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1. Introduction

The theory of characteristic one semirings (i.e. semirings with 1 4+ 1 = 1) originated in many different contexts: pure
algebra (see e.g. LaGrassa’s Ph.D. thesis [8]), idempotent analysis and the study of R7* [1,3], and Zhu's theory [12], itself
inspired by considerations of Hopf algebras (see [11]). Its main motivation is now the Riemann Hypothesis, via adeles and
the theory of hyperrings (cf. [2-4], notably Section 6 from [4]).

For example, it has by now become clear (see [4], Theorem 3.11) that the classification of finite hyperfield extensions of
the Krasner hyperring K is one of the main problems of the theory. If H denotes a hyperring extension of K, B the smallest
characteristic one semifield and S the sign hyperring, then there are canonical mappings By - S — K — H, whence
mappings

Spec(H) — Spec(K) — Spec(S) — Spec(B),

thus Spec(H) “lies over” Spec(B;) (see [4], Section 6, notably diagram (43), where B, is denoted by B).

The ultimate goal of our investigation is to provide a proper algebraic geometry in characteristic one. The natural
procedure is to construct “affine B;-schemes” and endow them with an appropriate topology and a sheaf of semirings; a
suitable glueing procedure will then produce general ““B;-schemes”. This program is not yet completed; in this paper, we deal
with a natural first step: the extension to B;-algebras of the notions of spectrum and Zariski topology, and the fundamental
topological properties of these objects. In order to construct a structure sheaf over the spectrum of a By-algebra, Castella’s
localization procedure [ 1] will probably be useful.

As in our two previous papers, we work in the context of Bj-algebras, i.e. characteristic one semirings. For such an A, one
may define prime ideals by analogy to the classical commutative algebra. In order to define the spectrum of a B;-algebra A,
two candidates readily suggest themselves: the set Spec(A) of prime (in a suitable sense) congruences, and the set Pr(A) of
prime ideals; in contrast to the classical situation, these two approaches are not equivalent. In fact both sets may be equipped
with a natural topology of Zariski type (see [10], Theorem 2.4 and Proposition 3.15), but they do not in general correspond
bijectively to one another; nevertheless, the subset Pr;(A) C Pr(A) of saturated prime ideals is in natural bijection with the
set of excellent prime congruences (see below) on A.

E-mail address: paul.lescot@univ-rouen.fr.
URL: http://www.univ-rouen.fr/LMRS/Persopage/Lescot/.

0022-4049/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j,jpaa.2011.10.031


https://core.ac.uk/display/82025663?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jpaa.2011.10.031
http://www.elsevier.com/locate/jpaa
http://www.elsevier.com/locate/jpaa
mailto:paul.lescot@univ-rouen.fr
http://www.univ-rouen.fr/LMRS/Persopage/Lescot/
http://www.univ-rouen.fr/LMRS/Persopage/Lescot/
http://www.univ-rouen.fr/LMRS/Persopage/Lescot/
http://www.univ-rouen.fr/LMRS/Persopage/Lescot/
http://www.univ-rouen.fr/LMRS/Persopage/Lescot/
http://www.univ-rouen.fr/LMRS/Persopage/Lescot/
http://www.univ-rouen.fr/LMRS/Persopage/Lescot/
http://dx.doi.org/10.1016/j.jpaa.2011.10.031

P. Lescot / Journal of Pure and Applied Algebra 216 (2012) 1004-1015 1005

It turns out (Section 3) that there is another, far less obvious, bijection between Pr;(A) and the maximal spectrum
MaxSpec (A) C Spec(A) of A. This mapping is actually a homeomorphism for the natural (Zariski-type) topologies mentioned
above. As a by-product, we find a new point of view on the description of the maximal spectrum of the polynomial algebra
Bq[x1, ..., x,] found in [9,12]. The homeomorphism in question is actually functorial in A (Section 4).

