# Absolute algebra III-The saturated spectrum 

Paul Lescot<br>LMRS, CNRS UMR 6085, UFR des Sciences et Techniques, Université de Rouen, Avenue de l'Université BP12, 76801 Saint-Etienne du Rouvray, France

## ARTICLE INFO

## Article history:

Received 25 March 2010
Received in revised form 9 October 2011
Available online 23 November 2011
Communicated by E.M. Friedlander

MSC: 06F05; 20M12; 08C99


#### Abstract

We investigate the algebraic and topological preliminaries to a geometry in characteristic one.


© 2011 Elsevier B.V. All rights reserved.

## 1. Introduction

The theory of characteristic one semirings (i.e. semirings with $1+1=1$ ) originated in many different contexts: pure algebra (see e.g. LaGrassa's Ph.D. thesis [8]), idempotent analysis and the study of $\mathbf{R}_{+}^{\max }$ [1,3], and Zhu's theory [12], itself inspired by considerations of Hopf algebras (see [11]). Its main motivation is now the Riemann Hypothesis, via adeles and the theory of hyperrings (cf. [2-4], notably Section 6 from [4]).

For example, it has by now become clear (see [4], Theorem 3.11) that the classification of finite hyperfield extensions of the Krasner hyperring $K$ is one of the main problems of the theory. If $H$ denotes a hyperring extension of $K, B_{1}$ the smallest characteristic one semifield and $S$ the sign hyperring, then there are canonical mappings $B_{1} \rightarrow S \rightarrow K \rightarrow H$, whence mappings

$$
\operatorname{Spec}(H) \rightarrow \operatorname{Spec}(K) \rightarrow \operatorname{Spec}(S) \rightarrow \operatorname{Spec}\left(B_{1}\right)
$$

thus Spec $(H)$ "lies over" $\operatorname{Spec}\left(B_{1}\right)$ (see [4], Section 6 , notably diagram (43), where $B_{1}$ is denoted by B).
The ultimate goal of our investigation is to provide a proper algebraic geometry in characteristic one. The natural procedure is to construct "affine $B_{1}$-schemes" and endow them with an appropriate topology and a sheaf of semirings; a suitable glueing procedure will then produce general " $B_{1}$-schemes". This program is not yet completed; in this paper, we deal with a natural first step: the extension to $B_{1}$-algebras of the notions of spectrum and Zariski topology, and the fundamental topological properties of these objects. In order to construct a structure sheaf over the spectrum of a $B_{1}$-algebra, Castella's localization procedure [1] will probably be useful.

As in our two previous papers, we work in the context of $B_{1}$-algebras, i.e. characteristic one semirings. For such an $A$, one may define prime ideals by analogy to the classical commutative algebra. In order to define the spectrum of a $B_{1}$-algebra $A$, two candidates readily suggest themselves: the set $\operatorname{Spec}(A)$ of prime (in a suitable sense) congruences, and the set $\operatorname{Pr}(A)$ of prime ideals; in contrast to the classical situation, these two approaches are not equivalent. In fact both sets may be equipped with a natural topology of Zariski type (see [10], Theorem 2.4 and Proposition 3.15), but they do not in general correspond bijectively to one another; nevertheless, the subset $\operatorname{Pr}_{s}(A) \subseteq \operatorname{Pr}(A)$ of saturated prime ideals is in natural bijection with the set of excellent prime congruences (see below) on $A$.

E-mail address: paul.lescot@univ-rouen.fr.
URL: http://www.univ-rouen.fr/LMRS/Persopage/Lescot/.

It turns out (Section 3) that there is another, far less obvious, bijection between $\operatorname{Pr}_{s}(A)$ and the maximal spectrum $\operatorname{MaxSpec}(A) \subseteq \operatorname{Spec}(A)$ of $A$. This mapping is actually a homeomorphism for the natural (Zariski-type) topologies mentioned above. As a by-product, we find a new point of view on the description of the maximal spectrum of the polynomial algebra $B_{1}\left[x_{1}, \ldots, x_{n}\right]$ found in [9,12]. The homeomorphism in question is actually functorial in $A$ (Section 4).

In Section 5, we show that the theory of the nilradical and of the root of an ideal carry over, with some precautions, to our setting; the situation is even better when one restricts oneself to saturated ideals. This allows us, in Section 6, to establish some nice topological properties of

$$
\operatorname{MaxSpec}(A) \simeq \operatorname{Pr}_{s}(A)
$$

namely, $T_{0}$ and quasi-compact (Theorem 6.1), and the open quasi-compact sets constitute a basis stable under finite intersections. Furthermore this space is sober, i.e. each irreducible closed set has a (necessarily unique) generic point. In other words, $\operatorname{Pr}_{s}(A)$ satisfies the usual properties of a ring spectrum that are used in the algebraic geometry (see e.g. the canonical reference [6]): $\operatorname{Pr}_{s}(A)$ is a spectral space in the sense of Hochster [7].

In the last paragraph, we discuss the particular case of a monogenic $B_{1}$-algebra, that is, a quotient of the polynomial algebra $B_{1}[x]$; in [9], we had listed the smallest finite such algebras.

In a subsequent work I shall investigate how higher concepts and methods of the commutative algebra (minimal prime ideals, zero divisors, primary decomposition) carry over to characteristic one semirings.

## 2. Definitions and notation

We shall review some of the definitions and notation of our previous two papers [9,10].
$B_{1}=\{0,1\}$ denotes the smallest characteristic one semifield; the operations of addition and multiplication are the obvious ones, with the slight change that

$$
1+1=1
$$

A $B_{1}$-module $M$ is a nonempty set equipped with an action

$$
B_{1} \times M \rightarrow M
$$

satisfying the usual axioms (see [9], Definition 2.3); as first seen in [12], Proposition 1 (see also [9], Theorem 2.5), $B_{1}$-modules can be canonically identified with ordered sets having a smallest element ( 0 ) and in which any two elements $a$ and $b$ have a least upper bound $(a+b)$. In particular, one may identify finite $B_{1}$-modules and nonempty finite lattices.

A (commutative) $B_{1}$-algebra is a $B_{1}$-module equipped with an associative multiplication that has a neutral element and satisfies the usual axioms relative to addition (see [9], Definition 4.1). In the sequel, except when otherwise indicated, $A$ will denote a $B_{1}$-algebra.

An ideal $I$ of $A$ is by definition a subset containing 0 , stable under addition, and having the property that

$$
\forall x \in A \forall y \in I \quad x y \in I
$$

$I$ is termed prime if $I \neq A$ and

$$
a b \in I \Longrightarrow a \in I \quad \text { or } \quad b \in I .
$$

By a congruence on $A$, we mean an equivalence relation on $A$ compatible with the operations of addition and multiplication. The trivial congruence $C_{0}(A)$ is characterized by the fact that any two elements of $A$ are equivalent under it; the congruences are naturally ordered by inclusion, and
$\operatorname{MaxSpec}(A)$
will denote the set of maximal nontrivial congruences on $A$.
For $\mathcal{R}$ a congruence on $A$, we set

$$
I(\mathscr{R}):=\{x \in A \mid x \mathcal{R} 0\} ;
$$

it is an ideal of $A$.
A nontrivial congruence $\mathscr{R}$ is termed prime if

$$
a b \mathcal{R} 0 \Longrightarrow a \mathscr{R} 0 \quad \text { or } \quad b \mathscr{R} 0 ;
$$

the set of prime congruences on $A$ is denoted by $\operatorname{Spec}(A)$. It turns out that (see [10], Proposition 2.3)

$$
\operatorname{MaxSpec}(A) \subseteq \operatorname{Spec}(A)
$$

For $J$ an ideal of $A$, there is a unique smallest congruence $\mathcal{R}_{J}$ such that $J \subseteq I(\mathscr{R})$; it is denoted by $\mathcal{R}_{J}$. Such congruences are termed excellent .

