at blow up points were established in [13] through
an iterative procedure. Due to this procedure, we expect to obtain enough estimates on the decay
rates of the Weyl tensor and its covariant derivatives of appropriate order before making the next
step in the iterative process, and therefore we can use

n+2

—Aug +c(n)Rgup =n(n —2)u; 2 3)

instead of the Yamabe equation which would replace A in (3) by Ay, to determine the asymptotic
profile of {u;} near blow up points. Note that A is the flat Laplacian in the z-coordinates.
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The Taylor expansion of R(z) in conformal normal coordinates is, for 1>2,

7
du R ;
R =) Y ==+ 0(l"*"). )

1=2 |a|=I o
For convenience, we write, with M}, := u;(0),
T
v (y) = M, uk(Mk " y).

Then (3) becomes

_ nt2
Avp(y) — c(Y)vk(y) +n(n —2)ve(y) 2 =0, )
where
_ _ 2 __4_ J _ 4421 3aR
c(y) = C(H)Rg(Mk 2 y)Mk " = c(n) ZMk " Z 7})‘1
=2 |la|=l :

and vy converges to
n—2
U =) inC(R)
: 1 + |y|2 loc °
For dimensions n = 10, 11, we only need to consider, in the formal expansion of vy,
__8_ _ 10

=0 + M, =2y @ 4 M, IS

The equations satisfied by v, v® and v® are, determined by (5),
n+2
AvY 4 — 2)[11(1)] =2 =0,

dy R 4
Av®? — c(n)[ > %y“]v(l) +n(+2)[pM]2e® =0,

Jo|=2
and
3 R o ) R =NE)
AvY —c(n) Z—y v +n(n+2)[v ]" 2p =0.
o!
Jo|=3
Let

_ 1 Jy R
) ._ o o
RO .= ST / > a (©6)

pes—t 12I=1
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and

- - 0 R
RD@®):=—RD+ " ==0% ges . (7)
o!
|a|=1
We have, in polar coordinates,

vWi=vU, 020,00 =—cm)RPO) (),  vV,0)=—cm)RPO) f30r),  (8)

where f> and f3 are, respectively, the solutions of (73) and (7_6).
Thus the asymptotic profile of u; near the blow up point Pj should be

2
up(x) = Mkf)k(Mk"*zx)

= ug () [0 (ux (0) 77 x) + 1 (0)" 720 (1 (0) 72 x) + g (0) 720 (g (0) 72 x)
[c)R® (0) f2(ur (0)72 |x])]
— ug ()72 [em)RD () f3 (i (077 |x])].

n—10
n—2

2
= ur (0)U (ux (0)72x) — u(0)

In the following, we give the previously mentioned sharp estimates in dimensions n = 10, 11.
The asymptotic profile of blow up solutions is exactly the one described above.
For Q € M and p > 0, let

n—2
m 2
P :: N P M?
EQ,;}.( ) <1+,u2distg(P, Q)z) )

and, in polar coordinates,

n—10

E0.u(P)=£0,u(P) — c(m)RP () fo (1 - distg (P, Q)2

— cmRDO) f3(u - disty (P, Q)" 7.

We use W, to denote the Weyl tensor of the metric g.

Theorem 1.1. Let (M", g) be a compact, smooth, connected Riemannian manifold of dimension

n =10, 11, and let u be a smooth solution of (1) with 1 <14+¢€ < p < % Then for some
positive constant C and some positive integer m which depend only on (M, g), there exist some
local maximum points of u, denoted as S :={P1, ..., Py}, such that
. 1 1 C
dlStg(Pi,Pj)ZE, Eu(Pi)<u(Pj)<Cu(Pi), Vi#j,
_n=6 _n=8
[We(P)|, <Cu(P)™n=2, [VWe(P)|, < Cu(P) ™2,
C ifn =10,

|V§Wg(Pl)|g < logM(Pi)nflO

Cu(P;)” 2, ifn=11,

Vi,




442 Y.Y. Li, L. Zhang / Journal of Functional Analysis 245 (2007) 438—474

m

] m
— <u<C on M.
C ;EPI,u(Pn% T ;éﬂ,wm%

Moreover, for each | and modulo a conformal factor which makes g in conformal normal coor-
dinates at P,
o ~ — n—1442|a| - 2 . 87}17‘04
V¢ —& L )(P)| < Cu(P) 7 (1+u(P)n2 disty(P, Py) ),
8 Pru(Pyn=2

1
Vdisty (P, Pi) < . la| =0,1.2.

A consequence of Theorem 1.1 is

Corollary 1.1. Let (M", g), n =10, 11, be a compact, smooth, connected Riemannian manifold
which is not locally conformally flat, and let 1 <1 4+¢€ < p < Zi‘% Then

”u"Hl(M,g)gcv VMEMP,
where C is some constant depending only on (M", g) and €.

Remark 1.1. If the Positive Mass Theorem held in dimensions n = 10 and 11, Theorem 1.1
would yield (2) in these dimensions.

In the following we give a result which is more local in nature. Let By C R” be the unit ball
centered at the origin, and let (a;;(x)) be a smooth, n X n symmetric positive definite matrix
function, defined on Bj, satisfying

l.n ig 2 n
Elél <a;j(0)E'E <2061, Vxe By, £eR”, ©)
and, for some a > 0,
laijlles s, < a- (10)
Consider
—Lou=n(n—2u?, u>0 onB, 11
where
g :=ajj(x) dx'dx’. (12)
If {x!, ..., x"} are conformal normal coordinates for g, let
vi=0vD 4+ M(O)iﬁ v? 4+ u(O)f%v(S), (13)

where vV, v® and v® are defined in (8).
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Theorem 1.2. Let (B, g) be as above and let u be a solution of (11), with1 <14€ < p < %

n—
and n =10, 11. Assume, for some constant b > 1,

Vu(0) =0, 1 <supu < bu(0). (14)
B

Then there exist some positive constants 8 and C, depending only on b, € and a, such that
uO@u)|x"?<C, V0 <|x| <3, (15)
2 -8 2 _12 2 2 _ 16
[ W (0)[,u(0) 772 + |V W (0)[(0) 772 + |V W (0) [ ,u(0) ™72 log u(0)

<Cu(0)2, n=10, (16)

2 __8 2 _1 ) 2 _ 16
(W (0)],u(0) 72 + [V W (0)[u(0) ™72 + [V Wy (0] ,u(0) 7=

<Cu(0)2, n=11, (17)
1
Eu(O)U(u(O)%x) <u) < CuU (u(0)72x), Y0 < [x| <6, (18)
and, if {xl, ..., x"} are conformal normal coordinates for g, we have, with v given in (13),

n—14+42|a|
e

2 (1 u©) 2 x )

V¥ (u = u(©)(u(0)72-))| < Cu(0)
VO < |x| <6, |a] =0, 1,2. (19)

It is not difficult to see that Theorem 1.1 follows from Theorem 1.2. Our proof of Theorem 1.2
follows closely the arguments in [13]. In particular the sharp estimates on blow up solutions and
on the decay rates of the Weyl tensor and its derivatives are obtained iteratively with improved
estimates after each iteration. The main difference between the arguments in this paper and those
of [13] is that some Riemannian tensor inequalities in conformal normal coordinates which we
used for dimension n = 8, 9 are not sufficient for higher dimensions. Our proof of Theorem 1.2
requires an estimate from below of some integral quantity associated with v®.

