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1. Introduction

The theory of characteristic one semirings (i.e. semirings with 1 + 1 = 1) originated in many different contexts: pure
algebra (see e.g. LaGrassa’s Ph.D. thesis [8]), idempotent analysis and the study of Rmax

+
[1,3], and Zhu’s theory [12], itself

inspired by considerations of Hopf algebras (see [11]). Its main motivation is now the Riemann Hypothesis, via adeles and
the theory of hyperrings (cf. [2–4], notably Section 6 from [4]).

For example, it has by now become clear (see [4], Theorem 3.11) that the classification of finite hyperfield extensions of
the Krasner hyperring K is one of the main problems of the theory. If H denotes a hyperring extension of K , B1 the smallest
characteristic one semifield and S the sign hyperring, then there are canonical mappings B1 → S → K → H , whence
mappings

Spec(H) → Spec(K) → Spec(S) → Spec(B1),

thus Spec(H) ‘‘lies over’’ Spec(B1) (see [4], Section 6, notably diagram (43), where B1 is denoted by B).
The ultimate goal of our investigation is to provide a proper algebraic geometry in characteristic one. The natural

procedure is to construct ‘‘affine B1-schemes’’ and endow them with an appropriate topology and a sheaf of semirings; a
suitable glueing procedurewill then produce general ‘‘B1-schemes’’. This program is not yet completed; in this paper,wedeal
with a natural first step: the extension to B1-algebras of the notions of spectrum and Zariski topology, and the fundamental
topological properties of these objects. In order to construct a structure sheaf over the spectrum of a B1-algebra, Castella’s
localization procedure [1] will probably be useful.

As in our two previous papers, we work in the context of B1-algebras, i.e. characteristic one semirings. For such an A, one
may define prime ideals by analogy to the classical commutative algebra. In order to define the spectrum of a B1-algebra A,
two candidates readily suggest themselves: the set Spec(A) of prime (in a suitable sense) congruences, and the set Pr(A) of
prime ideals; in contrast to the classical situation, these two approaches are not equivalent. In fact both setsmay be equipped
with a natural topology of Zariski type (see [10], Theorem 2.4 and Proposition 3.15), but they do not in general correspond
bijectively to one another; nevertheless, the subset Prs(A) ⊆ Pr(A) of saturated prime ideals is in natural bijection with the
set of excellent prime congruences (see below) on A.
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It turns out (Section 3) that there is another, far less obvious, bijection between Prs(A) and the maximal spectrum
MaxSpec(A) ⊆ Spec(A) of A. This mapping is actually a homeomorphism for the natural (Zariski-type) topologies mentioned
above. As a by-product, we find a new point of view on the description of the maximal spectrum of the polynomial algebra
B1[x1, . . . , xn] found in [9,12]. The homeomorphism in question is actually functorial in A (Section 4).

In Section 5, we show that the theory of the nilradical and of the root of an ideal carry over, with some precautions, to our
setting; the situation is even better when one restricts oneself to saturated ideals. This allows us, in Section 6, to establish
some nice topological properties of

MaxSpec(A) ≃ Prs(A);

namely, T0 and quasi-compact (Theorem 6.1), and the open quasi-compact sets constitute a basis stable under finite
intersections. Furthermore this space is sober , i.e. each irreducible closed set has a (necessarily unique) generic point. In
other words, Prs(A) satisfies the usual properties of a ring spectrum that are used in the algebraic geometry (see e.g. the
canonical reference [6]): Prs(A) is a spectral space in the sense of Hochster [7].

In the last paragraph, we discuss the particular case of a monogenic B1-algebra, that is, a quotient of the polynomial
algebra B1[x]; in [9], we had listed the smallest finite such algebras.

In a subsequent work I shall investigate how higher concepts and methods of the commutative algebra (minimal prime
ideals, zero divisors, primary decomposition) carry over to characteristic one semirings.

2. Definitions and notation

We shall review some of the definitions and notation of our previous two papers [9,10].
B1 = {0, 1}denotes the smallest characteristic one semifield ; the operations of addition andmultiplication are the obvious

ones, with the slight change that

1 + 1 = 1.

A B1-moduleM is a nonempty set equipped with an action

B1 × M → M

satisfying the usual axioms (see [9], Definition 2.3); as first seen in [12], Proposition 1 (see also [9], Theorem2.5), B1-modules
can be canonically identified with ordered sets having a smallest element (0) and in which any two elements a and b have
a least upper bound (a + b). In particular, one may identify finite B1-modules and nonempty finite lattices.