An ideal $J$ of $A$ is termed saturated if it is of the form $I(\mathcal{R})$ for some congruence $\mathcal{R}$; this is the case if and only if $J=\bar{J}$, where

$$
\bar{J}:=I\left(\mathcal{R}_{J}\right)
$$

We shall denote the set of prime ideals of $A$ by $\operatorname{Pr}(A)$, and the set of saturated prime ideals by $\operatorname{Pr}_{s}(A)$.
For $S \subseteq A$, let us set

$$
W(S):=\{\mathcal{P} \in \operatorname{Pr}(A) \mid S \subseteq \mathscr{P}\}
$$

and

$$
V(S):=\{\mathcal{R} \in \operatorname{Spec}(A) \mid S \subseteq I(\mathcal{R})\}
$$

As seen in [10], Theorem 2.4 and Proposition 3.4, the family $(W(S))_{S \subseteq A}$ is the family of closed sets for a topology on $\operatorname{Pr}(A)$, and the family $(V(S))_{S \subseteq A}$ is the family of closed sets for a topology on $\operatorname{Spec}(A)$. We shall always consider $\operatorname{Spec}(A)$ and $\operatorname{Pr}(A)$ as equipped with these topologies, and their subsets with the induced topologies.

For $M$ a commutative monoid, we define the Deitmar spectrum $\operatorname{Spec}_{\mathscr{D}}(M)$ as the set of prime ideals (including $\emptyset$ ) of $M$ (in [5], this is denoted by $\operatorname{Spec} \mathbf{F}_{M}$ ). We define $\mathcal{F}(M)=B_{1}[M]$ as the "monoid algebra of $M$ over $B_{1}$ "; the functor $\mathcal{F}$ is adjoint to the forgetful functor from the category of $B_{1}$-algebras to the category of monoids (for the details, see [9], Section 5). Furthermore, there is an explicit canonical bijection between $\operatorname{Spec}_{\mathscr{D}}(M)$ and a certain $\operatorname{subset}$ of $\operatorname{Spec}(\mathcal{F}(M))$ (see [10], Theorem 4.2).

For $S$ a subset of $A$, let $\langle S\rangle$ denote the intersection of all the ideals of $A$ containing $S$ (there is always at least one such ideal: $A$ itself). It is clear that $\langle S\rangle$ is an ideal of $A$, and therefore is the smallest ideal of $A$ containing $S$. As in ring theory, one may see that

$$
\langle S\rangle=\left\{\sum_{j=1}^{n} a_{j} s_{j} \mid n \in \mathbf{N},\left(a_{1}, \ldots, a_{n}\right) \in A^{n},\left(s_{1}, \ldots, s_{n}\right) \in S^{n}\right\} .
$$

We shall denote by $\mathscr{P}$ the category whose objects are spectra of $B_{1}$-algebras and whose morphisms are the continuous maps between them.

## 3. A new description of maximal congruences

Let $A$ denote a $B_{1}$-algebra.
For $\mathcal{P}$ a saturated prime ideal of $A$, let us define a relation $\delta_{\mathcal{P}}$ on $A$ by:

$$
x \mathscr{S}_{\mathcal{P}} y \equiv(x \in \mathcal{P} \text { and } y \in \mathscr{P}) \quad \text { or } \quad(x \notin \mathcal{P} \text { and } y \notin \mathcal{P})
$$

Then $\delta_{\mathcal{P}}$ is a congruence on $A$ : if $x \delta_{\mathcal{P}} y$ and $x^{\prime} s_{\mathcal{P}} y^{\prime}$, then one and only one of the following holds:
(i) $x \in \mathcal{P}, y \in \mathcal{P}, x^{\prime} \in \mathcal{P}$ and $y^{\prime} \in \mathcal{P}$,
(ii) $x \in \mathcal{P}, y \in \mathcal{P}, x^{\prime} \notin \mathcal{P}$ and $y^{\prime} \notin \mathcal{P}$,
(iii) $x \notin \mathcal{P}, y \notin \mathcal{P}, x^{\prime} \in \mathcal{P}$ and $y^{\prime} \in \mathcal{P}$,
(iv) $x \notin \mathcal{P}, y \notin \mathcal{P}, x^{\prime} \notin \mathcal{P}$ and $y^{\prime} \notin \mathcal{P}$.

In case (i), $x+x^{\prime} \in \mathcal{P}$ and $y+y^{\prime} \in \mathcal{P}$, whence $x+x^{\prime} \mathcal{S}_{\mathcal{P}} y+y^{\prime}$; in cases (ii) and (iv), $x+x^{\prime} \notin \mathcal{P}$ and $y+y^{\prime} \notin \mathcal{P}$ (as $\mathcal{P}$ is saturated), whence $x+x^{\prime} \mathscr{s}_{\mathcal{P}} y+y^{\prime}$. Case (iii) is symmetrical relatively to case (ii), therefore, in all cases, $x+x^{\prime} \mathscr{s}_{\mathcal{P}} y+y^{\prime}: \mathscr{s}_{\mathcal{P}}$ is compatible with addition.

In cases (i), (ii) and (iii), $x x^{\prime} \in \mathcal{P}$ and $y y^{\prime} \in \mathcal{P}$, whence $x x^{\prime} s_{\mathcal{P}} y y^{\prime}$; in case (iv) $x x^{\prime} \notin \mathcal{P}$ and $y y^{\prime} \notin \mathcal{P}$ (as $\mathcal{P}$ is prime), whence also $x x^{\prime} s_{\mathcal{P}} y y^{\prime}: s_{\mathcal{P}}$ is compatible with multiplication, hence is a congruence on $A$.

As $0 \in \mathcal{P}$ and $1 \notin \mathcal{P}, 0 \mathcal{\beta}_{\mathcal{P}} 1$, therefore $s_{\mathcal{P}}$ is nontrivial; but each $x \in A$ is either in $\mathcal{P}$ (whence $x \delta_{\mathcal{P}} 0$ ) or not (whence $x \ell_{\mathcal{P}} 1$ ). It follows that

$$
\frac{A}{\wp_{\mathcal{P}}}=\{\overline{0}, \overline{1}\} \simeq B_{1}
$$

in particular, $s_{\mathcal{P}}$ is maximal: $s_{\mathcal{P}} \in \operatorname{MaxSpec}(A)$.
Obviously, $I\left(f_{\mathcal{P}}\right)=\mathcal{P}$.
Furthermore, let $(x, y) \in A^{2}$ be such that $x \mathcal{R}_{\mathcal{P}} y$; then there is $z \in \mathcal{P}$ such that $x+z=y+z$. If $x \in \mathcal{P}$ then $y+z=x+z \in \mathcal{P}$, whence $y \in \mathscr{P}$ (as $y+(y+z)=y+z$ and $\mathscr{P}$ is saturated); symmetrically, $y \in \mathscr{P}$ implies $x \in \mathscr{P}$, whence the assertions $(x \in \mathcal{P})$ and $(y \in \mathcal{P})$ are equivalent, and $x \mathscr{S}_{\mathcal{P}} y$. We have shown that

$$
\mathcal{R}_{\mathcal{P}} \leq \ell_{\mathfrak{P}} .
$$

We shall denote by $\alpha_{A}$ the mapping

$$
\begin{aligned}
\alpha_{A}: & \operatorname{Pr}_{s}(A) \rightarrow \operatorname{MaxSpec}(A) \\
& \mathcal{P} \mapsto \wp_{\mathcal{P}} .
\end{aligned}
$$

Let $\mathcal{R} \in \operatorname{MaxSpec}(A)$; then $\mathcal{R} \in \operatorname{Spec}(A)$, whence $I(\mathcal{R})$ is prime; by Theorem 3.8 of [10], it is saturated, i.e. $I(\mathcal{R}) \in \operatorname{Pr}_{s}(A)$. Let us set

$$
\beta_{A}(\mathcal{R}):=I(\mathcal{R}) .
$$

Theorem 3.1. The mappings

$$
\alpha_{A}: \operatorname{Pr}_{s}(A) \mapsto \operatorname{MaxSpec}(A)
$$

and

$$
\beta_{A}: \operatorname{MaxSpec}(A) \mapsto \operatorname{Pr}_{s}(A)
$$

are bijections, inverse of one another. They are continuous for the topologies on $\operatorname{Pr}_{s}(A)$ and $\operatorname{MaxSpec}(A)$ induced by the topologies on $\operatorname{Pr}(A)$ and $\operatorname{Spec}(A)$ mentioned above, whence $\operatorname{Pr}_{s}(A)$ and MaxSpec $(A)$ are homeomorphic.