We will only prove Theorem 1.2 for p = % since modifications of the arguments yield the

result for 1 +e€ < p < %, see [13, Section 5]. We will always assume that n = 10, 11 unless
otherwise stated. In Section 2 we prove Theorem 1.2. In the appendices we establish some facts
which we use for the proof.

2. The proof of Theorem 1.2
In this section we prove Theorem 1.2. In the first four subsections we establish (15) using

the method of moving spheres. In the last section we derive (16)—(19) using the Pohozaev type
identity.
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2.1. The set up for proving (15)

Suppose the contrary of (15), then for some a > 0, b > 1, there exists a sequence of Rie-
mannian metrics {gx} of the form (12) that satisfy (9) and (10), and some solutions uy of (11),

with p = "+2 and with g replaced by g, satisfying (14), such that
max_(ug (0)ug (x)[x|" %) > k. (20)
Ix|<1/k

We will simply use g to denote gx, and we assume that g;;(z) dz' dz/ is already in conformal
normal coordinates centered at the origin—as in the proof of Theorem 2.1 in [13]. As in [13],

My == ui(0) - oo.

Write
_ 2 o
(0)ij ) =gij(M, " y)dy' dy’,
_ 2
vk (y) = My (M, " y),
__2_ __4_
c(x)=c(mRy(x) and ¢(y) =c(n)Ry(M, " y)M, "
Then

_ n+2 2z
Ague(y) — cvp(y) +n(n —Due(y)2 =0, |yl < iM7, o
_ 2
1=0(0) > G~ +oM)u(y), IyI<IMI2, Vu(0) =

By the Liouville type theorem of Caffarelli, Gidas and Spruck [6], together with some standard
elliptic estimates, vy converges to

v (—) 7 nen @
: 1+|y|2 loc :

In local coordinates,

k

] o
8pg(¥) =8pg + 3 Rpijgx'x7 + ngijq,kxlx]x

3
1 2 i jvk 1 5
+ 2_0 pqukl+45 Rpijm Rgkim |x"x7 x"x +0(I" )
In conformal normal coordinates, write

1 i,
Ay =—0i(v/88"0;) = A+b;d; +dijoij,

J2

where (g'/) denotes the inverse matrix of (8ij), 0 = dz,, 0ij = Bz’dzf’ A=37 dz‘dz’ ,
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bi(x) = 3;8" (x)
1 1

=——R; bxaxb—lR'b x4 — [ —R; be — : dRpbed
6 ia- 6 iabp.p a0 Via-be 15 lpa pbc

1 1
— ERiadeprd =+ mRiahp,pc)xaxbe -+ O(r4)»

and
dij(x) = g" —8;;
1
— 2 Ripgjx?x% = ~Ripgjxx?xx*
3 : 6 ’
! ! P4 kol
20 ’PlHkl 15 lpqujkln‘L XExTx"x +0( )
Thus
Ago = A +bid; +‘§ij3ij,
where

__2_ _ 2
2

2y),  di(y) =dij (M, "),

For A > 0 and for any function v, let, as in [13],

A\ A2y
v (y) = <|y—|> v(). ¥=ra

denote the Kelvin transformation of v, and

5 =80 Ly )\ Bow=1lyla Ly
)= (ﬁ R )\ , )—{yl <|y|<ﬁ }

wi(y) = ve(y) — vp(y), ¥ € D

_ _2
bi(y) =M, " bi(M,

Asin [13, (33)-(35)], the equation for w;, is
- - 4
Aw;, + bidjwy 4+ d;j0ijwy), — cwy +n(n +2)§n2w; = E;, in Xy,

4 1 =
where £7-2 = [ (tvx + (1 — r)vy) "2 dt and

A n+2 B B
E), = (C(y)vk ) - (| |> E(YA)Uk(yA)> — (bid;vp +dij0ijv7)

+ <ﬁ)n+2 (b (") ve (V") + dij (") vk (7)) 22)
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As in [13] we apply the method of moving spheres to w, + h,, an appropriate perturbation
of w;, for A in a fixed neighborhood of 1, to reach a contradiction. We recall that the perturbation
h,. is required to satisfy the following properties:

1. hy, =0o0n 3By, hy =o(1)|y/* " in Z;.
2. For 0, :={y € = | v (y) <2v} (1)},

- - 4
(A+b;i0 +dijdj —c+nn+2)m2)h; + E, <0 in O;. (23)

Note that by the first property, wy +h) > 0in X \ 0;., so we do not need (23) to hold outside O;,.

16—e

. . (n—2)2
2.2. Estimate of v in |y| < M,

_ 8
In [13] we established estimates on vy — U with an error term of the order M, =2 Now, for

dimension n = 10, 11, we need to work with terms in the formal expansion of vy as described in
8 10

the introduction which are of order M k_ "2 and M k_ "=2 The main result of this subsection is the
12 16—e

. . n—2)2
in the region |y| < Mk( 2% for

following estimate of vy with an error term of the order M ,; =2
any € > 0.

Proposition 2.1. For n > 10, and for any € > 0, there exists some positive constant C(€) such
that

8 10
9/ o= 0+ )
16—¢

_ 12 _
<CEOM, "2+ 0<r<M 1=0,1,2, 24)

where a = %(n — 10+ /¢), v, v® and v® are defined in (8).

W_e first rec~all some notations in [13]. For [ > 2, write the Taylor expansion of R(x) at 0 as (4).
Let R and R" (0) be defined as in (6) and (7). We know (see [13, (44)]), with W denoting the
Weyl tensor, that

_ 1 1 =
R®=_—_AR=——|W]* and R® =0. (25)
2n 12n
We write
RO@©)=>" Ripe,0). 2<1<I, (26)

p=1

where e),’s, depending only on 7, are non-constant eigenfunctions of —Agu-1. The following
lemma, whose proof can be found in Appendix A, is used in our arguments.
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Lemma 2.1.

I3
RY =3 " RPes,0) + O(IWI), 27)
p=1

where {e3,(0)}1<p<i; is a set of eigenfunctions of —Agn-1 associated with the eigenvalue
3(n+1).

Let f> and f3 be defined as in Appendix C, set

~ -8 -2
F® = —c)RD @) fo(r)M, "> =v@ M, "

and
l5 B _ 10
F® .= F® _c@n) Z RYesp(0) f3(r)M, "
p=1
5 __8 3 __10 _ 10
=vPM, "2+ oM, T+ O(IW) ()M, "
By (73) and (76),
~ __8_
(A+n(n+2UT2)FD =cm)RP©)r?UM,
and
4 3 ~ _ 442
(A+nm+2U2)FO =cm) Y RO UM, "
=2
_ 10
+O(IW))M, " (1 +r)>", (28)
Proof of Proposition 2.1. We claim that
n+2 _ 12
A —=O(U+FP)+n(n—2)(U+FP)—2 =0(M, ")(1 +r)°". (29)

To see this, we first recall some known facts. We know from [13, (21), (44) and (123)] that

16—¢

w22
) <CU®G),  IyI<SM"™, n=10, (30)
; _2(271)+6

|V!Rapea| =0(M, "> ), 1=0,1, n>10, (31
= 0542 _4(2—x)_‘_E

R*=0o(M, "2 ), 5=0,1,n>10.
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These lead to

_ _8=¢ _L
bi(y)=0(M, ")r* + 0(M, "),

- _8=¢ _ 8
dij(y)=0(M, " )1 +r) +0(M, ") (32)