A (commutative) B1-algebra is a B1-module equipped with an associative multiplication that has a neutral element and
satisfies the usual axioms relative to addition (see [9], Definition 4.1). In the sequel, except when otherwise indicated, Awill
denote a B1-algebra.

An ideal I of A is by definition a subset containing 0, stable under addition, and having the property that

∀x ∈ A ∀y ∈ I xy ∈ I;

I is termed prime if I ≠ A and

ab ∈ I =⇒ a ∈ I or b ∈ I.

By a congruence on A, we mean an equivalence relation on A compatible with the operations of addition and
multiplication. The trivial congruence C0(A) is characterized by the fact that any two elements of A are equivalent under it;
the congruences are naturally ordered by inclusion, and

MaxSpec(A)

will denote the set of maximal nontrivial congruences on A.
For R a congruence on A, we set

I(R) := {x ∈ A|xR 0};

it is an ideal of A.
A nontrivial congruence R is termed prime if

abR 0 =⇒ aR 0 or bR 0;

the set of prime congruences on A is denoted by Spec(A). It turns out that (see [10], Proposition 2.3)

MaxSpec(A) ⊆ Spec(A).

For J an ideal of A, there is a unique smallest congruence RJ such that J ⊆ I(R); it is denoted by RJ . Such congruences
are termed excellent .
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An ideal J of A is termed saturated if it is of the form I(R) for some congruence R; this is the case if and only if J = J ,
where

J := I(RJ).

We shall denote the set of prime ideals of A by Pr(A), and the set of saturated prime ideals by Prs(A).
For S ⊆ A, let us set

W (S) := {P ∈ Pr(A)|S ⊆ P },

and

V (S) := {R ∈ Spec(A)|S ⊆ I(R)}.

As seen in [10], Theorem 2.4 and Proposition 3.4, the family (W (S))S⊆A is the family of closed sets for a topology on Pr(A),
and the family (V (S))S⊆A is the family of closed sets for a topology on Spec(A). We shall always consider Spec(A) and Pr(A)
as equipped with these topologies, and their subsets with the induced topologies.

For M a commutative monoid, we define the Deitmar spectrum SpecD(M) as the set of prime ideals (including ∅) of
M (in [5], this is denoted by Spec FM ). We define F (M) = B1[M] as the ‘‘monoid algebra of M over B1’’; the functor F
is adjoint to the forgetful functor from the category of B1-algebras to the category of monoids (for the details, see [9],
Section 5). Furthermore, there is an explicit canonical bijection between SpecD(M) and a certain subset of Spec(F (M))
(see [10], Theorem 4.2).

For S a subset of A, let ⟨S⟩ denote the intersection of all the ideals of A containing S (there is always at least one such
ideal: A itself). It is clear that ⟨S⟩ is an ideal of A, and therefore is the smallest ideal of A containing S. As in ring theory, one
may see that

⟨S⟩ =


n

j=1

ajsj|n ∈ N, (a1, . . . , an) ∈ An, (s1, . . . , sn) ∈ Sn

.

We shall denote by SP the category whose objects are spectra of B1-algebras and whose morphisms are the continuous
maps between them.

3. A new description of maximal congruences

Let A denote a B1-algebra.
For P a saturated prime ideal of A, let us define a relation SP on A by:

xSP y ≡ (x ∈ P and y ∈ P ) or (x /∈ P and y /∈ P ).

Then SP is a congruence on A: if xSP y and x
′

SP y
′

, then one and only one of the following holds:

(i) x ∈ P , y ∈ P , x
′

∈ P and y
′

∈ P ,
(ii) x ∈ P , y ∈ P , x

′

/∈ P and y
′

/∈ P ,
(iii) x /∈ P , y /∈ P , x

′

∈ P and y
′

∈ P ,
(iv) x /∈ P , y /∈ P , x

′

/∈ P and y
′

/∈ P .

In case (i), x + x
′

∈ P and y + y
′

∈ P , whence x + x
′

SP y + y
′

; in cases (ii) and (iv), x + x
′

/∈ P and y + y
′

/∈ P (as P is
saturated), whence x + x

′

SP y + y
′

. Case (iii) is symmetrical relatively to case (ii), therefore, in all cases, x + x
′