Proof. Let $\mathcal{R} \in \operatorname{MaxSpec}(A)$; then

$$
\alpha_{A}\left(\beta_{A}(\mathcal{R})\right)=\alpha_{A}(I(\mathcal{R}))=\varsigma_{I(\mathcal{R})} .
$$

Let us assume $x \mathcal{R} y$; then, if $x \in I(\mathscr{R})$ one has $x \mathcal{R} 0$, whence $y \mathcal{R} 0$ and $y \in I(\mathscr{R})$; by symmetry, $y \in I(\mathcal{R})$ implies $x \in I(\mathcal{R})$, thus $(x \in I(\mathscr{R}))$ and $(y \in I(\mathcal{R}))$ are equivalent, i.e. $x \wp_{I(\mathcal{R})} y$. We have proved that $\mathcal{R} \leq \wp_{I(\mathcal{R})}$. As $\mathcal{R}$ is maximal, we have $\mathcal{R}=\varsigma_{I(\mathcal{R})}$, whence

$$
\alpha_{A}\left(\beta_{A}(\mathcal{R})\right)=\wp_{I(\mathcal{R})}=\mathcal{R},
$$

and

$$
\alpha_{A} \circ \beta_{A}=I d_{\operatorname{MaxSpec}(A)} .
$$

Let now $\mathcal{P} \in \operatorname{Pr}_{s}(A)$; then

$$
\begin{aligned}
\left(\beta_{A} \circ \alpha_{A}\right)(\mathcal{P}) & =\beta_{A}\left(\alpha_{A}(\mathcal{P})\right) \\
& =\beta_{A}\left(\delta_{\mathcal{P}}\right) \\
& =I\left(f_{\mathcal{P}}\right) \\
& =\mathscr{P},
\end{aligned}
$$

whence

$$
\beta_{A} \circ \alpha_{A}=I d_{P r_{S}(A)}
$$

and the first statement follows.
Let now $F$ denote a closed subset of $\operatorname{Pr}_{s}(A)$; then $F=G \cap \operatorname{Pr}_{s}(A)$ for $G$ a closed subset of $\operatorname{Pr}(A)$ and $G=W(S):=$ $\{\mathcal{P} \in \operatorname{Pr}(A) \mid S \subseteq \mathcal{P}\}$ for some subset $S$ of $A$. But then, for $\mathcal{R} \in \operatorname{MaxSpec}(A), \mathcal{R} \in \beta_{A}^{-1}(F)$ if and only if $\beta_{A}(\mathcal{R}) \in F$, i.e. $I(\mathcal{R}) \in G \cap \operatorname{Pr}_{s}(A)$, that is $I(\mathcal{R}) \in G$, or $S \subseteq I(\mathcal{R})$, which means $\mathcal{R} \in V(S)$. Thus

$$
\beta_{A}^{-1}(F)=V(S) \cap \operatorname{MaxSpec}(A)
$$

is closed in $\operatorname{MaxSpec}(A)$. We have shown the continuity of $\beta_{A}$.
Let now $H \subseteq \operatorname{MaxSpec}(A)$ be closed; then $H=\operatorname{MaxSpec}(A) \cap L$ for some closed subset $L$ of $\operatorname{Spec}(A)$, and $L=V(T)$ for some subset $T$ of $A$. Then a saturated prime ideal $\mathcal{P}$ of $A$ belongs to $\alpha_{A}^{-1}(H)$ if and only if $\alpha_{A}(\mathcal{P}) \in H$, that is

$$
s_{\mathcal{P}} \in \operatorname{MaxSpec}(A) \cap L,
$$

i.e.

$$
s_{\mathcal{P}} \in V(T)
$$

or $T \subseteq I\left(\delta_{\mathcal{P}}\right)$. But $I\left(\delta_{\mathcal{P}}\right)=\mathcal{P}$ whence $\mathscr{P}$ belongs to $\alpha_{A}^{-1}(H)$ if and only if $T \subseteq \mathscr{P}$, that is

$$
\alpha_{A}^{-1}(H)=W(T) \cap \operatorname{Pr}_{s}(A)
$$

which is closed in $\operatorname{Pr}_{s}(A)$.
Let us consider the special case in which $A$ is in the image of $\mathcal{F}: A=\mathcal{F}(M)$, for $M$ a commutative monoid. Let $P$ be a prime ideal of $M$; as seen in [10], Theorem $4.2, \tilde{P}$ is a saturated prime ideal in $A$, and one obtains in this way a bijection between $\operatorname{Spec}_{\mathscr{D}}(M)$ and $\operatorname{Pr}_{s}(A)$. The following is now obvious.

Theorem 3.2. The mapping

$$
\begin{gathered}
\psi_{M}: \operatorname{Spec}_{\mathscr{D}}(M) \rightarrow \operatorname{MaxSpec}(\mathcal{F}(M)) \\
\quad P \mapsto \alpha_{\mathcal{F}(M)}(\tilde{P})
\end{gathered}
$$

is a bijection.
The following two particular cases are of special interest.

1. $M$ is a group; then $\operatorname{Spec}_{\mathscr{D}}(M)=\{\emptyset\}$, whence $\operatorname{MaxSpec}(\mathcal{F}(G))$ has exactly one element.
2. $M=C_{n}:=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is the free monoid on $n$ variables $x_{1}, \ldots, x_{n}$. Then the elements of $\operatorname{Spec}_{\mathscr{D}}(M)$ are the $\left(P_{J}\right)_{J \subseteq\{1, \ldots, n\}}$, where

$$
P_{J}:=\bigcup_{j \in J} x_{j} C_{n}
$$

(a fact that was already used in [10], Example 4.3). Then

$$
\psi_{M}\left(P_{J}\right)=\alpha_{\mathcal{F}(M)}\left(\tilde{P}_{J}\right)=\delta_{\tilde{P}_{J}}
$$

whence $x \psi_{M}\left(P_{J}\right) y$ if and only if either $\left(x \in \tilde{P}_{J}\right.$ and $\left.y \in \tilde{P}_{J}\right)$ or ( $x \notin \tilde{P}_{J}$ and $y \notin \tilde{P}_{J}$ ). But we have seen in [9], Theorem 4.5, that

$$
\mathcal{F}(M)=B_{1}\left[x_{1}, \ldots, x_{n}\right]
$$

could be identified with the set of finite formal sums of elements of $M$. Obviously, an element $x$ of $\mathcal{F}(M)$ belongs to $\tilde{P}_{J}$ if and only if at least one of its components involves at least one factor $x_{j}(j \in J)$. It is now clear that, using the notation of [9], Definition 4.6 and Theorem 4.7,

$$
\psi_{M}\left(P_{J}\right)=\tilde{J}
$$

We hereby recover the description of $\operatorname{MaxSpec}\left(B_{1}\left[x_{1}, \ldots, x_{n}\right]\right)$ given in [9] (Theorems 4.7, 4.8 and 4.10).
The following result will be useful.
Theorem 3.3. Any proper saturated ideal of a $B_{1}$-algebra $A$ is contained in a saturated prime ideal of $A$.
Proof. Let $J$ be a proper saturated ideal of $A$; as $I\left(\mathcal{R}_{J}\right)=\bar{J}=J \neq A, \mathcal{R}_{J} \neq \mathcal{C}_{0}(A)$. By Zorn's Lemma, one has $\mathcal{R}_{J} \leq \mathcal{R}$ for some $\mathcal{R} \in \operatorname{MaxSpec}(A)$. According to Theorem 2.1, $\mathcal{R}=\alpha_{A}(\mathcal{P})=\delta_{\mathcal{P}}$ for a saturated prime ideal $\mathcal{P}$ of $A$, therefore $\mathcal{R}_{\mathcal{I}} \leq \delta_{\mathcal{P}}$ and

$$
J=\bar{J}=I\left(\mathcal{R}_{J}\right) \subseteq I\left(\ell_{\mathcal{P}}\right)=\mathcal{P} .
$$