To derive (29) we use (28) and (31) to obtain

AU+ FP) +n(n—2)(U + F(?’))%

w2 [ FON\i3
=AU+ F®) +n(n —2)Un=2 (1 + 7)
n+2 3) 4 3) F(3) 2 n+2

=AU +nn—-2Ur2 +AFY +nn+2)Ur2FY 4+ 0O o Un=

3 ~ _ 442 _ 10 __l6_
:C(H)ZR(I)I’IUMk n—2 + 0(|W|)Mk )172(1 +r)5—n + O(Mk n— )(1 +r)6—l’l

=2

3. _ 4 _lae
=cm) Y ROFUM, " +0(M ")+

=2

Note that we used the estimates of f> and f3 in Appendix C. To estimate (Ag, — A)(U + F ),
we observe that for any smooth functions a(f) and b(r), by the definition of the conformal
normal coordinates, (Ag — A)b(r) =0, consequently

(Mg, — M) (a(®)b(r)) = ((Ag, — A)a(©))b(r). (33)
It follows, using the estimates of 5,- and cf,- j in (32), that

(bid; +dijdi)) (U + FO) = (b;d; + d;;8;) F®
16—

=o(M, "Y1 +r) """+ 0(M,

__6
-2

)1+

_ _8=¢
Also, by R® = oM, "=2) and the estimates of f> and f3,

3. _4ty _ 1
U+ F)=cm)Y ROFUM ™ +0(M, ") (141"
=2
Then (29) is the consequence of the above.
By (29) and the equation for vg, we have
a2 n+2
(Dg =k —U = FP)+nn—2)(v; 7 — (U + FP)r7)
__2 16—€
= O(M, ) A +rf" Iyl <M (34)



YY. Li, L. Zhang / Journal of Functional Analysis 245 (2007) 438—474 449

Since f5(0) = f4(0) =0, V(U + F®)(0) = 0. By these facts and (30) we can prove

12

A= max |(u—U=FO)m|<cm . (35)
NSy
Indeed, let
wi = A (v — U — F9).
Then we see from (34) and (31) that, for some € > 0 independent of &,
o(1)d;; o(1)o; o(1) >
A+ -+ = + = Jwi (y)
( (I4+1yDE (L4 |ypi+e A +[yp2e
1,3 6— -4
=oMA! M, " (1+1y)" "+ oM (1 +1y) " wk
- 2-¢ 2-¢ T
=oMA!' M T (1+1y) T oM +1y) T pl< M.

_ 12
If (35) did not hold, then A,:le "2 = o(1) along a subsequence, and the argument below
16—¢
(101) in [13] (with § R replaced by M,j"‘”z) yields a contradiction. See also [7, Lemma 3.3]
for a similar argument. (24) is proved for / =0 and |y| < R for R being a fixed large constant.
12

Next we use (35) to compare (vy — U — F(3))(y) with QM,;mrS_”JF& for some large Q over
16—e

R<|y|l<M ,(("_2)2 . By the maximum principle,

_ 12 _
|Uk _ (U + F(3))| g QMk n—2r8—n+a_

The estimates for the first and the second derivatives of vy — (U + F®) follow from this and the
equation for vy — (U + F®) by elliptic estimates. Proposition 2.1 is established. O

2.3. Estimate of E)

2

In this and the next subsections, we assume A € (%, 2) and we assume A < |y| < %Mk" 2

unless otherwise stated. We use E1, ..., E4 to denote the following terms:
A 2 (25+2) -5 o a\ P
E = p(2s+ n—2 s+ | =
1=cmU* Y R&TIM, "y 1= (=
s=0
_cm? 3 200, R)? +Z(a R) 8 2 fIM, i
271 (n+2) = ij ii 2

~ EES}
cmU* Y[y ROM, "7l (1= (2)2H), n=10,

~ _ 442
C(n)U)\. 217:2 R(l)Mk n—2 rl(l _ (%)21+4)’ n>11,



450 Y.Y. Li, L. Zhang / Journal of Functional Analysis 245 (2007) 438—474

J
E3=Yas(res.
s=1

18—¢
19) M_ n=2 9—5—n , =10,
py= | OM 36)

_20=¢ P
O(Mk n—2 rlO—j—n)’ n 2 11’

where e; = eg(0), independent of k, is a homogeneous spherical harmonic of degree s, J is a
positive integer, a; x satisfies

_16-¢ 16
|&S,k(r)| = O(Mk n=2 r3—n) + O(Mk n—2 r4—n).

From now on we say a term is E3 or E4 if it is of the form in (36). The main result in this
subsection is

Proposition 2.2. For n > 10, % <A<2,

1
E,=E\+Ey+ E3+ Ey4, A<|y|<§M"‘2
Proof. First by (24) we have
,72
IVI[v} — (U + FD)]| < oM, iy, 1=0,1,2, (37)

where F. )53) is the Kelvin transformation of F® . Note that (37) holds over the whole X;. Simi-
larly we can define F. A(Z) as the Kelvin transformation of F® and we shall use this expression:

~ __8_
E? =—cm)RP©) 3 (M, ",

where

RP©) =7 3R, +Za”R(92——> > 0 RO0; + - Z(a,,R)92+0(|W|)

I</ l</

and fz)‘ r) = (%)”’2 f>(A2/r) is the Kelvin transformation of f>. f; is understood similarly.
Since 0 < fa2(r), f3(r) < Cr for 0 <r < 1, we have

— 8
2

Bol+|Agol<er™ FP=o(M ) (38)

Now we consider (b;9; +d; j0i j)”£~ Since U* is radially symmetric, we have, using (33), (32),
(37,
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(l;iai +cz,-j8,-j)v,’} = (l;iai +d_ijaij)F)E3) +Ey4
8

= —cm){(bid; + dijdi))RP @)} f3- ()M, "2

- _ 13 - _ 10
—c(n)(b;0; +d;;0;j) Z R;3)e3pf3)‘Mk =2 L Ey.
p=1
For any smooth function a(6),
/ (Eiai +d_ijaij)a(9) = / (Ag, — A)a(0) =0. (39)
sn—1 sn—1

Expanding b; (y) and d; () to the fourth and the fifth order, respectively, and using (31), we
have

_ S ! _1
(Bid; +dij i) RP©O) =Y k() Pi(@) + O (M, " rY),
=1

_ _ o 5 1
(bid; +dijoij) Y R esp =D biar)Pi(®) + O(M, " rY),
p=1 =1

where a; x(r) and by i (r) are radial functions satisfying

8—¢

8
lar k()| + [bri()| = O(M, "2r) + O(M, " r?), (40)

while P;(6) is a homogeneous polynomial in € of degree / and is also independent of k. Conse-
quently, using (39), we have

— — - 7 12
(Bid; +dij3i) )R 0) = ) ark(r)er0) + O (M, " r?),
=1
~ _ I3 ~ 7 1
(id; +dij i) Z RDes, = Zbl,k(l”)ez(Q) +o0(M, "),
p=1 I=1

where ¢;(0), independent of &, is a homogeneous spherical harmonic of degree /, and a; x (r) and
by k (r), independent of 0, satisfy (40). Consequently, using also (38),

(Bid; + dijd;j)v} = (bid; + dijd;j) Fy + E4 = E3 + Eg.