In Section 5, we show that the theory of the nilradical and of the root of an ideal carry over, with some precautions, to our
setting; the situation is even better when one restricts oneself to saturated ideals. This allows us, in Section 6, to establish
some nice topological properties of

MaxSpec(A) =~ Pry(A);

namely, Tp and quasi-compact (Theorem 6.1), and the open quasi-compact sets constitute a basis stable under finite
intersections. Furthermore this space is sober , i.e. each irreducible closed set has a (necessarily unique) generic point. In
other words, Prs(A) satisfies the usual properties of a ring spectrum that are used in the algebraic geometry (see e.g. the
canonical reference [6]): Prs(A) is a spectral space in the sense of Hochster [7].

In the last paragraph, we discuss the particular case of a monogenic B;-algebra, that is, a quotient of the polynomial
algebra B;[x]; in [9], we had listed the smallest finite such algebras.

In a subsequent work I shall investigate how higher concepts and methods of the commutative algebra (minimal prime
ideals, zero divisors, primary decomposition) carry over to characteristic one semirings.

2. Definitions and notation

We shall review some of the definitions and notation of our previous two papers [9,10].
By = {0, 1} denotes the smallest characteristic one semifield ; the operations of addition and multiplication are the obvious
ones, with the slight change that

1+1=1.
A Bi-module M is a nonempty set equipped with an action
By xM—> M

satisfying the usual axioms (see [9], Definition 2.3); as first seen in [ 12], Proposition 1 (see also [9], Theorem 2.5), B;-modules
can be canonically identified with ordered sets having a smallest element (0) and in which any two elements a and b have
a least upper bound (a + b). In particular, one may identify finite B;-modules and nonempty finite lattices.

A (commutative) By-algebra is a B;-module equipped with an associative multiplication that has a neutral element and
satisfies the usual axioms relative to addition (see [9], Definition 4.1). In the sequel, except when otherwise indicated, A will
denote a B;-algebra.

An ideal I of A is by definition a subset containing 0, stable under addition, and having the property that

VxeAVyel xyel;
I is termed prime if I # A and
abel=—=ael or bel.

By a congruence on A, we mean an equivalence relation on A compatible with the operations of addition and
multiplication. The trivial congruence Cy(A) is characterized by the fact that any two elements of A are equivalent under it;
the congruences are naturally ordered by inclusion, and

MaxSpec(A)

will denote the set of maximal nontrivial congruences on A.
For R a congruence on A, we set

I(R) := {x € A]x R 0};

it is an ideal of A.
A nontrivial congruence R is termed prime if

abRO=aR0 or bRO;
the set of prime congruences on A is denoted by Spec(A). It turns out that (see [10], Proposition 2.3)
MaxSpec(A) < Spec(A).

For J an ideal of A, there is a unique smallest congruence R; such that ] C I(R); it is denoted by R;. Such congruences
are termed excellent .
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An ideal J of A is termed saturated if it is of the form I(R) for some congruence R; this is the case if and only if ] = ],
where

J=1(R)).
We shall denote the set of prime ideals of A by Pr(A), and the set of saturated prime ideals by Prs(A).
For S C A, let us set
W(S) :={» € Pr(A)|S C P},
and
V(S) := {R € Spec(A)|S C I(R)}.

As seen in [10], Theorem 2.4 and Proposition 3.4, the family (W (S))sca is the family of closed sets for a topology on Pr(A),
and the family (V(S))sca is the family of closed sets for a topology on Spec(A). We shall always consider Spec(A) and Pr(A)
as equipped with these topologies, and their subsets with the induced topologies.

For M a commutative monoid, we define the Deitmar spectrum Specy (M) as the set of prime ideals (including @) of
M (in [5], this is denoted by Spec Fy;). We define (M) = B{[M] as the “monoid algebra of M over B;”; the functor
is adjoint to the forgetful functor from the category of Bi-algebras to the category of monoids (for the details, see [9],
Section 5). Furthermore, there is an explicit canonical bijection between Specy, (M) and a certain subset of Spec(F (M))
(see [10], Theorem 4.2).

For S a subset of A, let (S) denote the intersection of all the ideals of A containing S (there is always at least one such
ideal: A itself). It is clear that (S) is an ideal of A, and therefore is the smallest ideal of A containing S. As in ring theory, one
may see that

n
Zajsjm €N, (ar,...,a,) €A", (s1,...,8,) €S"

We shall denote by 84 the category whose objects are spectra of B;-algebras and whose morphisms are the continuous
maps between them.