SP y + y
′

: SP

is compatible with addition.
In cases (i), (ii) and (iii), xx

′

∈ P and yy
′

∈ P , whence xx
′

SP yy
′

; in case (iv) xx
′

/∈ P and yy
′

/∈ P (as P is prime), whence
also xx

′

SP yy
′

: SP is compatible with multiplication, hence is a congruence on A.
As 0 ∈ P and 1 /∈ P , 0 ̸ SP1, therefore SP is nontrivial; but each x ∈ A is either in P (whence xSP0) or not (whence

xSP1). It follows that

A
SP

= {0̄, 1̄} ≃ B1;

in particular, SP is maximal: SP ∈ MaxSpec(A).
Obviously, I(SP ) = P .
Furthermore, let (x, y) ∈ A2 be such that xRP y; then there is z ∈ P such that x+z = y+z. If x ∈ P then y+z = x+z ∈ P ,

whence y ∈ P (as y + (y + z) = y + z and P is saturated); symmetrically, y ∈ P implies x ∈ P , whence the assertions
(x ∈ P ) and (y ∈ P ) are equivalent, and xSP y. We have shown that

RP ≤ SP .
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We shall denote by αA the mapping

αA : Prs(A) → MaxSpec(A)
P → SP .

Let R ∈ MaxSpec(A); then R ∈ Spec(A), whence I(R) is prime; by Theorem 3.8 of [10], it is saturated, i.e. I(R) ∈ Prs(A).
Let us set

βA(R) := I(R).

Theorem 3.1. The mappings

αA : Prs(A) → MaxSpec(A)

and

βA : MaxSpec(A) → Prs(A)

are bijections, inverse of one another. They are continuous for the topologies on Prs(A) and MaxSpec(A) induced by the topologies
on Pr(A) and Spec(A)mentioned above, whence Prs(A) and MaxSpec(A) are homeomorphic.

Proof. Let R ∈ MaxSpec(A); then

αA(βA(R)) = αA(I(R)) = SI(R).

Let us assume xRy; then, if x ∈ I(R) one has xR0, whence yR0 and y ∈ I(R); by symmetry, y ∈ I(R) implies x ∈ I(R),
thus (x ∈ I(R)) and (y ∈ I(R)) are equivalent, i.e. xSI(R)y. We have proved that R ≤ SI(R). As R is maximal, we have
R = SI(R), whence

αA(βA(R)) = SI(R) = R,

and

αA ◦ βA = IdMaxSpec(A).

Let now P ∈ Prs(A); then

(βA ◦ αA)(P ) = βA(αA(P ))

= βA(SP )

= I(SP )

= P ,

whence

βA ◦ αA = IdPrs(A),

and the first statement follows.
Let now F denote a closed subset of Prs(A); then F = G ∩ Prs(A) for G a closed subset of Pr(A) and G = W (S) :=

{P ∈ Pr(A)|S ⊆ P } for some subset S of A. But then, for R ∈ MaxSpec(A), R ∈ β−1
A (F) if and only if βA(R) ∈ F , i.e.

I(R) ∈ G ∩ Prs(A), that is I(R) ∈ G, or S ⊆ I(R), which means R ∈ V (S). Thus

β−1
A (F) = V (S) ∩ MaxSpec(A)

is closed inMaxSpec(A). We have shown the continuity of βA.
Let now H ⊆ MaxSpec(A) be closed; then H = MaxSpec(A) ∩ L for some closed subset L of Spec(A), and L = V (T ) for

some subset T of A. Then a saturated prime ideal P of A belongs to α−1
A (H) if and only if αA(P ) ∈ H , that is

SP ∈ MaxSpec(A) ∩ L,

i.e.

SP ∈ V (T )

or T ⊆ I(SP ). But I(SP ) = P whence P belongs to α−1
A (H) if and only if T ⊆ P , that is

α−1
A (H) = W (T ) ∩ Prs(A),

which is closed in Prs(A). �

Let us consider the special case in which A is in the image of F : A = F (M), for M a commutative monoid. Let P be a
prime ideal of M; as seen in [10], Theorem 4.2, P̃ is a saturated prime ideal in A, and one obtains in this way a bijection
between SpecD(M) and Prs(A). The following is now obvious.
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Theorem 3.2. The mapping

ψM : SpecD(M) → MaxSpec(F (M))

P → αF (M)(P̃)

is a bijection.

The following two particular cases are of special interest.