Similarly we can show that

<|/y\_|>n+2(5i (") droe(v*) +dij (5*)dijoe (v*)) = E3 + Ea.
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We have discussed the minor terms in E), by (22), the main term in E; is
A n+2
~ A ~( ) A
c(y)vg — <|y—|) c(y") ok (v*)-

We shall use the following two expansions of ¢ according to circumstances.
First we know

7 4421 2 8+4s
c=cm) Y ROOF M, " +cn)) RETD2H2p 02
=2 s=0
_20 1 2
+o(M, "), a<r< M 1)

On the other hand, using (25), (27) and the rate of |W|,

_ 12 _ 14— 1 2
c=cV+oM ")t +oM "), A<r< M (42)
where
I3 B 10
V=Pt ) Resprim 43)
p=1
1 _s
= c(n)(z % RO+ a,-,-Re,.2>r2Mk =
i<j i

Using (37), we have

2 n+2
— (—) D GMNFI () + Es. (44)

2

A n+2 7 - 22 I a4 B _8+4s /12 2542
—c(n)<;> U(y*) ZR()<7> M, "+ Y T REFD <7) +Ey
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2 _ _ 84+4s k 4s+8
:C(n)U)»ZR(25+2)Mk n—2 r2$+2<1 _ (_) ) + E2 + E4

r
s=0

For the third and the fourth terms of (44) we use (42), (43) and (38) to obtain

r

— (C(s) B (;)46(3) (y'\)>FA(3)
- <c<2> - (i) Oy )>F<2> 4+ Es

8
—C(n) (ZBURQZGJ + = Zal1R62> ( - <%) ) ;M;m

i<j

+ E3z+ Eg4.

G 3 &Hz B () p3) [
F, () FO (")

In the expansion of the product in the last equality, we use the fact that homogeneous poly-
nomials of degree 2 and 3 are orthogonal to each other—when a term has average 0 on $"~! it
contributes a term E3.

The term that needs to be evaluated is

<28,]R6H9 + = Zal,Rev)

i<j

It is elementary to verify the following identities:

o 1 N
K 1| n<n+2> PEL e /(91) Tan+2)

sn—1

In the following we often write a polynomial P (6) of degree less or equal to 7 as the sum
of |S”1—*1\ f g1 P(0) and ZZ,: 1 Cpep(0) where e, (0) are homogeneous spherical harmonics of
degree p.

By the above, we write

(Za,jRee += Za,,zee)

i<j

1 2
=) (@ R)*0707 + Z(Zawef) +Y Cpep®)
i p=1

i<j

=Y (@ R*6707 + - Z 3ii R9;; RO}OT + — Z(a,, R0} + Z Cpep(0)

i<j t#/ =1
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1 ) ,
- n(n+2) ;(%R) + 4n ( 2) Za”RauR t o 12 Z(auR) + ZC,,e,,
Note that
_l6—e
2811R8]]R+Z(3”R) = (Za” ) |W| ) (Mk n72).
i#]j
‘We have

<Za,,1eee += Za“m)

1<Jj

m[22(8,]R)2+Z(8,,R) }+0 +Zcpe,, (45)

Thus
Yo (&)””c@( NEO ()
P y y

cn) 2(8;i R)> 3R A% M"162 Es+E
2n(n+2)|:2 (l] )+Z( ii )i| ( ( ))fz + E3 + E4.

Proposition 2.2 follows from the above. O
2.4. Construction of auxiliary functions and proof of (15)

The goal of this subsection is to finish the proof of (15) by finding a contradiction to (20).
Before we construct the auxiliary functions, we discuss two relatively minor terms in E;. Recall

that R® = —%. The following properties of conformal normal coordinates are established
in [11]: If W =0, then Rypcq = 0 and, for some constant ¢1(n) > 0, R® = —c1(n)|Rapea.e|’; if
W =0and VW =0, then R,pcq,. = 0. Examining the proofs there, we arrive at

[Rabeal = O(1)|W], |Rabed.el = O(IW]) + O(IVg W),
and
RY = —c1(0)|VRapeal* + O(IWI) O(IV Rapeal) + O(IW)?).

Thus

8-2¢

_ 1 1 _
RW < —Ecl(n)WRabch +Oo(IWP?) = —Ecl(n)WRabch +0(M, "), (46)
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So

r
c(n) 2 8 -5
2n(Hz)(Zz(a,,m +Z(a,,R) )( ( )) M @)

Recall that the most important requirement for the test function 4, is (23), for which we
construct /) as the sum of four test functions i, ..., hs. Each of the first three functions is
constructed with respect to A and Vj, (a radial function, to be defined later), rather than A, — ¢
and £. So even though each of them cancels a major part of E,, they also create some minor
extra errors because of the difference between A, V) and A, — ¢, &. Eventually all these new
error terms will be put together and be controlled by /4.

For the convenience of our discussion, we define

s 3\ 16
Ey <cm)UROrSMm, ™ 2(1—(—) >

=6 ifn=10, =7 ifn=11.

To cancel the term

1

4 A\ 2+
c(n)U* Z (1—<;> ) in E;

we use (26). The f>; defined in Appendix C is to deal with R,
Let

Vi.(r) 2=n(n+2)/(tU +@ _I)Uf\)ﬁ dr.

For3 <1</, letx p > 0 be the eigenvalue corresponding to e, we consider

-1 5\ 24
pr(r)+ . prl(r)"‘(VA—%)fpxl(r)=—rlU’\(r)<1—<;> )

x<r<2Mk"2,3<1 <1,

2
T ) = for(2M] 7

(43)

)=0.

By Proposition 6.1 in [13, Appendix A], there exists some small €4 = €4(n) > 0 such that for
A €[l —e4, 1 +€4], Eq. (48) has a unique classical solution satisfying

_ 2
0< fpu(r) SCrH4" 3<I<I A<r <2M] .
Let

- __8
h = c(m)RP ) fr,, M, " 2.
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This is a major part of k. Let

I
=Y S Ripey(©) fa My 73
1=3 p=1
where Rlp and e, (0) are the ones in (26). By the definitions of 41 and &5, we have
A(hy+ho) + Vi(hy +ho)=—E>
The extra error terms created by h; are

(l;ia,' +c7,~ja,-,- —Cc+ (n(n -i-2)«‘;:"4Tz — V)L))hl.

We need to estimate the above in O;, note that by definition A1, ho = o(1)] y|2_” in X . For
(b d; + (Zij 0ij)h1, we just analyze it the same way as analyzing (b; 9 + d_ij 8,~j)F)53) to obtain

(bid; +dijdij)h1 = E3 + Eq.

Here and in the following, E"3 denotes a term of the form

J
ES = Zés,k(r)es
s=1

with ¢ x (r) depending only on r and satisfying

16—¢ _ 16

Gk =0(M, ") + 0(M, A, (49)

Next we consider —ch . By the definition of A1, (42) and (43) we have

20

—hy =—c®n + O(M,;m)rlo_”.
The major part to contribute to E is, using (45),

__16_
—Dhy = —cn) (ZB,]RHH + = Za,,zee) r2fraM, " + Ey

i<j

c(n) i
- 2n(n+2) (ZZ(B’IR)ZJFZ@HR) > 2f2 AM +E3 + Eg4.