3. A new description of maximal congruences

Let A denote a B;-algebra.
For & a saturated prime ideal of A, let us define a relation §» on A by:

x$py=xePandye P) or (x¢ Pandy ¢ P).

Then 4§, is a congruence on A: if X8,y and X 5;,))/ , then one and only one of the following holds:

(i)xeﬂ’,yeﬂ’,x/ e.?andy/ € P,
(ii)xej’,yeﬂ’,x’ qéj’andy' ¢ P,
(iii) x ¢ P,y ¢ P.x € Pandy € P,
(iv)x¢3’,y§ée‘/’,x/ gé.?andy/ ¢ P

In case (i), x+x €g andy +y € »,whence x + x’ S0y +y in cases (ii) and (iv), X+x ¢ P andy+y ¢ P (as P is
saturated), whence x + X S0y + y Case (iii) is symmetrical relatively to case (ii), therefore, in all cases, x + x )ny + y 8p
is compatible with addition.

In cases( ) (ii) and (iii), XX € andyy € #,whence xx Joyy in case(lv)xx ¢ P andyy ¢ P (as & is prime), whence
also xx 8 Joyy 4 is compatible with multiplication, hence is a congruence on A.

AsO e 2 and 1 ¢ 2,0 A1, therefore 45 is nontrivial; but each x € A is either in & (whence x$50) or not (whence
x851). It follows that

A _ -
0, 1} >~ By;
5 ={0,1} > By

in particular, 85 is maximal: 8, € MaxSpec(A).

Obviously, I(85) = 2.

Furthermore, let (x, y) € A% be suchthatxR»y; thenthereisz € # suchthatx4+z = y+z.Ifx € J theny+z =x+z € J
whencey € # (asy + (y +z) =y + z and & is saturated); symmetrically, y € & implies x € &, whence the assertlons
(x € ) and (y € P) are equivalent, and x$,y. We have shown that

Rp < 8.
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We shall denote by a4 the mapping
oy : Prg(A) — MaxSpec(A)
P 8p.

Let R € MaxSpec(A); then R € Spec(A), whence I(R) is prime; by Theorem 3.8 of [ 10], it is saturated, i.e. [(R) € Prs(A).
Let us set

Ba(R) :=1(R).
Theorem 3.1. The mappings

ay : Prg(A) — MaxSpec(A)
and

Ba : MaxSpec(A) — Prs(A)

are bijections, inverse of one another. They are continuous for the topologies on Prs(A) and MaxSpec (A) induced by the topologies
on Pr(A) and Spec(A) mentioned above, whence Prs(A) and MaxSpec(A) are homeomorphic.

Proof. Let R € MaxSpec(A); then
aa(Ba(R)) = aa(I(R)) = Siw)-

Let us assume xRy; then, if x € [(R) one has xR0, whence yR0 and y € I(R); by symmetry,y € [(R) implies x € I[(R),
thus (x € I(R)) and (y € I(R)) are equivalent, i.e. x;(z)y. We have proved that R < 4;x). As R is maximal, we have
R = 8i(x), whence

ap(Ba(R)) = dy») = R,
and
aa o Ba = ldyaxspec(a)-
Let now & € Prs(A); then
(Broan)(P) = fales(#))
= Ba(85)
=1(42)
= ;’P’
whence
Ba o ap = Idpya),

and the first statement follows.

Let now F denote a closed subset of Prs(A); then F = G N Prs(A) for G a closed subset of Pr(A) and G = W(S) :=
{P € Pr(A)|S € &} for some subset S of A. But then, for R € MaxSpec(A), R € ﬂA’](F) if and only if B4(R) € F,ie.
I(R) € GN Prg(A), thatis I(R) € G,or S C I(R), which means R € V(S). Thus

By (F) = V(S) N MaxSpec(A)

is closed in MaxSpec(A). We have shown the continuity of B4.
Let now H C MaxSpec(A) be closed; then H = MaxSpec(A) N L for some closed subset L of Spec(A), and L = V(T) for
some subset T of A. Then a saturated prime ideal & of A belongs to ozA_1 (H) if and only if w4 () € H, thatis