1. M is a group; then SpecD(M) = {∅}, whenceMaxSpec(F (G)) has exactly one element.
2. M = Cn := ⟨x1, . . . , xn⟩ is the free monoid on n variables x1, . . . , xn. Then the elements of SpecD(M) are the (PJ)J⊆{1,...,n},

where

PJ :=


j∈J

xjCn

(a fact that was already used in [10], Example 4.3). Then

ψM(PJ) = αF (M)(P̃J) = SP̃J

whence xψM(PJ)y if and only if either (x ∈ P̃J and y ∈ P̃J ) or (x /∈ P̃J and y /∈ P̃J ). But we have seen in [9], Theorem 4.5,
that

F (M) = B1[x1, . . . , xn]

could be identified with the set of finite formal sums of elements ofM . Obviously, an element x of F (M) belongs to P̃J if
and only if at least one of its components involves at least one factor xj(j ∈ J). It is now clear that, using the notation of
[9], Definition 4.6 and Theorem 4.7,

ψM(PJ) =J .
We hereby recover the description ofMaxSpec(B1[x1, . . . , xn]) given in [9] (Theorems 4.7, 4.8 and 4.10).

The following result will be useful.

Theorem 3.3. Any proper saturated ideal of a B1-algebra A is contained in a saturated prime ideal of A.

Proof. Let J be a proper saturated ideal of A; as I(RJ) = J = J ≠ A,RJ ≠ C0(A). By Zorn’s Lemma, one hasRJ ≤ R for some
R ∈ MaxSpec(A). According to Theorem 2.1, R = αA(P ) = SP for a saturated prime ideal P of A, therefore RJ ≤ SP and

J = J = I(RJ) ⊆ I(SP ) = P . �

4. Functorial properties of spectra

Let ϕ : A → C denote a morphism of B1-algebras, and let R ∈ Spec(C). We define a binary relation ϕ̃(R) on A by:

∀(a, a
′

) ∈ A2 aϕ̃(R)a
′

≡ ϕ(a)Rϕ(a
′

).

It is clear that ϕ̃(R) is a congruence on A, and that

I(ϕ̃(R)) = ϕ−1(I(R)).

In particular I(ϕ̃(R)) is a prime ideal of A, hence ϕ̃(R) ∈ Spec(A): ϕ̃ maps Spec(C) into Spec(A). Let F := V (S) be a closed
subset of Spec(A), and let R ∈ Spec(C); then R ∈ ϕ̃−1(F) if and only if ϕ̃(R) ∈ F , that is S ⊆ I(ϕ̃(R)), or S ⊆ ϕ−1(I(R)),
i.e. ϕ(S) ⊆ I(R), or R ∈ V (ϕ(S)). Therefore ϕ̃−1(F) = V (ϕ(S)) is closed in Spec(C): ϕ̃ is continuous.

Furthermore, for ϕ : A → C and ψ : C → D one has

ψ ◦ ϕ = ϕ̃ ◦ ψ̃ : Spec(D) → Spec(A).

It follows that the equations H(A) = Spec(A) and H(ϕ) = ϕ̃ define a contravariant functor H from Za to SP .
Let J denote an ideal in C , and let us assume aRϕ−1( J)a

′

; then there is an x ∈ ϕ−1( J) with a + x = a
′

+ x. Now ϕ(x) ∈ J
and

ϕ(a)+ ϕ(x) = ϕ(a + x)

= ϕ(a
′

+ x)

= ϕ(a
′

)+ ϕ(x),

whence ϕ(a)RJϕ(a
′

) and aϕ̃(RJ)a
′

. We have established.
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Proposition 4.1. Let A and C denote B1-algebras, ϕ : A → C a morphism and J an ideal of C: then

Rϕ−1( J) ≤ ϕ̃(RJ).

Theorem 4.2. Let A and C denote two B1-algebras, and ϕ : A → C amorphism. Then ϕ̃ : Spec(C) → Spec(A)mapsMaxSpec(C)
into MaxSpec(A), and the diagram

Prs(C)
ϕ−1

→ Prs(A)
↓αC ↓αA

MaxSpec(C)
ϕ̃

→ MaxSpec(A)

commutes.

Proof. Let P ∈ Prs(C), then, for all (a, a
′

) ∈ A2

aϕ̃(SP )a
′

⇐⇒ ϕ(a)SPϕ(a
′

)

⇐⇒ (ϕ(a) ∈ P and ϕ(a
′

) ∈ P ))

or (ϕ(a) /∈ P and ϕ(a
′

) /∈ P )

⇐⇒ (a ∈ ϕ−1(P ) and a
′

∈ ϕ−1(P ))

or (a /∈ ϕ−1(P ) and a
′

/∈ ϕ−1(P ))

⇐⇒ aSϕ−1(P )a
′

.

Therefore

(ϕ̃ ◦ αC )(P ) = ϕ̃(αC (P ))

= ϕ̃(SP )

= Sϕ−1(P )

= αA(ϕ
−1(P ))

= (αA ◦ ϕ−1)(P )

whence ϕ̃ ◦ αC = αA ◦ ϕ−1.
Incidentally we have proved that ϕ̃ maps MaxSpec(C) = αC (Prs(C)) into αA(Prs(A)) = MaxSpec(A), i.e. the first

assertion. �

5. Nilpotent radicals and prime ideals

The usual theory generalizes without major problem to B1-algebras.