Since R® (0) is orthogonal to e3,(0),

(c® — D)y = Es. (50)
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16—¢

For —ch; + (n(n +2)gn 7 — Vi)hy we use (24) over |y| < M(n 27 0d

16—¢
4 5 1 2
nn+2)Em2 -V, =0(r ), re (M(“) ,—M”2>,
) SV

16e

First for r < M, (=22 , using (24) and (37),

n(n+ 272

_4_
-2

—n(n+2)/ tU+a)+ (1 —1)(U*+b))"2dt

=V (tF® + (1 —nF)(eU + (1 —t)U*)'% dt

4n(n+2)/
n—2

12 16—€

+O(M,_ "), a<r <MY (51)

12 _ 12
where a :=vg — U = F® + O(M, "8 and b := v} — U* = ) + O(M, "2r27").
Since R (9) is orthogonal to e3,(6)
1
6=n ~
(/(IF(3) +(A=FD —tF® — (1 = FP) (U + (1 = nU*) = dt)hl = E.

0
Clearly,
6—n
(tF? + (1 —0F2)(tU + (1 —U*) =21y 0.
So
16—€
( it 3 n-2)?
n(n+2)E2 —V)h <E3+Es, A<r <M, .
We use
: = (1:)52 1 =
|(n(n+2)E72 = V)| < O(M, " r* ") =E4, M <r< TM” :

Now we estimate
- - 4
(b,~8,~ + di‘,a,'j —c+nn+2)En—2 — V)L)hz.
As usual,

(bid; + d;jd;;)hs = E3,
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+ E4.

h 5 _ 4421
—Chy=—cPhy + E4 = —6(2)6(11)( > " Ripep©) fou (r) M, ”2>
=3

p=1

Compare (27) and (26), we deduce from above, using the orthogonality of R® and e3 »(0) and
the decay of W,

—¢hy = E3 + Ea. (52)

By (51)

1
4n(n+2 61
nn+2E2 — Vi, = % /(IF(Z) +(1=0F?) U+ —nU*) 2 dr
0

10 12 16—¢

+ O(Mk_mr) + O(Mk_mr“&), A<r< Mk("fz)z.

Therefore, as in the derivation of (52),

(n(n+2)72 — Vi )y

1

4 2 61
= %hz f(rF@) + (A =DF?)(tU+ (1 =) U*) 2 dt + E4
0
I
4n(n +2) - —4
=——" (c(n) > Ripep©) fr(r)M "
p=1 =3

1
x /(tF@) +A=0F?)(tU+( - t)U)‘)% di + Ey4
0

16—¢

=FE3+Es, A<r< Mk("fz)z.

_ 18
The first term on the right-hand side is of the form ZSJ:1 Cs,k(r)es and ¢k (r) = O (M, n=2pTony
2

So after this term is extended to r < ﬁM k”j , it can be combined with E3. The extended part
has a good decay.

16762 2
(n-2) 1
For M, <r< T

M;'~*, we have

_ 10
|(n(1 + 2677 — Vi)ha| < O(M; "2r3") = Ey.

Recall that our purpose is to obtain (23). By putting & and %, together and using (47), we have
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- - 4
(A +b;0; +d;jd;j —c+n(n —|—2)§'m)(h1 +hy))+ E1+ E>
. s 2\ 16
<cmU*ROM, "-2r6<1 — (—) )
r

C(l’l)2 22 A 8 2 1762
C 2n(n+2) 4 Z(asz) (( (;) )fz +f2,x) +E3+Es. (53)

For R©® we use (63), we also know the lower bounds for Sf2 and f7;, respectively (see (74)
and (75)). These three estimates are in the appendix and are sufficient for 4; + &> to cancel the
major part of E,. In fact, first by (74) and (75)

c(n) A\ ° N
2n(n+2) ((1 - (7) )f2 +f2’k)

o1 (* 16 1 n-8 49
= r - - - bl
r 8n+dHm+2n\n—2 20n2

where we have used the following inequality that holds only for n = 10, 11.

1 <n -8 49 ) c(n) 1
- te)< .
8m+4(n+2)n\n—-2 20n2 2n(n+2)6(n—4)

Thus, by using (63), we deduce from (53) that

- - 4
(A +bid; +dijdij — ¢ +n(n+2)§72) (h1 + hy)
—E; —E2+E3+E4 in Xy.

Next we construct test functions to control E3 and E4. The hj3 to be constructed later will cre-
ate much minor error terms than before. Then eventually all the minors terms will be controlled
by ha4. Let f;) be the solution of

~ 2
i +2=Lf (r) + (Vo= 5 fa () = =), A<r<M7,
fo ) = fsA(M,f’z) =0,

and let

J
3= fu(re;.

s=1

4

_ 14 - _ 14
By (49), & x(r) = O(M, "> r’="). Consequently | fs(r)] < CM, ">r°~". Therefore

(A+Vyh; =—
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By the estimates of bi, d; j and h3, etc. we obtain

- - 4
(b,-a,- —i—dija,'j —c+nn+2)En—2 — V)L)h3 = E4.
Finally we define, for Q > 1 that

182
OM, " fun—orye(5), n=10,
ha(r) = 02/

QMk_ " fn,n—l()—i-\/g(%)’ n= 11’

where f;, o is definedin [13]. Let ) := h1 + hy + h3 + ha, then (23) is obtained. This /4, satisfies
all the requirements for the test function to make the method of moving spheres work. Then the
standard moving sphere argument leads to the following conclusion:

2
min vy < (14+e)U@r), 0<r< n=2

1
X _M )
Iyl<r N/

where € is an arbitrary small positive constant. Then following the argument in [13] one gets a
contradiction to (20). (15) is established.

2.5. Vanishing rates of the Weyl tensor and the completion of the proof of Theorem 1.2

In this subsection we use (15) to prove (16) and (17), the vanishing rates of the Weyl tensor
and its covariant derivatives at the blow up point. By (15),

() <CUW), |yl <M~ . (54)
This estimate leads to an improved estimate of vy than that in Proposition 2.2.
Proposition 2.3. There exists 8’ > 0, independent of k, such that

9/ (0 (0 4 M 7202 b )|

,72
-2

2
=o(M, )1+ 1) <M 1=0.1.2.

Proof. Write
E® .= Vg — (U + F(3)).
We only need to prove that

—-12 8—n—I

IVED|=0(M, ") (1+1y)""", IyI<8M T 1=0,1.2. (55)

It follows from (21) and (29) that

__2
-2

_ 2
(Mg —DE® +n(n+2E2ED =0(M, " )1 +1°", 0<r<M] 7, (56)
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where

1
Eia(y) = /(mk +(1=)(U + FP))™ ar.
0

Arguing as in [13, p. 212], we see that the operator Ag, — ¢ +n(n + 2)5 = satisfies the max-

2
imum principle over R} < |y| < §8'M k”’z for some constants Ry, 8’ > 0 which are independent
of k. For Cyg large, but independent of k, we see, using (56), (24) and (54), that

2
(Ag —é+n(n+2ET7)(ED = £)>0, Ry <yl <8'M7,

(E® = £)») <0 on{r=Ri)U{r=5'm"},

_12
where f(r) :=CioM, "=2y8=n Thus, in view of (24), estimate (55) for [ = 0 follows from the
maximum principle. The estimate for / = 1, 2 can then be deduced from the equation satisfied by
E® using elliptic estimates. O

2
Recall the Pohozaev type identity (102) in [13], with R}, =8'M k"’z,

L [ve] + D[ve] + Ivg] + Ia[ve] = Is[vg], (57)