## 4. Functorial properties of spectra

Let $\varphi: A \rightarrow C$ denote a morphism of $B_{1}$-algebras, and let $\mathcal{R} \in \operatorname{Spec}(C)$. We define a binary relation $\tilde{\varphi}(\mathcal{R})$ on $A$ by:

$$
\forall\left(a, a^{\prime}\right) \in A^{2} \quad a \tilde{\varphi}(\mathcal{R}) a^{\prime} \equiv \varphi(a) \mathcal{R} \varphi\left(a^{\prime}\right)
$$

It is clear that $\tilde{\varphi}(\mathcal{R})$ is a congruence on $A$, and that

$$
I(\tilde{\varphi}(\mathcal{R}))=\varphi^{-1}(I(\mathcal{R}))
$$

In particular $I(\tilde{\varphi}(\mathcal{R}))$ is a prime ideal of $A$, hence $\tilde{\varphi}(\mathcal{R}) \in \operatorname{Spec}(A): \tilde{\varphi} \operatorname{maps} \operatorname{Spec}(C)$ into $\operatorname{Spec}(A)$. Let $F:=V(S)$ be a closed subset of $\operatorname{Spec}(A)$, and let $\mathcal{R} \in \operatorname{Spec}(C)$; then $\mathcal{R} \in \tilde{\varphi}^{-1}(F)$ if and only if $\tilde{\varphi}(\mathcal{R}) \in F$, that is $S \subseteq I(\tilde{\varphi}(\mathcal{R}))$, or $S \subseteq \varphi^{-1}(I(\mathcal{R})$ ), i.e. $\varphi(S) \subseteq I(\mathcal{R})$, or $\mathcal{R} \in V(\varphi(S))$. Therefore $\tilde{\varphi}^{-1}(F)=V(\varphi(S))$ is closed in $\operatorname{Spec}(C): \tilde{\varphi}$ is continuous.

Furthermore, for $\varphi: A \rightarrow C$ and $\psi: C \rightarrow D$ one has

$$
\widetilde{\psi \circ \varphi}=\tilde{\varphi} \circ \tilde{\psi}: \operatorname{Spec}(D) \rightarrow \operatorname{Spec}(A)
$$

It follows that the equations $\mathscr{H}(A)=\operatorname{Spec}(A)$ and $\mathscr{H}(\varphi)=\tilde{\varphi}$ define a contravariant functor $\mathscr{H}$ from $\mathcal{Z}_{a}$ to $\& \mathscr{P}$.
Let $J$ denote an ideal in $C$, and let us assume $a \mathcal{R}_{\varphi^{-1}(J)} a^{\prime}$; then there is an $x \in \varphi^{-1}(J)$ with $a+x=a^{\prime}+x$. Now $\varphi(x) \in J$ and

$$
\begin{aligned}
\varphi(a)+\varphi(x) & =\varphi(a+x) \\
& =\varphi\left(a^{\prime}+x\right) \\
& =\varphi\left(a^{\prime}\right)+\varphi(x)
\end{aligned}
$$

whence $\varphi(a) \mathcal{R}_{J} \varphi\left(a^{\prime}\right)$ and $a \tilde{\varphi}\left(\mathscr{R}_{J}\right) a^{\prime}$. We have established.

Proposition 4.1. Let $A$ and $C$ denote $B_{1}$-algebras, $\varphi: A \rightarrow C$ a morphism and $J$ an ideal of $C$ : then $\mathcal{R}_{\varphi^{-1}(J)} \leq \tilde{\varphi}\left(\mathcal{R}_{J}\right)$.
Theorem 4.2. Let $A$ and $C$ denote two $B_{1}$-algebras, and $\varphi: A \rightarrow C$ a morphism. Then $\tilde{\varphi}: \operatorname{Spec}(C) \rightarrow \operatorname{Spec}(A)$ maps $\operatorname{MaxSpec}(C)$ into $\operatorname{MaxSpec}(A)$, and the diagram

commutes.
Proof. Let $\mathcal{P} \in \operatorname{Pr}_{s}(C)$, then, for all $\left(a, a^{\prime}\right) \in A^{2}$

$$
\begin{aligned}
a \tilde{\varphi}\left(s_{\mathcal{P}}\right) a^{\prime} & \Longleftrightarrow \varphi(a) s_{\mathcal{P}} \varphi\left(a^{\prime}\right) \\
& \left.\Longleftrightarrow\left(\varphi(a) \in \mathcal{P} \quad \text { and } \quad \varphi\left(a^{\prime}\right) \in \mathcal{P}\right)\right)
\end{aligned}
$$

or $\quad\left(\varphi(a) \notin \mathcal{P}\right.$ and $\left.\varphi\left(a^{\prime}\right) \notin \mathcal{P}\right)$

$$
\Longleftrightarrow\left(a \in \varphi^{-1}(\mathcal{P}) \quad \text { and } \quad a^{\prime} \in \varphi^{-1}(\mathcal{P})\right)
$$

or $\quad\left(a \notin \varphi^{-1}(\mathcal{P})\right.$ and $\left.a^{\prime} \notin \varphi^{-1}(\mathcal{P})\right)$

$$
\Longleftrightarrow a \S_{\varphi^{-1}(\mathcal{P})} a^{\prime} .
$$

Therefore

$$
\begin{aligned}
\left(\tilde{\varphi} \circ \alpha_{C}\right)(\mathcal{P}) & =\tilde{\varphi}\left(\alpha_{C}(\mathscr{P})\right) \\
& =\tilde{\varphi}\left(\wp_{\mathcal{P}}\right) \\
& =\varsigma_{\varphi^{-1}(\mathcal{P})} \\
& =\alpha_{A}\left(\varphi^{-1}(\mathscr{P})\right) \\
& =\left(\alpha_{A} \circ \varphi^{-1}\right)(\mathcal{P})
\end{aligned}
$$

whence $\tilde{\varphi} \circ \alpha_{C}=\alpha_{A} \circ \varphi^{-1}$.
Incidentally we have proved that $\tilde{\varphi}$ maps $\operatorname{MaxSpec}(C)=\alpha_{C}\left(\operatorname{Pr}_{s}(C)\right)$ into $\alpha_{A}\left(\operatorname{Pr}_{s}(A)\right)=\operatorname{MaxSpec}(A)$, i.e. the first assertion.

## 5. Nilpotent radicals and prime ideals

The usual theory generalizes without major problem to $B_{1}$-algebras.
Theorem 5.1. In the $B_{1}$-algebra $A$, let us define

$$
\operatorname{Nil}(A):=\left\{x \in A \mid(\exists n \geq 1) x^{n}=0\right\}
$$

Then $\operatorname{Nil}(A)$ is a saturated ideal of $A$, and one has

$$
\bigcap_{\mathcal{P} \in \operatorname{Pr}(A)} \mathcal{P}=\bigcap_{\mathcal{P} \in P_{r_{s}}(A)} \mathcal{P}=\operatorname{Nil}(A) .
$$

Proof. Let $M:=\bigcap_{\mathcal{P} \in \operatorname{Pr}(A)} \mathcal{P}$ and $N=\bigcap_{\mathcal{P} \in \operatorname{Pr}_{s}(A)} \mathcal{P}$. If $x \in \operatorname{Nil}(A)$ and $\mathcal{P} \in \operatorname{Pr}(A)$, then, for some $n \geq 1, x^{n}=0 \in \mathcal{P}$, whence (as $\mathcal{P}$ is prime) $x \in \mathscr{P}: \operatorname{Nil}(A) \subseteq M$.