Theorem 5.1. In the B1-algebra A,let us define

Nil(A) := {x ∈ A|(∃n ≥ 1)xn = 0}.

Then Nil(A) is a saturated ideal of A, and one has
P∈Pr(A)

P =


P∈Prs(A)

P = Nil(A).

Proof. Let M :=


P∈Pr(A) P and N =


P∈Prs(A) P . If x ∈ Nil(A) and P ∈ Pr(A), then, for some n ≥ 1, xn = 0 ∈ P , whence
(as P is prime) x ∈ P : Nil(A) ⊆ M .

As Prs(A) ⊆ Pr(A), we haveM ⊆ N .
Let now x /∈ Nil(A); then

(∀n ∈ N) xn ≠ 0.

Define

E := { J ∈ Ids(A)|(∀n ≥ 0)xn /∈ J}.

This set is nonempty ({0} ∈ E ) and inductive for ⊆, therefore, by Zorn’s Lemma, there exists a maximal element P of E . As
1 = x0 /∈ P , P ≠ A.

Let us assume ab ∈ P , a /∈ P and b /∈ P ; then P + Aa and P + Ab are saturated ideals of A strictly containing P ,
whence there exists two integersm and nwith xm ∈ P + Aa and xn ∈ P + Ab. By definition of the closure of an ideal, there
are u = p1 + λa ∈ P + Aa and v = p2 + µb ∈ P + Ab such that xm + u = u and xn + v = v. Then

ub = p1b + λ(ab) ∈ P
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and

xmb + ub = (xm + u)b = ub,

whence, as P is saturated, xmb ∈ P .
Then

xmv = xmp2 + µxmb ∈ P ;

as

xm+n
+ xmv = xm(xn + v)

= xmv,

we obtain xm+n
∈ P , a contradiction.

Therefore P is prime and saturated and x = x1 /∈ P , whence x /∈ N . We have proved that N ⊆ Nil(A), whence
M = N = Nil(A). �

Corollary 5.2.

Nil(A) =


P∈Pr(A)

P .

Proof.

Nil(A) =


P∈Pr(A)

P (by Theorem 5.1)

⊆


P∈Pr(A)

P

⊆


P∈Prs(A)

P

=


P∈Prs(A)

P

= Nil(A) (also by Theorem 5.1). �

Definition 5.3. For I an ideal of A, we define the root r(I) of I by

r(I) := {x ∈ A|(∃n ≥ 1)xn ∈ I}.

Lemma 5.4. (i) r(I) is an ideal of A.
(ii) r(I) ⊆ r(I); in particular, if I is saturated then so is r(I).
(iii) r({0}) = Nil(A).

Proof. (i) Obviously, 0 ∈ r(I).
If x ∈ r(I) and y ∈ r(I), then xm ∈ I for somem ≥ 1 and yn ∈ I for some n ≥ 1, whence

(x + y)m+n−1
=

m+n−1
j=0


m + n − 1

j


xjym+n−1−j

=


m+n−1

j=0

xjym+n−1−j


∈ I,

as xj ∈ I for j ≥ m and ym+n−1−j
∈ I for j ≤ m − 1 (as, then, m + n − 1 − j ≥ n). Thus x + y ∈ r(I).

For a ∈ A, (ax)m = amxm ∈ I , whence ax ∈ r(I). Therefore r(I) is an ideal of A.
(ii) Let x ∈ r(I) then there is u ∈ r(I) such that x + u = u, and there is n ≥ 1 such that un

∈ I . Let us show by induction on
j ∈ {0, . . . , n} that un−jxj ∈ I . This is clear for j = 0. Let then j ∈ {0, . . . , n − 1}, and assume that un−jxj ∈ I; then

un−j−1xj+1
+ un−jxj = un−j−1xj(x + u)

= un−j−1xju
= un−jxj,

whence un−j−1xj+1
∈ I = I. Thus, for j = n, we obtain

xn = un−nxn ∈ I,

whence x ∈ r(I).
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If now I is saturated, then

r(I) ⊆ r(I)
⊆ r(I) (by the above)
= r(I),

whence r(I) = r(I) is saturated.
(iii) That assertion is obvious. �

Proposition 5.5. For each saturated ideal I of the B1-algebra A , one has

r(I) =


P∈Prs(A);I⊆P

P .