_ _ n—2
L[] = / (_biaivk_dijaijvk)<vvk')’+ > vk>,

[yI<Ry,
I _ i = ~i = 2
2lve] = ———=M; {(M,"y) - VR(M, "7 y) +2R(M, " y) }vi (v).
IyI<Ry
_ 2
Ig[Uk] (2”1)M n— ZRk / R(Mk 1172y)v]%(y),

ly|=Ry

(n—2? P
Iylvg] = — Ry / vk (y)n-2,

2
d
- [ (5

Iy|I=R;

IyI=Ry

2
1 -2 Jug 2
—§|Vvk| >Rk+ ) UkW}—O(Mk )

Write

vk=ﬁ+ﬁ(3)+5(3),
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where
- -2 . -2
U=VU-y+—n2 U, FO=vF® .y IO,
Clearly,
~ _L
[VIF®|=0o(M, )1+ 1=0,1,2, (58)
and
~ _12
IVIE®| = o(Mm, "2 1yF 7)), 1=0,1,2. (59)

With these and (32), (55), (58), (59), we have

_ - n
L] = / (—=b;0; _dijaij)(vk_U)<vvk')’+
2
B(O,M;"™%)

] )
v | dy

/ (A= Ag)(FO +ED). (U + FP + EV)

2
B(O,M;"™%)

/ (A=A )FPT + 0(M?).
2
BO,M;"™%)

Since U is radially symmetric, f 2 (A — Agk)F(3)U = 0. Thus Ii[vt] = O(M,:z), and
BO,M"?)
with notation in (26),

7 442
IZ[Uk]_—C(Z—n)Z Z / {<l+2>a RyaM = 2}vk+0( )

=2 lel=l <R
c(n) L
== {Z > U +2)Ripe,r! Mk - +Z(2s+4)R<2S+2>M 22
=2 p=1 s=0

ISR,
x (U2 4+2U0(F® + ED) + (FO + ED)) + 0(M,?).
Using Lemma A.2 and (46), and for small §’, we have
c(n) 2 - — 34 2
-—— f D @s+HRED M B2 (U 4 20(FO + EO) 4+ (FO + EO))

2 =0
IvI<R, ~ 57



YY. Li, L. Zhang / Journal of Functional Analysis 245 (2007) 438—474 463

8+4s

_ c(n) / 2(2 4 4) RO, 2542 2 [1+0@) +o(h)]M,

s=0
Iy|<R,’(

l

I\)|M

> ¢ (n)|W? M, " +C2(n)|VRabcd|

) ) 1 n—S 49

_ 12
2

7), (60)

__16_ _ 8
x ( / U dy M, ) L o(IWRM, ™ + [V RapealM
IyI<Ry;

where c|(n), c2(n), € and €’ are some positive constants depending only on n. € and ¢’ are
sufficiently small. Also we observe that

(n) ok
_% (Z > U+ Rpepr' M, >U2 =0.

v, ==

We only need to deal with

7 ]
_c(n) / (Z Z(l+2)Rz,,e,,rM = +Z(2s+4)R(2A+2)M =) 23+2>

/ =2 1 0
R p= §=
‘ylg k

x 2U(F® + E®) + (F® + E®)?),
By previous estimates

7 I +
/ (Z > U+ 2)Ripe,r' M, 2l)(zU(F@) +ED) + (FO + ED)) = o(M?),

|)’\<R;/( =3 p=1

I
(ZRzpep T 2)<2UE<3>+<F<3>+E<3>>2>= oM7)

1
IvI<R, P

Finally — 2 V<R, Zl — 21’ (U +2)Rppe,r IM = 2U F® contributes another impor-
tant term:

7 I
Z Z(z +2)Ripe,r' M, " 22UF<3>
yi<g, =2 p=1

I 1
=—c(n) / <Z4R2pepr M, +Z Z(z+2)R,,,e,,r M, )
=3 p=

1 1
IyI<R, PT

xU(F?®+F® - F®),

c(n)
2
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Using the fact the eigenfunction corresponding to [ = 2 are orthogonal to those corresponding
to [ =3, we have

7 I
Z Z(l +2)Ripepr' M, " z2UF<3>
lyI<r, =2 P=1

c(n)
T2

~ -8 -4
= —de(n) / RP@)PUFPM, ™ + 0(M?) +o(hHM, "2 |W|?

IyI<R}
2¢(n)? ) 16 5
=i Zz(a,,R) +Z(8”R) U dy M, " + O (M7?)
l /
yI<R;
_ 8
+o()M, "W
2cm)? | o op2 / 2 ~ i ) 3 2
> " _|V?R UfrdyM, "2+ 0(M HM, WA 61
n(n+2)‘ | riUfady M " + O (M%) +o()M " W] (61)

VISR

The Pohozaev type identity (57) yields, in view of (60), (61) and the lower bound of f> in (74),
that

8 12 16
=) =) 2. Tn=o _
\WPM, " + |V Rapea "M, "7 + |V?Rapea| M, " log My = O(M, ), n =10,
2, 20, 2 2 *nlféz_ -2 —11
\WI°M, "7 + |V Rapeal "M, "> + |V Rapea| M, "> = O(M; ), n=11.

Thus we have proved (16) and (17). Estimates (18) and (19) follow from (55). Theorem 1.2 is
established.

Appendix A. Some curvature inequalities in conformal normal coordinates
A.1. The inequality for R©
In this appendix we prove the following two lemmas.

Lemma A.1. If|W(0)| = [VW(0)| = 0, then we have, in conformal normal coordinates centered
at 0,

RO — _ Rpipapspa.pspe Rpipapspspsps  Rpipa.psps (Rpipa.psps + Rpspacpips)
40(n +4)(n +2)n 8(n+4)(n+2)n
Z:Plpz (8171172R)2 10 (62)
8n+4(n+2)n ’

where repeated indices mean summation, and R;ji pq denotes covariant derivatives of R;j.
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Lemma A.2. For some small € = €(n) > 0, we have, in conformal normal coordinates centered
at 0,

o 1
6
R® < —€Ry, pyppa.pspe R papspapsps + St
n—38 49
X (n —2  20n2 + E) Z(aplsz)2 + 0(|VRabcd|2 + |W|2) (63)

pP1p2

We first assume Lemma A.1 and give the proof of Lemma A.2.

Proof of Lemma A.2. It was proved by Hebey and Vaugon in [11] that, if |[W(0)| =
[VW (0)| =0, then, in conformal normal coordinates centered at O,

6 2
Rp1p2.psps (Rpi pa.p3pa + Rpspa.pipr) 2 n_2 Z (Op p, R)”  at0. (64)
PiD2

We also need the following inequality under the same assumption:

49

2
R p2p3pa.pspe Rpi papspa.psps 2 an? Z(amsz) at 0. (65)
pPip2

Note that (65) with % replaced by 2. was established in [11]. This weaker version leads to

2
an inequality weaker than (A.2), which is nevertheless enough for applications in this paper. To

prove (65), we consider
I Rikmj. pg — «R.ii8kpdmg > > 0.
Namely,
IV pg Ritmj 1> — 20 Rikmj km R ij + @*n*R ;R ;j > 0.

By the second Bianchi identity, Rixmj.k = Rim,j — Rijm. SO

1 7
Rikmjkm = Rim,jm — Rijmm = ER,ij +3R;j = ER,ij.
It follows that
|qu Rikmj |2 + (a2n2 - 70[)R,,'j RJ./ 2 0.