8» € MaxSpec(A) N L,

orT C I(85). Butl(8,) = & whence P belongs to ozA_1 (H) ifand only if T C P, that is
ay |(H) = W(T) N Pry(A),
which is closed in Prs(A). O

Let us consider the special case in which A is ~in the image of #: A = F (M), for M a commutative monoid. Let P be a
prime ideal of M; as seen in [10], Theorem 4.2, P is a saturated prime ideal in A, and one obtains in this way a bijection
between Specy (M) and Prs(A). The following is now obvious.
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Theorem 3.2. The mapping
Yy : Speco (M) — MaxSpec(F (M))
P+ agzu)(P)
is a bijection.
The following two particular cases are of special interest.

1. M is a group; then Specy (M) = {@}, whence MaxSpec(F (G)) has exactly one element.

2. M =G, := (X1, ..., Xy) is the free monoid on n variables x4, . . ., x,. Then the elements of Specy (M) are the (Py)jcq1,...n),
where
Pj = U Xan
i€l

(a fact that was already used in [10], Example 4.3). Then

U (P) = agqn () = 85
whence xyy (P))y if and only if either (x € 15, andy € 15,) or(x ¢ 15] andy ¢ 15]). But we have seen in [9], Theorem 4.5,
that

FM) = Bi[xq, ..., x]

could be identified with the set of finite formal sums of elements of M. Obviously, an element x of & (M) belongs to 15] if
and only if at least one of its components involves at least one factor x;(j € J). It is now clear that, using the notation of
[9], Definition 4.6 and Theorem 4.7,

Ym(P) =7.
We hereby recover the description of MaxSpec (B1[X1, ..., X;]) given in [9] (Theorems 4.7, 4.8 and 4.10).
The following result will be useful.
Theorem 3.3. Any proper saturated ideal of a B1-algebra A is contained in a saturated prime ideal of A.

Proof. Let] be a proper saturated ideal of A; as I(R;) =]=]#A Rj # Co(A). By Zorn's Lemma, one has R; < R for some
R € MaxSpec(A). According to Theorem 2.1, R = aa(P) = 8, for a saturated prime ideal & of A, therefore R4 < $» and

J=]=1R) CIBp) =P. O
4. Functorial properties of spectra

Let ¢ : A — C denote a morphism of Bq-algebras, and let R € Spec(C). We define a binary relation ¢({R) on A by:
Y, d) e A ap(R)d = p(a)Re(a).
It is clear that ¢ (R) is a congruence on A, and that
1@R) = ¢~ U(R)).

In particular I(¢(R)) is a prime ideal of A, hence ¢(R) € Spec(A): ¢ maps Spec(C) into Spec(A). Let F := V(S) be a closed
subset of Spec(A), and let R € Spec(C); then R € ¢~ '(F) ifand only if (R) € F, thatis S C I(@(R)),orS C ¢~ '(I(R)),
ie. o(S) CI(R),or R € V(p(S)). Therefore o' (F) = V(¢(S)) is closed in Spec(C): ¢ is continuous.

Furthermore, for ¢ : A— Cand v : C — D one has

e

Yop=¢o 12/ : Spec(D) — Spec(A).
It follows that the equations #(A) = Spec(A) and #(¢) = ¢ define a contravariant functor # from Z, to §.2.

Let J denote an ideal in C, and let us assume aﬂ?wqu)a’; then thereis anx € ¢~ 1(J) witha 4+ x = d + x. Now k) €]
and

@ +¢x =pla+x
= ¢(d +x)
= ¢(@) + 9,
whence (p(a)cRJ(p(a/) and agZJ(:R])a/. We have established.
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Proposition 4.1. Let A and C denote By-algebras, ¢ : A — C a morphism and J an ideal of C: then
R(ﬂ—l(]) S (ﬁ(:ﬂ]).