Remark 5.6. For I = {0}, this is part of Theorem 5.1.

Proof. Let x ∈ r(I), and let P ∈ Prs(A)with I ⊆ P ; then, for some n ≥ 1 xn ∈ I , whence xn ∈ P and x ∈ P :

r(I) ⊆


P∈Prs(A);I⊆P

P .

Let now y ∈ A, y /∈ r(I), and denote by π the canonical projection

π : A � A0 :=
A
RI
.

As I is saturated, one has

∀n ≥ 1 yn /∈ I,

whence

∀n ≥ 1yn ̸ RI0,

or

∀n ≥ 1 π(y)n = π(yn) ≠ 0.

Therefore π(y) /∈ Nil(A0), whence, according to Theorem 5.1, there exists a saturated prime ideal P0 of A0 such that
π(y) /∈ P0. But then P := π−1(P0) is a saturated prime ideal of A containing I with y /∈ P , whence

y /∈


P∈Prs(A);I⊆P

P . �

6. Topology of spectra

We can now establish the basic topological properties of the spectra Prs(A) (analogous, in our setting, to Corollary 1.1.8
and Proposition 1.1.10(ii) of [6]).

Theorem 6.1. Prs(A) and MaxSpec(A) are T0 and quasi-compact.

Proof. According to Theorem 3.1, Prs(A) and MaxSpec(A) are homeomorphic, therefore it is enough to establish the result
for Prs(A).

Let P and Q denote two different points of Prs(A); then either P * Q or Q * P . Let us for instance assume that P * Q;
then Q /∈ W (P ); set

O := Prs(A) ∩ (Pr(A) \ W (P )).

Then O is an open set in Prs(A), Q ∈ O and, obviously, P /∈ O. Therefore Prs(A) is T0.
Let (Ui)i∈I denote an open cover of Prs(A):

Prs(A) =


i∈I

Ui;

each Prs(A) \ Ui is closed, whence Prs(A) \ Ui = Prs(A)∩W (Si) for some subset Si of A. Therefore Prs(A)∩ (


i∈I W (Si)) = ∅,
i.e. Prs(A) ∩ W (


i∈I Si) = ∅. Therefore Prs(A) ∩ W (⟨


i∈I Si⟩) = ∅, whence, according to Theorem 3.3, ⟨


i∈I Si⟩ = A. Let

J = ⟨


i∈I Si⟩; then 1 ∈ J , hence there is x ∈ J such that 1+ x = x. Furthermore, there exist n ∈ N, (i1, . . . , in) ∈ In , xik ∈ Sik
and (a1, . . . , an) ∈ An such that x = a1xi1 + · · · + anxin . But then

1 + a1xi1 + · · · + anxin = a1xi1 + · · · + anxin
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whence

1 ∈ ⟨{xi1 , . . . , xin}⟩ ⊆

n
j=1

Sij

and
n

j=1

Sij = A.

It follows that

Prs(A) ∩ W


n

j=1

Sij


= ∅,

that is

Prs(A) ∩

n
j=1

W (Sij) = ∅,

or

Prs(A) =

n
j=1

Uij :

Prs(A) is quasi-compact. �

For f ∈ A, let

D(f ) := Prs(A) \ (Prs(A) ∩ W ({f }))
= {P ∈ Prs(A)|f /∈ P }.

Proposition 6.2. 1. Each D(f )(f ∈ A) is open and quasi-compact in Prs(A) (see [6], Proposition 1.1.10(ii)).
2. The family (D(f ))f∈A is an open basis for Prs(A) (see [6], Proposition 1.1.10(i)); in particular, the open quasi-compact sets

constitute an open basis.
3. A subset O of Prs(A) is open and quasi-compact if and only if it is of the form Prs(A) ∩ W (I) for I an ideal of finite type in A.
4. The family of open quasi-compact subsets of Prs(A) is stable under finite intersections.
5. Each irreducible closed set in Prs(A) has a unique generic point (see [6], Corollary 1.1.14(ii)).
Proof. 1. The openness of D(f ) is obvious.

Let us assume D(f ) =


i∈I Ui, where the Ui’s are open sets in D(f ). Each Ui can be written as
Ui = D(f ) ∩ Vi,

for Vi an open set in Prs(A), i.e. Prs(A) \ Vi = W (Si) for Si a subset of A. Then

D(f ) ⊆


i∈I

Vi = Prs(A)


i∈I

W (Si)


,

whence

Prs(A) ∩ W


i∈I

Si


⊆ W ({f }),

that is, setting

S :=


i∈I

Si,

f ∈


P∈W (S)∩Prs(A)

P =


P∈Prs(A);S⊆P

P .