Inequality (65) follows from the above by taking o = ZL

5.
By (62), (64) and (65) we have "

D 1 n—2_8 49
RO - dp pyR)? ato.
= 8nm+4)(n+2)n (n—2 2()”2)1;172( mp R A
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Then (28) holds for some small € (n) > 0 under the assumption |W(0)| = |VW (0)| = 0. In gen-
eral if we do not assume |W (0)| = |[VW (0)| = 0, all the extra terms can be estimated by Cauchy’s
inequality, and we obtain (63). Lemma A.2 is established. O

Proof of Lemma A.1. It was proved in [11] that if |[W(0)| = |[VW (0)| = 0, then, in conformal
normal coordinates centered at 0,

C(2,2)Sym, pe R p.ps + 864 R p, p2p3pa. psps Rpi pap3 pa. psps

2
+4320R p; 3. p3 ps (Rpy pa.p3ps + Rpypa, prpp) — 4320 Z (Op1p R)” =0,
p1p2

where C (2, 2) is the complete contraction:

cey= > > > .

r1=p2=1 p3=ps4=1 ps=pe=1
Since we work in conformal normal coordinates and since |W (0)| = |VW(0)| =0,

36
Sym, 6 Ropi.pe =Sym, . 9p.peR — 5 Sym,  pe Rovpi Rups pspa.pspe

= Sym Op;..pe R,

P1--Pe

where, for the second equality, we have used the skew-symmetry of R,pcq.
Thus we have

C(2,2)Sym R p,. ps = T20A°R(0),

P1--P6

where A denotes the flat Laplacian.
Therefore

3
A”R(0) + gRmpzpsm,pspeRp1p2p3p4,psps +6Rp, pr.p3ps (Rpi pa.p3ps + Rpspa,pip2)

=6 (3pp, R =0. (66)
P1p2
By some standard computations,

_ 1 R A3R(0)
©) _ ol o
R = |Sn—1] / Z a! o A8+ 4)(n+2)n’ ©7)

Snfl |Ol|:6
It follows from (66) and (67) that
RO — _ Rp1pap3pa.psps Rpipapspa.psps _ Rp1p2.p3ps (Rpipa.psps + Rpsps.pip)
40(n +4)(n +2)n 8n+4)(n+2)n
Zplpz(BPIPZR)Z
8m+4)(n+2)n

at 0 where |W(0)| = |VW(0)| =0 is assumed. Lemma A.1 is established. O
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A.2. Proof of Lemma 2.1

The following fact is elementary. Let k > 1 be an integer, j € [1, n] be a fixed integer, then

/ Opy.poss ROYXPT - x P24t T dx = C(n, k); (AFR)(0), (68)
Sn—l
where
Qk + DYs" 1
T k2K [T+ 20y

C(n, k)

Proof of Lemma 2.1. In conformal normal coordinates,
Symy, ..preis Rpipa.psspass = 0 0+2<2k+3<2w+3,
if |V Raped(0)| =0 for 0 <i < w — 1. See [11]. After contraction this implies
3 (ANRO)=0, j=1,....,n, if |V Rupea(0)|=0 for0<i<w-—1.

For n =10, 11, we only need to discuss k = 1, i.e., we have 9;(AR)(0) =0 if |[W(0)| =0. In
general we have

3;(AR)(0) = O(IW]).
This and (68) imply

flé<3>(9)9f=0(|W|), 1<j<n.

sn—1

On the other hand, it is clear that

/1%“)(9):0, fzé“)(e)e"e-’:o, 1<i,j<n.
sn—1 sn—1

Lemma 2.1 follows from the above. O
Appendix B. Some estimates on an ODE

Proposition B.1. Let n > 3 be an integer, 5o > n be a constant, let H ryecC 0(0, o) satisfy, for
some positive constants C, B and o > 2, §o + (¢ —2)(n — ) > 0,

0<HN SCrPA+r 0<r<oo.
Then for any constant p satisfying

O<p<B+2, p(p+n—2) <o,
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there exists a unique a(r) € C2(0, 00) verifying

: Ta(r):=ad"(r)+ "r;la’(r) + (n(n+ 2)U(r)$ - f—g)a(r) =—H(@r), 0<r<oo, 69)

lim, ,oa(r) =lim, s a()=0.
Moreover, for some positive constant Cqy depending only on n, 8y, «, 8, p and C,
0<a(r) < Cor?(14+r)" P22 0<r < oo.

Lemma B.2. Let n > 3 be an integer, 5o > n be a constant, and let A (r) be a non-negative
function in 90, 00). Then for any 0 < € < R, there exists a unique solution ac g € C%[e, R] t0

4 ~
a!’R(r) + ”T_laé‘R(r) +mn+2)U(r)m—2 — f—g)aé’R(r) =—H(r), e<r<R,
ac,r(€) = ae rR(R) =0.

(70)

Moreover; ac g = 0 on [€, R].
Proof. Let (S”, go) be the standard sphere. It is known that in the stereographic projection coor-
dinates

n+1 .
go=Y _ dx; =ui(y)=2dy’,

i=1

where

2 o n—2
ur(y) = TTOF =27 U.

Also we know that

1 p=u, " Aid).

nn—2) n+2
L@ = (8- "2

If we let ¢ = ac gr/u1, we can rewrite (70) as

nn—2) \ 3 A% 5
<Ag0¢_T¢>ul :—(n(n+2)U"—2 —r—2>ae,R_H(r)-

After simplification, we have

So(1+r?)2 _mi2
- ¢=—u, "H().

Agydp + (n

Since o > n

So(1 +r?)?
n<-—m——,y—

) fore <r< R, r#1. (71)
r

So the existence and the uniqueness of ¢ as well as a g are proved. O
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Proof of Proposition B.1. Clearly for some R; > 1,

) 8n 8o 2
—22—4 forr > Ry/2, and —22871 forO<r < —.
r r r Ry

Fix a W € C%(0, o) satisfying:

0 1 2
—>Wr)>24n, —<r<—,
Ry Ry

1
Wr)=4n, O<r<—,
1
) 4n R

>W(V)>r—4, 7<

D~ r < Ry,
r

4n
W(r)= prl r > Rj.

Clearly W(r) < do / r< and

1 2N\2
%W(r)>n, Vr >0, r#1.

With this fact, the first eigenvalue of —Ag) +( % W (r) —n) is positive on S” and the potential
n+2

(W22 W () — n) s in CO(S™). Since @ > 2, u; " H(r) € LI(S") for some g > 1. Let ¢; €
W24 (S™) be the solution of

1 252 _nt2
Agy1 +( ( +4r ) W(r ))¢1 " H(r).

By the symmetry of the data, the uniqueness of the solution, ¢ depends only on r. Since both
W and H are continuous for 0 < r < 0o, #1 is C? in 0 < r < co. By the maximum principle,
¢ 1 > 0. Let

a () =p1(Nu(r), 0<r <oo.

Then a; € C2(0, 00), a;(r) >0, and

n
Tai(r):=af(r)+

—1 ’ 4 o
ay(r)+ [n(n +2U ()2 — r_2:|a](r)

<af(r) +2 a] (r) +[n(n+ QU ()i — W (r)]ai (r)

nn—2) 142 4
= (Agoqb] — T¢1)“1 — [n(n +2)U@r)n2 — W(V)]fl)lul
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1+r%)? nt2 .
= (Agoqbl + <n — %W(r’))gﬁl)ui’_z —Hi(r).