Theorem 4.2. Let A and C denote two By-algebras, and ¢ : A — C amorphism. Then ¢ : Spec(C) — Spec(A) maps MaxSpec(C)
into MaxSpec (A), and the diagram

-1

Pr(C) 5% Pr(A)
bec ~ by
MaxSpec(C) RS MaxSpec(A)

commutes.
Proof. Let € Pr,(C), then, forall (a,d) € A2
ap(8p)d = 9(@)8p()
< (¢(a) € » and go(a/) € P))
or (p(a) ¢ P andg(a) ¢ P)
e (acep '(P) and d €9 '(P))
or (a¢ ¢ '(P)andd ¢ ¢ ' (P))
— aswq(?)a/.

Therefore
(@ oac)(P) = @lac(P))
= @(45p)
= 8p-1(p)

= a(p”'(P))
= (@09 )(P)
whence @ o ac = ag 0 1.
Incidentally we have proved that ¢ maps MaxSpec(C) = oac(Prs(C)) into as(Prs(A)) = MaxSpec(A), ie. the first
assertion. O

5. Nilpotent radicals and prime ideals

The usual theory generalizes without major problem to B;-algebras.
Theorem 5.1. In the B-algebra Alet us define
Nil(A) := {x € A|(3n > 1)x" = 0}.
Then Nil(A) is a saturated ideal of A, and one has
P= () #=Ni@).
PePr(A) PePrs(A)

Proof. Let M := (5 cpa) P DA N = (), a) - If x € Nil(A) and # € Pr(A), then, for some n > 1,x" = 0 € #, whence
(as & is prime) x € £: Nil(A) C M.

As Prg(A) C Pr(A), we have M C N.

Let now x ¢ Nil(A); then

(VneN) x"#0.
Define
€ :={J elds;(A)|(Yn = 0)x" ¢ J}.

This set is nonempty ({0} € &) and inductive for C, therefore, by Zorn’s Lemma, there exists a maximal element & of . As
1=x"¢ P, P #£A

Let us assume ab € »£,a ¢ P and b ¢ &; then P + Aa and P + Ab are saturated ideals of A strictly containing £,
whence there exists two integers m and n with x™ € # + Aaand X" € & + Ab. By definition of the closure of an ideal, there
areu=p;+Arae P +Aaand v = py + ub € » + Ab such that x™ + u = u and x" + v = v. Then

ub =p1b+ A(ab) € P
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and
X"b+ub = (x™ + u)b = ub,

whence, as £ is saturated, x"b € L.
Then

X"v = x"p, + ux"b € P,
as
XM XMy = x™(x" 4 v)
= x"v,

we obtain X" € £, a contradiction.
Therefore # is prime and saturated and x = x' ¢ &, whence x ¢ N. We have proved that N C Nil(A), whence
M =N = Nil(A). O

Corollary 5.2.
Nil(A) = [ .
PePr(A)
Proof.
Nil(A) = ﬂ & (by Theorem 5.1)
PePr(A)
c(~»
PePr(A)
- P
PePrs(A)
=) »
PePrs(A)

= Nil(A) (also by Theorem 5.1). O

Definition 5.3. For I an ideal of A, we define the root r(I) of I by
r() :={xe€Al@n>Dx" €l}.

Lemma 5.4. (i) r(I) is an ideal of A.
(ii) r) C r(I); in particular, if I is saturated then so is r (I).
(iii) r({0}) = Nil(A).

Proof. (i) Obviously, 0 € r(I).
Ifxer()andy € r(I),thenx™ € I forsome m > 1and y" € I for some n > 1, whence

-1
Gy =S (" Y

j=0 J
m+n—1
— ( Z Xiym+n—l—j)
j=0
eI,

asx¥ elforj>mandy™ " 17 elforj<m—1(as, thennm+n—1—j>n).Thusx+y e r{).
Fora € A, (ax)™ = a™x™ € I, whence ax € r(I). Therefore r(I) is an ideal of A.
(ii) Let x € r(I) then there is u € r(I) such that x + u = u, and there isn > 1 such that u" € I. Let us show by induction on

je{0,...,n}thatu"Jx e I.Thisis clear forj = 0. Let thenj € {0, ..., n — 1}, and assume that u"7x € I; then
W LY = " (x )
= u" Wy
= u" ¥,

whence u" 7~ 1x¥*! € I = I. Thus, for j = n, we obtain
X" =u""%" e ],

whence x € r(I).
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If now I is saturated, then
r(y <)
C r(I) (by the above)
=r®,

whence r(I) = r(I) is saturated.
(iii) That assertion is obvious. [

Proposition 5.5. For each saturated ideal I of the By-algebra A, one has
rh= [ ».
PePrs(A);ICP
Remark 5.6. For I = {0}, this is part of Theorem 5.1.