Therefore, by Proposition 5.5, f ∈ r(⟨S⟩): there is n ≥ 1 such that f n ∈ ⟨S⟩. Thus, there is g ∈ ⟨S⟩ such that f n + g = g;
one has g =

m
j=1 ajsj for aj ∈ A, sj ∈ S; for each j ∈ {1, . . . ,m}, sj ∈ Sij for some ij ∈ I . Let S0 = {s1, . . . , sm}; then

g ∈ ⟨
n

j=1 Sij⟩, whence f n ∈ ⟨
m

j=1 Sij⟩, and reading the above argument in reverse order with S replaced by
m

j=1 Sij
yields that

D(f ) =

m
j=1

Uij ,

whence the quasi-compactness of D(f ).
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2. Let U be an open set in Prs(A), and P ∈ U . We have Prs(A) \ U = Prs(A) ∩ W (S) for some subset S of A. As P /∈ W (S),
S * P , whence there is an s ∈ S with s /∈ P . It is now clear that P ∈ D(s) and

D(s) ⊆ Prs(A) \ W (S) = U .

3. Let O ⊆ Prs(A) be open and quasi-compact; according to (2), one may write O =


j∈J D(fj)with fj ∈ A. But then, there is
a finite subset J0 of J such that O =


j∈J0

D(fj). Now

Prs(A) \ O =


j∈J0

D(fj)

= Prs(A) ∩ W (⟨fj|j ∈ J0⟩)

is of the required type.
Conversely, if Prs(A) \ O = Prs(A) ∩ W (I) with I = ⟨g1, . . . , gn⟩, it is clear that O =

n
i=1 D(gi); as a finite union of

quasi-compact subspaces of Prs(A), O is therefore quasi-compact.
4. Let O1, . . . ,On denote quasi-compact open subsets of Prs(A); then, according to (iii), we may write

Prs(A) \ Oj = Prs(A) ∩ W (Ij)

for some finitely generated ideal Ij of A. Thus

Prs(A) \ (O1 ∩ · · · ∩ Om) =

m
j=1

(Prs(A) \ Oj)

=

m
j=1

(Prs(A) ∩ W (Ij))

= Prs(A) ∩

m
j=1

W (Ij)

= Prs(A) ∩ W


m
j=1

Ij


= Prs(A) ∩ W (I1 . . . Im),

whence, according to (iii), O1 ∩ · · · ∩ Om is quasi-compact, as I1 . . . Im is finitely generated.
5. Let F denote an irreducible closed set in Prs(A); then F = Prs(A) ∩ W (S) for S a subset of A. We have seen above that,

setting I := ⟨S⟩, one has F = Prs(A) ∩ W (I). As F is not empty, I ≠ A. Let us assume ab ∈ I; then, for each P ∈ F , one
has ab ∈ I ⊆ P , whence a ∈ P or b ∈ P , i.e. P ∈ F ∩ W ({a}) or P ∈ F ∩ W ({b}):

F = (F ∩ W ({a})) ∪ (F ∩ W ({b})).

As F is irreducible, it follows that either F = F ∩ W ({a}) or F = F ∩ W ({b}). In the first case we get F ⊆ W ({a}), i.e.

a ∈


P∈Prs(A);I⊆P

P = I(Proposition 5.5);

similarly, in the second case, b ∈ I: I is prime. But then

{I} = Prs(A) ∩ W (I)
= F

and I is a generic point for F .
It is unique as, in a T0-space, an (irreducible) closed set admits at most one generic point (see [6], (0.2.1.3)). �

Corollary 6.3. Prs(A) and MaxSpec(A) are spectral spaces in the sense of Hochster ([7], p. 43).

Theorem 6.4 (Cf. [6], Corollary 1.1.14). Let F = Prs(A) ∩ W (S) be a nonempty closed set in Prs(A); then F is homeomorphic to
Prs(B), where B :=

A
RI

with I := ⟨S⟩.

Proof. As seen above, one has F = Prs(A) ∩ W (I), whence, as F ≠ ∅, I ≠ A. Let A0 :=
A

RI
, and let π : A → A0 denote the

canonical projection.
Let us now define

ψ : Prs(A0) → F
Q → π−1(Q).
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Thenψ is well-defined (as π−1(Q) is a saturated prime ideal of A that contains I), and injective (as, for each Q ∈ Prs(A0),
π(ψ(Q)) = Q).