So aj(r) is a supersolution. A calculation gives
T(rP)=—=(8— p(p+n—2)+ 0)r’=? asr—0,
T(r2_a) =—(Bo+(@—2)(n—a)+O01/r))r™® asr— ooc.

Since both §o — p(p +n —2) and §p + (o — 2) (n — «) are positive, there exists Ry > 1 such that

» A 1
T(yr )<—H(r) forO<r<R—2,
T(yr2_°‘) <—H(@r) forr >Ry,

for some y > 1. Choose y larger if necessary such that

LY’ <1> (R2)*™ > a1 (Ra)
J/(R—2> >ai R_2 s Y (Ry > a1 (Ry).

Define
min{yr?, ai(r)}, O0<r< Rlz’
ar)=1{ a(r), % <r<R,
min{yrz_"‘, ai(r)}, r> Ry.
Then a(r) is a continuous supersolution to Ta(r) = -A (r) in (0, 00). Therefore for any 0 <
€ < R < 00, the solution of (70) satisfies

0<acr(r)<a(r), Y0<r<oo.

Let e — 0 and R — oo along a subsequence, a¢ g(r) tends to a(r) in Cllo’:f (0,00) for0 <A <1,
which satisfies (69) in the weak sense. Since He CO(O, 00), we know that a € CZ(O, 00).

Now we prove the uniqueness of the solution of (69). Let a(r) and b(r) be two solutions
of (69), then their difference verifies the homogeneous equation

T(a—b)=0 1in (0,00).

By [8, Theorem 8.1], the homogeneous equation has two linearly independent solutions a4 (r)
and a_ (r) with the asymptotic behavior

) L)
im = lim =

L,
r—>oo r#tl

r—00 r)\z
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where A and A, are the two solutions of A2 + (n—2)A—356y=0suchthat Ay >0and Ap <2 —n.
Since (a — b)(r) = C1a4 + Caa— for some constants C; and C3, and since (a — b)(r) — 0 as
r — 0o, we must have C| = 0 and therefore

lim_ r""2(a — b)(r) = 0. (72)

r

Since T (a — b) = 0 corresponds to

232 .
<Ag0+[n_5o(1+r) ])(a o) _, on S\ (P, ).

4r2 Ui
where N, P are the south pole and the north pole, respectively. We know from (72) that
%( p) = 0 as p — {N, P}, and in view of (71), we can apply the maximum principle to
conclude a — b = 0. Proposition B.1 is established. O

Appendix C. Two useful lower bounds

Proposition C.1. For n > 10, there exists a unique f> € C*°((0, 00)) satisfying

" n—1 / 4 2n 2
5 (r) + L)+ |\ nn+2)U2 ——= ) for=—r"U, 0<r<oo,
r r (73)
lim f,(r) = lim f(r) =0.
r—0 r—00
Moreover, for some universal positive constant C,
U 3n—4
A T2 < h)<Crid 40T, 0<r <oo. (74)
6(n—4) n—2

Proposition C.2. Let V), =n(n+2) fol tU+1- t)UA)% dt. Then there exists a unique f; ) €
C®°(0, co) satisfying

-1 2 A\
H+2 — 30+ <VA - V—Z)fz,)\(r) = —r2U*(r)<1 - (;) ) r €, 00),

S (M) =0, rl_i>ngo Sfaa(r)=0.

Moreover; for any € > 0, there exist §(€) satisfying 5(e) — 0 as € — 0, and a universal constant
C such that for |A — 1] < §(€),

1;6,\4_&8 3n—42_&4>> 6-n
(- () 2t () e s

for A <r < oo.
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Proposition C.3. For n > 8, there exists a unique fz € C*(0, 0o0) satisfying

f3/(”)'|'(n(71-|-2)Uﬁ — 3(n—2|—1))f3=—r3U, 0<r<oo,
r

1" n—1
f3 )+
r (76)
lim f3(r) = lim f3(r) =0
r—0 r—>00
and, for a universal constant C

0< f3(r) <Cri(l4+r)2™", r>0.

The existence, uniqueness, and the upper bounds of f>, f2., and f3 follow from Proposi-
tion B.1. So we only prove the lower bound of f> and f> ; in this section.
Let ¢1(r) = r*U/(6(n — 4)). Then by elementary computation

4 2n 2
Apr+ | n(n+2)U"2 — — |¢1 > —r°U.
r
Consequently

2
T(fy— 1) = Al — 1) + <n<n+2)Un42 - r—Z)(fz — ¢ =—g<0, 0<r<oo,
lim(f2 = ¢)(r) = lim (/2= ¢1)(r) =0.

where

4n—-2) 1 2n 9, 4
+ reUn=2 ).
3n—4)1+r2 3(n—4)

g(r)=r’U (
By Proposition B.1, there exists a positive solution aj (r) of

Tai(r)y=—g(r), 0<r<oo,
lim, pa1(r) =lim, a1 (r) =0.

Since

T(fo—¢1—a)=0, O<r<oo,
lim, o(f2 —¢1 —a)(r) =lim, o (f2 — ¢1 —ay)(r) =0,

we know from the proof of Proposition B.1 that f, — ¢; —a; = 0. So we only need to obtain a
lower bound for a;. Let

_ 3n—4 2y
PO 2"

then direct computation gives

A+ (n( LU 2n P 2(3n—4)U r2 n
nn n-2 — — =— — reUn-2].
2 72 )7 3(n—4) 1472 n-=2
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Then one verifies immediately

o 2(3n—4)U r2 n ot
r) > — reUn-2 .
8 3n—4) \1+r2 n-2
This means

1 4 3n—4 )

- My "
RO ey Ul vy s

(74) is established.

To prove (75), we still use maximum principle as before, but instead of comparing f> , di-
rectly with the right-hand side in (75), we compare f> , with (1 — 2¢€)(¢3 + ¢4) where

6(n1_4) (r4UA<1 - (%))8 +r4(U - UA)>,

gy o dn—4 sl (MY L 2
¢4 =2 ¢2—6(n_4)(n_2)<rU(1 (r)) +r*(U U)).

Our purpose is to show

b3 =01 — ¢} =

foo = (1 =2€)(p3 + d4), (77)

where € is any fixed small positive constant and A is close to 1 depending on €. Once we
have (77), (75) follows from (77) and the following well-known fact:

U =U*n =1~ U(l - %)0@2").

LetT:=A+V, — f—’;, then by elementary computation,

T — 2U*<1 (x)fi) 4(n—2)U>\( r? A8 )
$3=-1 7)) se—a” U2 " saras
2n 4/rrA ;%2 _ & 8 _& 4—n
+3(n_4)r (U) <1 (r) )+3()»)<1 r>r ,
_ 204 . (> N 2Bn—4) k( 1 _(&>4 1 )
Tos=—5,_5"Y (1 (r) >+ sa-a 152 7)) 152872

2n(Bn—4) 5 5\ (* 4 _&) 2—n
+—3(n_4)(n_2)r(U) 2(1 <r>)+5(/\)<1 )

where we use §(1) to indicate a function of A which tends to 0 as A — 1.
Then one verifies that

[)

T(for.— (1 =26)(¢3+¢4)) <0, A<r <oo,
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if A is close to 1 enough. Since we also have f ; (1) = ¢3(A) = ¢4(A) =0 and lim, o (2,5 —
(1 —2€)(¢3 + ¢4)) = 0, we have proved (77) by maximum principle. Proposition C.1 is estab-
lished.
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