As $\operatorname{Pr}_{s}(A) \subseteq \operatorname{Pr}(A)$, we have $M \subseteq N$.
Let now $x \notin \operatorname{Nil}(A)$; then

$$
(\forall n \in \mathbf{N}) \quad x^{n} \neq 0
$$

Define

$$
\mathcal{E}:=\left\{J \in I d_{s}(A) \mid(\forall n \geq 0) x^{n} \notin J\right\}
$$

This set is nonempty $(\{0\} \in \mathcal{E})$ and inductive for $\subseteq$, therefore, by Zorn's Lemma, there exists a maximal element $\mathcal{P}$ of $\mathcal{E}$. As $1=x^{0} \notin \mathcal{P}, \mathcal{P} \neq A$.

Let us assume $a b \in \mathcal{P}, a \notin \mathcal{P}$ and $b \notin \mathcal{P}$; then $\overline{\mathcal{P}+A a}$ and $\overline{\mathcal{P}+A b}$ are saturated ideals of $A$ strictly containing $\mathcal{P}$, whence there exists two integers $m$ and $n$ with $x^{m} \in \overline{\mathcal{P}+A a}$ and $x^{n} \in \overline{\mathcal{P}+A b}$. By definition of the closure of an ideal, there are $u=p_{1}+\lambda a \in \mathcal{P}+A a$ and $v=p_{2}+\mu b \in \mathcal{P}+A b$ such that $x^{m}+u=u$ and $x^{n}+v=v$. Then

$$
u b=p_{1} b+\lambda(a b) \in \mathcal{P}
$$

and

$$
x^{m} b+u b=\left(x^{m}+u\right) b=u b
$$

whence, as $\mathcal{P}$ is saturated, $x^{m} b \in \mathcal{P}$.
Then

$$
x^{m} v=x^{m} p_{2}+\mu x^{m} b \in \mathcal{P}
$$

as

$$
\begin{aligned}
x^{m+n}+x^{m} v & =x^{m}\left(x^{n}+v\right) \\
& =x^{m} v
\end{aligned}
$$

we obtain $x^{m+n} \in \mathcal{P}$, a contradiction.
Therefore $\mathcal{P}$ is prime and saturated and $x=x^{1} \notin \mathcal{P}$, whence $x \notin N$. We have proved that $N \subseteq \operatorname{Nil}(A)$, whence $M=N=\operatorname{Nil}(A)$.

## Corollary 5.2.

$$
\operatorname{Nil}(A)=\bigcap_{\mathcal{P} \in \operatorname{Pr}(A)} \overline{\mathcal{P}}
$$

## Proof.

$$
\begin{aligned}
\operatorname{Nil}(A) & =\bigcap_{\mathcal{P} \in \operatorname{Pr}(A)} \mathcal{P} \quad(\text { by Theorem 5.1) } \\
& \subseteq \bigcap_{\mathcal{P} \in \operatorname{Pr}(A)} \overline{\mathcal{P}} \\
& \subseteq \bigcap_{\mathcal{P} \in \operatorname{Pr}_{s}(A)} \overline{\mathcal{P}} \\
& =\bigcap_{\mathcal{P} \in \operatorname{Pr}_{s}(A)} \mathcal{P} \\
& =\operatorname{Nil}(A) \quad \text { (also by Theorem 5.1). }
\end{aligned}
$$

Definition 5.3. For $I$ an ideal of $A$, we define the root $r(I)$ of $I$ by

$$
r(I):=\left\{x \in A \mid(\exists n \geq 1) x^{n} \in I\right\} .
$$

Lemma 5.4. (i) $r(I)$ is an ideal of $A$.
(ii) $\overline{r(I)} \subseteq r(\bar{I})$; in particular, if I is saturated then so is $r(I)$.
(iii) $r(\{0\})=\operatorname{Nil}(A)$.

Proof. (i) Obviously, $0 \in r(I)$.
If $x \in r(I)$ and $y \in r(I)$, then $x^{m} \in I$ for some $m \geq 1$ and $y^{n} \in I$ for some $n \geq 1$, whence

$$
\left.\begin{array}{rl}
(x+y)^{m+n-1} & =\sum_{j=0}^{m+n-1}\binom{m+n-1}{j} x^{j} y^{m+n-1-j} \\
& =\left(\sum_{j=0}^{m+n-1} x^{j} y^{m+n-1-j}\right.
\end{array}\right),
$$

as $x^{j} \in I$ for $j \geq m$ and $y^{m+n-1-j} \in I$ for $j \leq m-1$ (as, then, $m+n-1-j \geq n$ ). Thus $x+y \in r(I)$.
For $a \in A,(a x)^{m}=a^{m} x^{m} \in I$, whence $a x \in r(I)$. Therefore $r(I)$ is an ideal of $A$.
(ii) Let $x \in \overline{r(I)}$ then there is $u \in r(I)$ such that $x+u=u$, and there is $n \geq 1$ such that $u^{n} \in I$. Let us show by induction on $j \in\{0, \ldots, n\}$ that $u^{n-j} \chi^{j} \in \bar{I}$. This is clear for $j=0$. Let then $j \in\{0, \ldots, n-1\}$, and assume that $u^{n-j} x^{j} \in \bar{I}$; then

$$
\begin{aligned}
u^{n-j-1} x^{j+1}+u^{n-j} x^{j} & =u^{n-j-1} x^{j}(x+u) \\
& =u^{n-j-1} x^{j} u \\
& =u^{n-j} x^{j}
\end{aligned}
$$

whence $u^{n-j-1} \chi^{j+1} \in \overline{\bar{I}}=\bar{I}$. Thus, for $j=n$, we obtain

$$
x^{n}=u^{n-n} x^{n} \in \bar{I},
$$

whence $x \in r(\bar{I})$.

If now $I$ is saturated, then

$$
\begin{aligned}
r(I) & \subseteq \overline{r(I)} \\
& \subseteq r(\bar{I}) \quad \text { (by the above) } \\
& =r(I)
\end{aligned}
$$

whence $r(I)=\overline{r(I)}$ is saturated.
(iii) That assertion is obvious.

Proposition 5.5. For each saturated ideal I of the $B_{1}$-algebra $A$, one has

$$
r(I)=\bigcap_{\mathcal{P} \in \operatorname{Pr}_{s}(A) ; I \subseteq \mathcal{P}} \mathcal{P}
$$

Remark 5.6. For $I=\{0\}$, this is part of Theorem 5.1.
Proof. Let $x \in r(I)$, and let $\mathcal{P} \in \operatorname{Pr}_{s}(A)$ with $I \subseteq \mathcal{P}$; then, for some $n \geq 1 x^{n} \in I$, whence $x^{n} \in \mathcal{P}$ and $x \in \mathcal{P}$ :

$$
r(I) \subseteq \bigcap_{\mathcal{P} \in P r_{s}(A) ; I \subseteq \mathcal{P}} \mathcal{P}
$$

Let now $y \in A, y \notin r(I)$, and denote by $\pi$ the canonical projection

$$
\pi: A \rightarrow A_{0}:=\frac{A}{\mathcal{R}_{I}} .
$$

As $I$ is saturated, one has

$$
\forall n \geq 1 \quad y^{n} \notin \bar{I}
$$

whence

$$
\forall n \geq 1 y^{n} \mathscr{R}_{I} 0
$$

or

$$
\forall n \geq 1 \quad \pi(y)^{n}=\pi\left(y^{n}\right) \neq \overline{0}
$$

Therefore $\pi(y) \notin \operatorname{Nil}\left(A_{0}\right)$, whence, according to Theorem 5.1, there exists a saturated prime ideal $\mathcal{P}_{0}$ of $A_{0}$ such that $\pi(y) \notin \mathcal{P}_{0}$. But then $\mathcal{P}:=\pi^{-1}\left(\mathcal{P}_{0}\right)$ is a saturated prime ideal of $A$ containing $I$ with $y \notin \mathcal{P}$, whence

$$
y \notin \bigcap_{\mathcal{P} \in P r_{s}(A) ; I \subseteq \mathcal{P}} \mathcal{P} .
$$

## 6. Topology of spectra

We can now establish the basic topological properties of the spectra $\operatorname{Pr}_{s}(A)$ (analogous, in our setting, to Corollary 1.1.8 and Proposition 1.1.10(ii) of [6]).