Let P ∈ F ; then π(P ) is an ideal of A0. Let us assume π(v) ∈ π(P ); then

π(v)+ π(a) = π(a)

for some a ∈ P , that is

π(a + v) = π(a).

But then

a + v + i = a + i

for some i ∈ I , whence

v + (a + i) = a + i.

As a + i ∈ P and P is saturated, it follows that v ∈ P : π(P ) is saturated.
Furthermore , if π(1) ∈ π(P ), one has π(1) + π(v) = π(v) for some v ∈ P , whence there is w ∈ I such that

1 + v + w = v + w, whence 1 + v + w ∈ P and (as P is saturated) 1 ∈ P and P = A, a contradiction. Therefore
π(P ) ≠ A0.

Let us assume π(x)π(y) ∈ π(P ): then xy + i = q + i for some i ∈ I , whence

(x + i)(y + i) = xy + xi + iy + i2 ∈ P ,

and x+ i ∈ P or y+ i ∈ P ; as P is saturated, it follows that x ∈ P or y ∈ P , whence π(x) ∈ π(P ) or π(y) ∈ π(P ): π(P )
is prime.

As P is saturated, one sees in the same way that ψ(π(P )) = π−1(π(P )) = P , whence ψ is surjective.
Let G := F ∩ W (S0) be closed in F ; then P ∈ ψ−1(G) if and only if ψ(P ) ∈ F ∩ W (S0), that is S ⊆ π−1(P ) and

S0 ⊆ π−1(P ), i.e. π(S ∪ S0) ⊆ P :

ψ−1(G) = Prs(A0) ∩ W (π(S ∪ S0))

is closed in F , and ψ is continuous.
Let now H := Prs(A0) ∩ W (Ḡ) be closed in Prs(A0), and let Q ∈ Prs(A0); as π is surjective, Ḡ ⊆ Q if and only if

π−1(Ḡ) ⊆ π−1(Q) = ψ(Q), and it follows that

ψ(H) = F ∩ W (π−1(Ḡ))

is closed in F . Therefore ψ is a homeomorphism. �

7. Remarks on the one-generator case

Let us now consider the case of a nontrivial monogenic B1-algebra containing strictly B1, i.e. A =
B1[x]
∼

is a quotient of the
free algebra B1[x] with x � 0, x � 1. Denote by α the image of x in A; then α /∈ {0, 1}, and α generates A as a B1-algebra.

Let us suppose that, for some (u, v) ∈ A2, αu = 1 + αv; then α is not nilpotent, as from αn
= 0 would follow

0 = αnv = αn−1(αv) = αn−1(1 + αu) = αn−1
+ αnu = αn−1,

whence αn−1
= 0 and, by induction on n, 1 = α0

= 0, a contradiction.
Therefore the following three cases may appear.

(i) α is nilpotent.
(ii) α is not nilpotent and there does not exist (u, v) ∈ A2 such that αu = 1 + αv.
(iii) (α is not nilpotent) and there exists (u, v) ∈ A2 such that αu = 1 + αv.

In case (i), any prime ideal ofAmust containα, hence containαA; the idealαA is, according to the above remark, saturated,
and is not contained in a strictly bigger saturated ideal other than A itself (in both cases, as any element of A not in αA is of
the shape 1 + αx). Therefore Prs(A) = {αA}, whence Nil(A) = αA. In this case we see that

A
RNil(A)

≃ B1.

In cases (ii) and (iii), no power of α belongs to Nil(A); as Nil(A) is saturated, it follows that Nil(A) = {0}. In fact, A is
integral, whence {0} ∈ Prs(A). If P ∈ Prs(A) and P ≠ {0}, then P contains some power of α, hence contains α, hence
contains αA. As above we see that P = αA; but, in case (iii), αA is not saturated. In case (ii) it is easy to see that αA is prime
and saturated. Therefore:
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1. in case (ii), Prs(A) = {{0}, αA}; {0} is a generic point, that is

{{0}} = Prs(A),

and αA a ‘‘closed point’’ ({αA} is closed);
2. in case (iii), Prs(A) = {{0}}.

One may remark that B1[x] itself falls into case (ii).
In [9], pp. 75–79, we have enumerated (up to isomorphism) monogenic B1-algebras of cardinality ≤5. It is easy to see

where these algebras fall in the above classification; we keep the numbering used in [9]. Let then 3 ≤ |A| ≤ 5. We have the
following repartition.

Case (i): (6), (8), (12), (15), (18), (24)
Case (ii): (7), (10), (11), (16), (19), (25), (26)
Case (iii): (5), (9), (13), (14), (17), (20), (21), (22), (23), (27), (28).
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