Proof. Letx € r(I), and let # € Prs(A) withI C &; then, for somen > 1x" € I, whencex" € # and x € £:
ORI
PePrs(A);ICP
Letnowy € A,y ¢ r(I), and denote by 7 the canonical projection
A
TiA—»Ayi=—.
R
As I is saturated, one has

vn>1 y"¢l1,
whence
vn > 1y" R0,

or
va>1 7("=n@") #£0.

Therefore w(y) ¢ Nil(Ag), whence, according to Theorem 5.1, there exists a saturated prime ideal $, of Ay such that
7 (y) ¢ P.But then P := 7~ 1(#) is a saturated prime ideal of A containing I withy ¢ %, whence

yé¢ ﬂ P. O

PePrs(A);ICP

6. Topology of spectra

We can now establish the basic topological properties of the spectra Prs(A) (analogous, in our setting, to Corollary 1.1.8
and Proposition 1.1.10(ii) of [6]).

Theorem 6.1. Pr;(A) and MaxSpec(A) are Ty and quasi-compact.

Proof. According to Theorem 3.1, Prs(A) and MaxSpec (A) are homeomorphic, therefore it is enough to establish the result
for Prs(A).

Let & and @ denote two different points of Prs(A); then either » ¢ @ or @ ¢ #. Let us for instance assume that ¢ @;
then @ ¢ W (P); set

0 := Prs(A) N (Pr(A) \ W(P)).

Then O is an open set in Pry(A), @ € O and, obviously, & ¢ O. Therefore Prs(A) is To.
Let (U;);c; denote an open cover of Prs(A):
Prs(A) = | Ui
iel

each Pry(A) \ Uj is closed, whence Pr;(A) \ U; = Prg(A) N W (S;) for some subset S; of A. Therefore Pry(A) N ((;e; W(S)) = ¥,
ie. Pro(A) N W({U;; S) = 9. Therefore Prg(A) N W({U, Si)) = @, whence, according to Theorem 3.3, (|, Si) = A. Let
J= <Uiel S;); then 1 € J, hence there is x € J such that 1+ x = x. Furthermore, there existn € N, (i, ..., i) € I" , X, € Sj,
and (ay, ..., a,) € A" such thatx = a;x;; + - - - 4 a,x;,. But then

14+ ax; + -+ - + apxy, = a1x;, + -+ + apX;,
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whence

and

n
Lhy:A
j=1

It follows that

MW“W<U%>=&
j=1

that is

n

Pro(A) N\ W(S;) = 0,
j=1
or

n
Pro(A) = J Uy -
j=1

Prs(A) is quasi-compact. O
Forf € A, let

D(f) := Prs(A) \ (Prs(A) NW({f])
= {P e Prs(AIf ¢ P}

Proposition 6.2. 1. Each D(f)(f € A) is open and quasi-compact in Prs(A) (see [6], Proposition 1.1.10(ii) ).
2. The family (D(f))sea is an open basis for Prs(A) (see [6], Proposition 1.1.10(i)); in particular, the open quasi-compact sets
constitute an open basis.

3. A subset O of Prs(A) is open and quasi-compact if and only if it is of the form Prs(A) N W (I) for I an ideal of finite type in A.
4. The family of open quasi-compact subsets of Prs(A) is stable under finite intersections.
5. Each irreducible closed set in Prg(A) has a unique generic point (see [6], Corollary 1.1.14(ii)).