Theorem 6.1. $\operatorname{Pr}_{s}(A)$ and $\operatorname{MaxSpec}(A)$ are $T_{0}$ and quasi-compact.
Proof. According to Theorem 3.1, $\operatorname{Pr}_{s}(A)$ and $\operatorname{MaxSpec}(A)$ are homeomorphic, therefore it is enough to establish the result for $\operatorname{Pr}_{s}(A)$.

Let $\mathcal{P}$ and $\mathcal{Q}$ denote two different points of $\operatorname{Pr}_{s}(A)$; then either $\mathcal{P} \nsubseteq \mathcal{Q}$ or $\mathcal{Q} \nsubseteq \mathcal{P}$. Let us for instance assume that $\mathcal{P} \nsubseteq \mathcal{Q}$; then $\mathcal{Q} \notin W(\mathcal{P})$; set

$$
0:=\operatorname{Pr}_{s}(A) \cap(\operatorname{Pr}(A) \backslash W(\mathcal{P}))
$$

Then $O$ is an open set in $\operatorname{Pr}_{s}(A), Q \in O$ and, obviously, $\mathcal{P} \notin O$. Therefore $\operatorname{Pr}_{s}(A)$ is $T_{0}$.
Let $\left(U_{i}\right)_{i \in I}$ denote an open cover of $\operatorname{Pr}_{s}(A)$ :

$$
\operatorname{Pr}_{s}(A)=\bigcup_{i \in I} U_{i}
$$

each $\operatorname{Pr}_{s}(A) \backslash U_{i}$ is closed, whence $\operatorname{Pr}_{s}(A) \backslash U_{i}=\operatorname{Pr}_{s}(A) \cap W\left(S_{i}\right)$ for some subset $S_{i}$ of $A$. Therefore $\operatorname{Pr}_{s}(A) \cap\left(\bigcap_{i \in I} W\left(S_{i}\right)\right)=\emptyset$, i.e. $\operatorname{Pr}_{s}(A) \cap W\left(\bigcup_{i \in I} S_{i}\right)=\emptyset$. Therefore $\operatorname{Pr}_{s}(A) \cap W\left(\overline{\left\langle\bigcup_{i \in I} S_{i}\right\rangle}\right)=\emptyset$, whence, according to Theorem 3.3, $\overline{\left\langle\bigcup_{i \in I} S_{i}\right\rangle}=A$. Let $J=\left\langle\bigcup_{i \in I} S_{i}\right\rangle$; then $1 \in \bar{J}$, hence there is $x \in J$ such that $1+x=x$. Furthermore, there exist $n \in \mathbf{N},\left(i_{1}, \ldots, i_{n}\right) \in I^{n}, x_{i_{k}} \in S_{i_{k}}$ and $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$ such that $x=a_{1} x_{i_{1}}+\cdots+a_{n} x_{i_{n}}$. But then

$$
1+a_{1} x_{i_{1}}+\cdots+a_{n} x_{i_{n}}=a_{1} x_{i_{1}}+\cdots+a_{n} x_{i_{n}}
$$

whence

$$
1 \in \overline{\left\langle\left\{x_{i_{1}}, \ldots, x_{i_{n}}\right\}\right\rangle} \subseteq \overline{\bigcup_{j=1}^{n} s_{i_{j}}}
$$

and

$$
\overline{\bigcup_{j=1}^{n} S_{i_{j}}}=A .
$$

It follows that

$$
\operatorname{Pr}_{s}(A) \cap W\left(\bigcup_{j=1}^{n} s_{i_{j}}\right)=\emptyset,
$$

that is

$$
\operatorname{Pr}_{s}(A) \cap \bigcap_{j=1}^{n} W\left(S_{i j}\right)=\emptyset,
$$

or

$$
\operatorname{Pr}_{s}(A)=\bigcup_{j=1}^{n} U_{i_{j}}:
$$

$\operatorname{Pr}_{s}(A)$ is quasi-compact.
For $f \in A$, let

$$
\begin{aligned}
D(f) & :=\operatorname{Pr}_{s}(A) \backslash\left(\operatorname{Pr}_{s}(A) \cap W(\{f\})\right) \\
& =\left\{\mathcal{P} \in \operatorname{Pr}_{s}(A) \mid f \notin \mathcal{P}\right\} .
\end{aligned}
$$

Proposition 6.2. 1. Each $D(f)(f \in A)$ is open and quasi-compact in $\operatorname{Pr}_{s}(A)$ (see [6], Proposition 1.1.10(ii)).
2. The family $(D(f))_{f \in A}$ is an open basis for $\operatorname{Pr}_{s}(A)$ (see [6], Proposition 1.1.10(i)); in particular, the open quasi-compact sets constitute an open basis.
3. A subset 0 of $\operatorname{Pr}_{s}(A)$ is open and quasi-compact if and only if it is of the form $\operatorname{Pr}_{s}(A) \cap W(I)$ for I an ideal of finite type in $A$.
4. The family of open quasi-compact subsets of $\operatorname{Pr}_{s}(A)$ is stable under finite intersections.
5. Each irreducible closed set in $\operatorname{Pr}_{s}(A)$ has a unique generic point (see [6], Corollary 1.1.14(ii)).

Proof. 1. The openness of $D(f)$ is obvious.
Let us assume $D(f)=\bigcup_{i \in I} U_{i}$, where the $U_{i}$ 's are open sets in $D(f)$. Each $U_{i}$ can be written as

$$
U_{i}=D(f) \cap V_{i},
$$

for $V_{i}$ an open set in $P r_{s}(A)$, i.e. $P r_{s}(A) \backslash V_{i}=W\left(S_{i}\right)$ for $S_{i}$ a subset of $A$. Then

$$
D(f) \subseteq \bigcup_{i \in I} V_{i}=P_{s}(A) \backslash\left(\bigcap_{i \in I} W\left(S_{i}\right)\right),
$$

whence

$$
\operatorname{Pr}_{s}(A) \cap W\left(\bigcup_{i \in I} s_{i}\right) \subseteq W(\{f\}),
$$

that is, setting

$$
\begin{aligned}
& S:=\bigcup_{i \in I} s_{i}, \\
& f \in \bigcap_{\mathcal{P} \in W(S) \cap P_{T_{s}(A)}} \mathcal{P}=\bigcap_{\mathcal{P} \in P_{S}(A) ; S \subseteq \mathcal{P}} \mathcal{P} .
\end{aligned}
$$