Proof. 1. The openness of D(f) is obvious.
Let us assume D(f) = _J,; Ui, where the U;’s are open sets in D(f). Each U; can be written as
Ui =D() NV,
for V; an open set in Prs(A), i.e. Prs(A) \ V; = W (S;) for S; a subset of A. Then

o) < | Jvi= Prs(A)\<ﬂ W(s,->) ,

iel iel

whence

Pr(A) NW (U s,»> < W),

iel
that is, setting

S:U&

iel

e N 2= N »
PeW (S)NPrs(A) PePrs(A);SCP

Therefore, by Proposition 5.5, f € r({(S)): there isn > 1 such that f" € (S). Thus, there isg € (S) such thatf* +g = g;
onehasg = ij:] ajsj fora; € A,s; € S; foreachj € {1,...,m},s; € S; for some i; € I. Let So = {s1, ..., sm}; then

g € (U]'?:] S;;), whence fme (Ujmzl Sii), and reading the above argument in reverse order with S replaced by Uj";l Si;
yields that

o) = J Uy,
j=1

whence the quasi-compactness of D(f).
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2. Let U be an open set in Prs(A), and # € U. We have Prg(A) \ U = Pry(A) N W(S) for some subset S of A. As ¢ W(S),
S ¢ #,whence thereisans € S withs ¢ #. It is now clear that # € D(s) and

D(s) € Pry(A) \ W(S) = U.

3. Let O C Prs(A) be open and quasi-compact; according to (2), one may write O = Ujej D(f;) with f; € A. But then, there is
a finite subset Jo of ] such that 0 = Ujej(J D(f;). Now

Prs(A)\ 0 = [\ D(f))
Jj€l
= Prs(A) NW((filj € Jo))
is of the required type.
Conversely, if Prs(A) \ O = Prg(A) N W(I) with I = (gy, ..., g), itis clear that 0 = Uf;l D(g;); as a finite union of
quasi-compact subspaces of Pr(A), O is therefore quasi-compact.
4, Let 04, ..., 0, denote quasi-compact open subsets of Pr;(A); then, according to (iii), we may write

Pry(A) \ O; = Prs(A) N W(I))

for some finitely generated ideal J; of A. Thus

m

Prs(A)\ (01 N---N0m) = | JPria)\ 0))
j=1

= [JPrsa) nw )
j=1

Jj=

=P n|Jway

j=1

= Pr,(ANW (]‘[ Ij)

j=1
=PryANW(;...In),

whence, according to (iii), 01 N - - - N Oy, is quasi-compact, as I . . . I, is finitely generated.

5. Let F denote an irreducible closed set in Pry(A); then F = Pry(A) N W(S) for S a subset of A. We have seen above that,
setting I := (S), one has F = Pry(A) N W(I). As F is not empty, I # A. Let us assume ab € I; then, for each # € F, one
hasab eI C »,whenceae Lorbe P,ie. » c FNW({a}) or » € FNW({b}):

F=FNW({a}h) U FNW({b}).
As F is irreducible, it follows that either F = F N W ({a}) or F = F N W ({b}). In the first case we get F C W ({a}), i.e.
ae ﬂ & = I(Proposition 5.5);
PePrs(A);ICP
similarly, in the second case, b € I: I is prime. But then
{I} = Prg(A) NW(I)
=F

and I is a generic point for F.
It is unique as, in a Tp-space, an (irreducible) closed set admits at most one generic point (see [6], (0.2.1.3)). O

Corollary 6.3. Pr;(A) and MaxSpec(A) are spectral spaces in the sense of Hochster ([7], p. 43).

Theorem 6.4 (Cf. [6], Corollary 1.1.14). Let F = Prs(A) N W(S) be a nonempty closed set in Prs(A); then F is homeomorphic to
Pry(B), where B := % with I := (S).

Proof. As seen above, one has F = Pry(A) N W(I), whence,as F # #,] # A.LetAg := %, and let ¥ : A — Ap denote the
canonical projection.
Let us now define
Y i Prs(Ag) > F
Q~ 771Q).
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Then v is well-defined (as 7 ~'(@) is a saturated prime ideal of A that contains I), and injective (as, for each @ € Pry(Ay),
7(Y(@) = Q).

Let P € F; then 77 () is an ideal of A. Let us assume 77 (v) € 7 (£); then

xT(v) +m(a) = m(a)

for some a € 2, thatis
mw(a+v) =m(a).