Therefore, by Proposition 5.5, $f \in r(\overline{\langle S\rangle})$ : there is $n \geq 1$ such that $f^{n} \in \overline{\langle S\rangle}$. Thus, there is $g \in\langle S\rangle$ such that $f^{n}+g=g$; one has $g=\sum_{j=1}^{m} a_{j} s_{j}$ for $a_{j} \in A, s_{j} \in S$; for each $j \in\{1, \ldots, m\}, s_{j} \in S_{i j}$ for some $i_{j} \in I$. Let $S_{0}=\left\{s_{1}, \ldots, s_{m}\right\}$; then $g \in\left\langle\bigcup_{j=1}^{n} S_{i j}\right\rangle$, whence $f^{n} \in \overline{\left\langle\bigcup_{j=1}^{m} S_{i j}\right\rangle}$, and reading the above argument in reverse order with $S$ replaced by $\bigcup_{j=1}^{m} S_{i j}$ yields that

$$
D(f)=\bigcup_{j=1}^{m} U_{i j},
$$

whence the quasi-compactness of $D(f)$.
2. Let $U$ be an open set in $\operatorname{Pr}_{s}(A)$, and $\mathcal{P} \in U$. We have $\operatorname{Pr}_{s}(A) \backslash U=\operatorname{Pr}_{s}(A) \cap W(S)$ for some subset $S$ of $A$. As $\mathcal{P} \notin W(S)$, $S \nsubseteq \mathcal{P}$, whence there is an $s \in S$ with $s \notin \mathcal{P}$. It is now clear that $\mathcal{P} \in D(s)$ and

$$
D(s) \subseteq \operatorname{Pr}_{s}(A) \backslash W(S)=U
$$

3. Let $O \subseteq \operatorname{Pr}_{s}(A)$ be open and quasi-compact; according to (2), one may write $O=\bigcup_{j \in J} D\left(f_{j}\right)$ with $f_{j} \in A$. But then, there is a finite subset $J_{0}$ of $J$ such that $O=\bigcup_{j \in J_{0}} D\left(f_{j}\right)$. Now

$$
\begin{aligned}
\operatorname{Pr}_{s}(A) \backslash O & =\bigcap_{j \in J_{0}} D\left(f_{j}\right) \\
& =\operatorname{Pr}_{s}(A) \cap W\left(\left\langle f_{j} \mid j \in J_{0}\right\rangle\right)
\end{aligned}
$$

is of the required type.
Conversely, if $\operatorname{Pr}_{s}(A) \backslash O=\operatorname{Pr}_{s}(A) \cap W(I)$ with $I=\left\langle g_{1}, \ldots, g_{n}\right\rangle$, it is clear that $O=\bigcup_{i=1}^{n} D\left(g_{i}\right)$; as a finite union of quasi-compact subspaces of $\operatorname{Pr}_{s}(A), O$ is therefore quasi-compact.
4. Let $O_{1}, \ldots, O_{n}$ denote quasi-compact open subsets of $\operatorname{Pr}_{s}(A)$; then, according to (iii), we may write

$$
\operatorname{Pr}_{s}(A) \backslash O_{j}=\operatorname{Pr}_{s}(A) \cap W\left(I_{j}\right)
$$

for some finitely generated ideal $I_{j}$ of $A$. Thus

$$
\begin{aligned}
\operatorname{Pr}_{s}(A) \backslash\left(O_{1} \cap \cdots \cap O_{m}\right) & =\bigcup_{j=1}^{m}\left(\operatorname{Pr}_{s}(A) \backslash O_{j}\right) \\
& =\bigcup_{j=1}^{m}\left(\operatorname{Pr}_{s}(A) \cap W\left(I_{j}\right)\right) \\
& =\operatorname{Pr}_{s}(A) \cap \bigcup_{j=1}^{m} W\left(I_{j}\right) \\
& =\operatorname{Pr}_{s}(A) \cap W\left(\prod_{j=1}^{m} I_{j}\right) \\
& =\operatorname{Pr}_{s}(A) \cap W\left(I_{1} \ldots I_{m}\right)
\end{aligned}
$$

whence, according to (iii), $O_{1} \cap \ldots \cap O_{m}$ is quasi-compact, as $I_{1} \ldots I_{m}$ is finitely generated.
5. Let $F$ denote an irreducible closed set in $\operatorname{Pr}_{s}(A)$; then $F=\operatorname{Pr}_{s}(A) \cap W(S)$ for $S$ a subset of $A$. We have seen above that, setting $I:=\overline{\langle S\rangle}$, one has $F=\operatorname{Pr}_{s}(A) \cap W(I)$. As $F$ is not empty, $I \neq A$. Let us assume $a b \in I$; then, for each $\mathcal{P} \in F$, one has $a b \in I \subseteq \mathcal{P}$, whence $a \in \mathcal{P}$ or $b \in \mathcal{P}$, i.e. $\mathcal{P} \in F \cap W(\{a\})$ or $\mathscr{P} \in F \cap W(\{b\})$ :

$$
F=(F \cap W(\{a\})) \cup(F \cap W(\{b\}))
$$

As $F$ is irreducible, it follows that either $F=F \cap W(\{a\})$ or $F=F \cap W(\{b\})$. In the first case we get $F \subseteq W(\{a\})$, i.e.

$$
a \in \bigcap_{\mathcal{P} \in P r_{s}(A) ; I \subseteq \mathcal{P}} \mathcal{P}=I \text { (Proposition 5.5); }
$$

similarly, in the second case, $b \in I: I$ is prime. But then

$$
\begin{aligned}
\overline{\{I\}} & =\operatorname{Pr}_{s}(A) \cap W(I) \\
& =F
\end{aligned}
$$

and $I$ is a generic point for $F$.
It is unique as, in a $T_{0}$-space, an (irreducible) closed set admits at most one generic point (see [6], (0.2.1.3)).
Corollary 6.3. $\operatorname{Pr}_{s}(A)$ and $\operatorname{MaxSpec}(A)$ are spectral spaces in the sense of Hochster ([7], p. 43).
Theorem 6.4 (Cf. [6], Corollary 1.1.14). Let $F=\operatorname{Pr}_{s}(A) \cap W(S)$ be a nonempty closed set in $\operatorname{Pr}_{s}(A)$; then $F$ is homeomorphic to $\operatorname{Pr}_{s}(B)$, where $B:=\frac{A}{\mathcal{R}_{I}}$ with $I:=\overline{\langle S\rangle}$.
Proof. As seen above, one has $F=\operatorname{Pr}_{s}(A) \cap W(I)$, whence, as $F \neq \emptyset, I \neq A$. Let $A_{0}:=\frac{A}{\mathcal{R}_{I}}$, and let $\pi: A \rightarrow A_{0}$ denote the canonical projection.

Let us now define

$$
\begin{aligned}
\psi: & \operatorname{Pr}_{s}\left(A_{0}\right) \rightarrow F \\
& \mathcal{Q} \mapsto \pi^{-1}(\mathcal{Q})
\end{aligned}
$$

Then $\psi$ is well-defined (as $\pi^{-1}(\mathcal{Q})$ is a saturated prime ideal of $A$ that contains $I$ ), and injective (as, for each $Q \in \operatorname{Pr}_{s}\left(A_{0}\right)$, $\pi(\psi(\mathbb{Q}))=\mathcal{Q})$.

Let $\mathcal{P} \in F$; then $\pi(\mathcal{P})$ is an ideal of $A_{0}$. Let us assume $\pi(v) \in \overline{\pi(\mathcal{P})}$; then

$$
\pi(v)+\pi(a)=\pi(a)
$$

for some $a \in \mathcal{P}$, that is

$$
\pi(a+v)=\pi(a)
$$

But then

$$
a+v+i=a+i
$$

for some $i \in I$, whence

$$
v+(a+i)=a+i
$$

As $a+i \in \mathcal{P}$ and $\mathcal{P}$ is saturated, it follows that $v \in \mathcal{P}: \pi(\mathcal{P})$ is saturated.
Furthermore, if $\pi(1) \in \pi(\mathcal{P})$, one has $\pi(1)+\pi(v)=\pi(v)$ for some $v \in \mathscr{P}$, whence there is $w \in I$ such that $1+v+w=v+w$, whence $1+v+w \in \mathscr{P}$ and (as $\mathcal{P}$ is saturated) $1 \in \mathscr{P}$ and $\mathscr{P}=A$, a contradiction. Therefore $\pi(\mathcal{P}) \neq A_{0}$.

Let us assume $\pi(x) \pi(y) \in \pi(\mathcal{P})$ : then $x y+i=q+i$ for some $i \in I$, whence

$$
(x+i)(y+i)=x y+x i+i y+i^{2} \in \mathcal{P}
$$

and $x+i \in \mathcal{P}$ or $y+i \in \mathcal{P}$; as $\mathcal{P}$ is saturated, it follows that $x \in \mathcal{P}$ or $y \in \mathcal{P}$, whence $\pi(x) \in \pi(\mathcal{P})$ or $\pi(y) \in \pi(\mathcal{P}): \pi(\mathcal{P})$ is prime.