But then
at+v+i=a+i

for some i € I, whence
v+ (a+i)=a+i.

Asa+i e &£ and &P is saturated, it follows that v € #: 7 (&) is saturated.

Furthermore , if (1) € 7 (%), one has 7 (1) + 7w (v) = m(v) for some v € £, whence there is w € I such that
1+v+w =v+ w, whencel + v+ w € &£ and (as £ is saturated) 1 € £ and $ = A, a contradiction. Therefore
7 (P) # Ap.

Let us assume 7 (x)7 (y) € w(P): thenxy +i = q+ iforsomei € I, whence

x+Dy+D)=xy+xitiy+i’eP,

andx+ie€ Pory+ie€ P;as P issaturated, it follows thatx € P ory € L, whence 7 (x) € (L) orw(y) € w(P): w(P)
is prime.

As & is saturated, one sees in the same way that ¥ (7 ()) = 7~ (7 (£)) = £, whence v is surjective.

Let G := F N W(Sy) be closed in F; then # € ¥ ~1(G) if and only if () € F N W(Sy), thatis S € 7~ !(#) and
So S U(P),ie.t(SUSy) C P:

¥ (G) = Prg(Ag) N W ( (S U Sp))

is closed in F, and v is continuous. _
Let now H := Prs(Ap) N W(G) be closed in Prs(Ap), and let @ € Pry(Ap); as  is surjective, G C @ if and only if
714G € 77 1(@) = ¥ (@), and it follows that

Y(H) =FNW(m ' (G)

is closed in F. Therefore i is a homeomorphism. 0O

7. Remarks on the one-generator case
Let us now consider the case of a nontrivial monogenic B;-algebra containing strictly By, i.e. A = B%[x] is a quotient of the
free algebra B;[x] with x < 0, x = 1. Denote by « the image of x in A; then « ¢ {0, 1}, and « generates A as a B;-algebra.
Let us suppose that, for some (u, v) € A%, au = 1+ av; then « is not nilpotent, as from o™ = 0 would follow

O=a"v=0o""Yav) =" "A+ou) =" "+ a"u=0a""",
whence o"~! = 0 and, by induction onn, 1 = «® = 0, a contradiction.
Therefore the following three cases may appear.

(i) « is nilpotent.
(ii) o is not nilpotent and there does not exist (u, v) € A® such thateu = 1 + arv.
(iii) (o is not nilpotent) and there exists (u, v) € A% such that ou = 1+ av.

In case (i), any prime ideal of A must contain ¢, hence contain «A; the ideal ¢A is, according to the above remark, saturated,
and is not contained in a strictly bigger saturated ideal other than A itself (in both cases, as any element of A not in @A is of
the shape 1 + ax). Therefore Pr;(A) = {«A}, whence Nil(A) = «A. In this case we see that

A
~B 1-
RNil(a)

In cases (ii) and (iii), no power of @ belongs to Nil(A); as Nil(A) is saturated, it follows that Nil(A) = {0}. In fact, A is
integral, whence {0} € Prs(A). If # € Pr;(A) and & # {0}, then & contains some power of «, hence contains «, hence
contains aA. As above we see that 2 = «A; but, in case (iii), ®A is not saturated. In case (ii) it is easy to see that @A is prime
and saturated. Therefore:
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1. in case (ii), Prs(A) = {{0}, «A}; {0} is a generic point, that is
W = Prs(A)a

and «A a “closed point” ({«A} is closed);
2. in case (iii), Pr;(A) = {{0}}.

One may remark that B;[x] itself falls into case (ii).

In [9], pp. 75-79, we have enumerated (up to isomorphism) monogenic By-algebras of cardinality <5. It is easy to see
where these algebras fall in the above classification; we keep the numbering used in [9]. Let then 3 < |A| < 5. We have the
following repartition.

Case (i): (6), (8),(12),(15),(18), (24)

Case (ii): (7),(10), (11),(16), (19), (25), (26)

Case (iii): (5), (9), (13), (14), (17),(20), (21),(22), (23), (27), (28).
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