As $\mathcal{P}$ is saturated, one sees in the same way that $\psi(\pi(\mathcal{P}))=\pi^{-1}(\pi(\mathcal{P}))=\mathscr{P}$, whence $\psi$ is surjective.
Let $G:=F \cap W\left(S_{0}\right)$ be closed in $F$; then $\mathscr{P} \in \psi^{-1}(G)$ if and only if $\psi(\mathcal{P}) \in F \cap W\left(S_{0}\right)$, that is $S \subseteq \pi^{-1}(\mathcal{P})$ and $S_{0} \subseteq \pi^{-1}(\mathcal{P})$, i.e. $\pi\left(S \cup S_{0}\right) \subseteq \mathcal{P}:$

$$
\psi^{-1}(G)=\operatorname{Pr}_{s}\left(A_{0}\right) \cap W\left(\pi\left(S \cup S_{0}\right)\right)
$$

is closed in $F$, and $\psi$ is continuous.
Let now $H:=\operatorname{Pr}_{s}\left(A_{0}\right) \cap W(\bar{G})$ be closed in $\operatorname{Pr}_{s}\left(A_{0}\right)$, and let $\mathcal{Q} \in \operatorname{Pr}_{s}\left(A_{0}\right)$; as $\pi$ is surjective, $\bar{G} \subseteq \mathcal{Q}$ if and only if $\pi^{-1}(\bar{G}) \subseteq \pi^{-1}(\mathcal{Q})=\psi(\mathcal{Q})$, and it follows that

$$
\psi(H)=F \cap W\left(\pi^{-1}(\bar{G})\right)
$$

is closed in $F$. Therefore $\psi$ is a homeomorphism.

## 7. Remarks on the one-generator case

Let us now consider the case of a nontrivial monogenic $B_{1}$-algebra containing strictly $B_{1}$, i.e. $A=\frac{B_{1}[x]}{\sim}$ is a quotient of the free algebra $B_{1}[x]$ with $x \nsim 0, x \nsim 1$. Denote by $\alpha$ the image of $x$ in $A$; then $\alpha \notin\{0,1\}$, and $\alpha$ generates $A$ as a $B_{1}$-algebra.

Let us suppose that, for some $(u, v) \in A^{2}, \alpha u=1+\alpha v$; then $\alpha$ is not nilpotent, as from $\alpha^{n}=0$ would follow

$$
0=\alpha^{n} v=\alpha^{n-1}(\alpha v)=\alpha^{n-1}(1+\alpha u)=\alpha^{n-1}+\alpha^{n} u=\alpha^{n-1}
$$

whence $\alpha^{n-1}=0$ and, by induction on $n, 1=\alpha^{0}=0$, a contradiction.
Therefore the following three cases may appear.
(i) $\alpha$ is nilpotent.
(ii) $\alpha$ is not nilpotent and there does not exist $(u, v) \in A^{2}$ such that $\alpha u=1+\alpha v$.
(iii) ( $\alpha$ is not nilpotent) and there exists $(u, v) \in A^{2}$ such that $\alpha u=1+\alpha v$.

In case (i), any prime ideal of $A$ must contain $\alpha$, hence contain $\alpha A$; the ideal $\alpha A$ is, according to the above remark, saturated, and is not contained in a strictly bigger saturated ideal other than $A$ itself (in both cases, as any element of $A$ not in $\alpha A$ is of the shape $1+\alpha x$ ). Therefore $\operatorname{Pr}_{s}(A)=\{\alpha A\}$, whence $\operatorname{Nil}(A)=\alpha A$. In this case we see that

$$
\frac{A}{\mathcal{R}_{\text {Nil(A) }}} \simeq B_{1}
$$

In cases (ii) and (iii), no power of $\alpha$ belongs to $\operatorname{Nil}(A)$; as $\operatorname{Nil}(A)$ is saturated, it follows that $\operatorname{Nil}(A)=\{0\}$. In fact, $A$ is integral, whence $\{0\} \in \operatorname{Pr}_{s}(A)$. If $\mathcal{P} \in \operatorname{Pr}_{s}(A)$ and $\mathcal{P} \neq\{0\}$, then $\mathcal{P}$ contains some power of $\alpha$, hence contains $\alpha$, hence contains $\alpha A$. As above we see that $\mathcal{P}=\alpha A$; but, in case (iii), $\alpha A$ is not saturated. In case (ii) it is easy to see that $\alpha A$ is prime and saturated. Therefore:

1. in case (ii), $\operatorname{Pr}_{S}(A)=\{\{0\}, \alpha A\} ;\{0\}$ is a generic point, that is

$$
\overline{\{\{0\}\}}=\operatorname{Pr}_{s}(A),
$$

and $\alpha A$ a "closed point" ( $\{\alpha A\}$ is closed);
2. in case (iii), $\operatorname{Pr}_{s}(A)=\{\{0\}\}$.

One may remark that $B_{1}[x]$ itself falls into case (ii).
In [9], pp. 75-79, we have enumerated (up to isomorphism) monogenic $B_{1}$-algebras of cardinality $\leq 5$. It is easy to see where these algebras fall in the above classification; we keep the numbering used in [9]. Let then $3 \leq|A| \leq 5$. We have the following repartition.

Case (i): (6), (8), (12), (15), (18), (24)
Case (ii): (7), (10), (11), (16), (19), (25), (26)
Case (iii): (5), (9), (13), (14), (17), (20), (21), (22), (23), (27), (28).

## Acknowledgements

This paper was written during a stay at I.H.E.S. (December 2010-March 2011); a preliminary version appeared as prepublication IHES/M/11/06. I am grateful both to the staff and to the colleagues who managed to make this stay pleasant and stimulating. I am also deeply indebted to Professor Alain Connes for his constant moral support.

I am very grateful for the invitations to lecture upon this work at the JAMI conference Noncommutative geometry and arithmetic (Johns Hopkins University, March 22-25 2011), and at the AGATA Seminar (Montpellier, April 7, 2011); for these, I thank Professors Alain Connes, Caterina Consani, and Vladimir Vershinin.

## References

[1] D. Castella, L'algèbre tropicale comme algèbre de la caractéristique 1: polynômes rationnels et fonctions polynomiales, preprint; arXiv:0809.0231v1.
[2] A. Connes, C. Consani, Schemes over $F_{1}$ and zeta functions, Compos. Math. 146 (6)(2010) 1383-1415.
[3] A. Connes, C. Consani, Characteristic one, entropy and the absolute point, in: Proceedings of the JAMI Conference 2009, JHUP, 2011 (in press).
[4] A. Connes, C. Consani, The hyperring of adele classes, J. Number Theory 131 (2011) 159-194.
[5] A. Deitmar, Schemes over $F_{1}$, in: Number Fields and Function Fields - Two Parallel Worlds, Birkhaüser, Boston, 2005, pp. 87-100.
[6] A. Grothendieck, Eléments de Géométrie Algébrique I - Le langage des schémas, Publ. Math. IHES, No. 4 (1960).
[7] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969) 43-60.
[8] S. LaGrassa, Semirings: ideals and polynomials, Ph.D. thesis, University of Iowa, 1995.
[9] P. Lescot, Algèbre Absolue, Ann. Sci. Math. Québec 33 (1) (2009) 63-82.
[10] P. Lescot, Absolute algebra II-ideals and spectra, J. Pure Appl. Algebra 215 (7) (2011) 1782-1790.
[11] A. Zelevinsky, Representations of Finite Classical Groups. A Hopf Algebra Approach, in: Lecture Notes in Mathematics, vol. 869, Springer-Verlag, Berlin, New York, 1981, p. 184.
[12] Y. Zhu, Combinatorics and characteristic one algebra, preprint, 2000.

